Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(\pm) -4a-(4-Nitrobenzyl)-2,3,4,4a-tetrahydro-1H-carbazole

Hua Zhou,^a* Shi-Yi Ou,^a Ri-An Yan^a and Xiao-Jian Liao^b

^aDepartment of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China, and ^bDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China Correspondence e-mail: zhouhua5460@jnu.edu.cn

Received 8 May 2011; accepted 27 May 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 11.9.

The title molecule, $C_{19}H_{18}N_2O_2$, is built up from three fused rings, viz. phenyl, pyrrole and cyclohexane, linked to a nitrobenzyl group. The C atom bearing the nitrobenzyl group is chiral and the compound is a racemate (R/S). The dihedral angle between the nitrobenzyl and indole rings is $57.49(5)^{\circ}$. The cyclohexane ring adopts a slightly distorted chair conformation.

Related literature

For the biocativity of carbazole derivatives, see: Nakahara et al. (2002); Yukari et al. (2001, 2003). For crystallographic studies of carbazole derivatives, see: Gunaseelan et al. (2007); Murugavel et al. (2008).

Experimental

Crystal data

$C_{19}H_{18}N_2O_2$	$V = 1553.82 (10) \text{ Å}^3$
$M_r = 306.35$	Z = 4
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation
a = 8.7266 (3) Å	$\mu = 0.69 \text{ mm}^{-1}$
b = 16.6916 (6) Å	$T = 295 { m K}$
c = 11.0857 (4) Å	$0.5 \times 0.4 \times 0.3 \text{ mm}$
$\beta = 105.790 \ (4)^{\circ}$	

Data collection

Agilent Xcalibur Sapphire3 Gemini ultra diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.967, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.042479 reflections

4772 measured reflections 2479 independent reflections 2089 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

208 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.27$ e Å⁻³

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by grants from the National Natural Science Fund (No. 2010 A480005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2687).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2413-o2414.
- Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433.
- Nakahara, K., Gassinee, T., Najeeb, S. A., Hiroshi, O., Mayumi, O. K. & Mitsuru, Y. (2002). J. Agric. Food Chem. 50, 4796-4802.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2001). J. Agric. Food Chem. 49, 5589-5594.
- Yukari, T., Hiroe, K., Nordin, J. L., Lajis, H. & Nobuji, N. (2003). J. Agric. Food Chem. 51, 6461-6467.

supplementary materials

Acta Cryst. (2011). E67, o1573 [doi:10.1107/S1600536811020277]

(±)-4a-(4-Nitrobenzyl)-2,3,4,4a-tetrahydro-1*H*-carbazole

H. Zhou, S.-Y. Ou, R.-A. Yan and X.-J. Liao

Comment

Carbazole alkaloids are a class of alkaloids containing a structural moiety of indole. Many of them possess significant bioactivity and some of them are used in medicine (Nakahara *et al*.2002; Yukari *et al*.(2001, 2003)). This is the reason why they have attracted our interest.

The molecular structure of the title compound is built up from three fused rings, a phenyl, a pyrrole and a cyclohexane, linked to a nitrobenzyl group (Fig.1). The C1 carbon is chiral and the compound is a racemate (R/S). The dihedral angle between the nitrobenzyl and the indole rings is 57.49 (5)°. Bond lengths and angles agree with related compounds (Gunaseelan *et al.* (2007); Murugavel *et al.* (2008)).

Experimental

2-[(4-nitrophenyl)methyl]-Cyclohexanone (0.233 g, 1 mmol) and phenylhydrazine(0.118 g, 1.1 mmol) were added to acetic acid (10 ml). The mixture was stirred at 295 K for 1 h, and ice-water (10 ml) was added. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in MeOH at room temperature. Colourless crystals suitable for X-ray analysis (92.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for $C_{19}H_{18}N_2O_2$: C 74.49, H 5.92, N 9.14, O 10.44%; found: C 74.52, H 5.91, N 9.15%, O 10.45%.

Refinement

Refinement of F^2 against ALL reflections. The weighted *R*- factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*- factors *R* are based on *F*, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*- factors (gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Figures

Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

(±)-4a-(4-Nitrobenzyl)-2,3,4,4a-tetrahydro-1*H*-carbazole

Crystal data

$C_{19}H_{18}N_2O_2$	F(000) = 648
$M_r = 306.35$	$D_{\rm x} = 1.310 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.5418$ Å
a = 8.7266 (3) Å	Cell parameters from 2290 reflections
b = 16.6916 (6) Å	$\theta = 4.1 - 63.3^{\circ}$
c = 11.0857 (4) Å	$\mu = 0.69 \text{ mm}^{-1}$
$\beta = 105.790 \ (4)^{\circ}$	T = 295 K
$V = 1553.82 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.5 \times 0.4 \times 0.3 \text{ mm}$

Data collection

Agilent Xcalibur Sapphire3 Gemini ultra diffractometer	2479 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source	2089 reflections with $I > 2\sigma(I)$
mirror	$R_{\rm int} = 0.016$
Detector resolution: 16.0288 pixels mm ⁻¹	$\theta_{\text{max}} = 63.4^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$
ω scans	$h = -9 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -19 \rightarrow 15$
$T_{\min} = 0.967, T_{\max} = 1.000$	$l = -12 \rightarrow 12$
4772 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.116$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.053P)^{2} + 0.3423P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2479 reflections	$(\Delta/\sigma)_{max} < 0.001$
208 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlisPro (Agilent Technologies, 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.00300 (17)	0.11252 (9)	0.00877 (13)	0.0508 (4)
N2	-0.40823 (18)	-0.06469 (10)	0.32518 (16)	0.0606 (4)
01	-0.45120 (19)	-0.11644 (11)	0.24495 (19)	0.0981 (6)
O2	-0.4868 (2)	-0.04523 (13)	0.39422 (19)	0.1103 (7)
C2	-0.26031 (19)	-0.02163 (10)	0.33128 (15)	0.0474 (4)
C4	-0.0688 (2)	0.26406 (11)	0.22420 (17)	0.0546 (5)
H4	-0.0133	0.2842	0.3020	0.066*
C5	-0.1638 (2)	-0.04885 (11)	0.26058 (16)	0.0522 (4)
Н5	-0.1906	-0.0946	0.2115	0.063*
C6	0.01239 (19)	0.06249 (10)	0.33455 (14)	0.0447 (4)
C7	-0.0266 (2)	-0.00705 (11)	0.26372 (16)	0.0517 (4)
H7	0.0409	-0.0256	0.2178	0.062*
C8	-0.0060 (2)	0.20306 (10)	0.16888 (15)	0.0457 (4)
C9	0.14637 (19)	0.15610 (11)	0.21010 (15)	0.0465 (4)
C10	-0.2232 (2)	0.04547 (11)	0.40556 (16)	0.0512 (4)
H10	-0.2883	0.0621	0.4547	0.061*
C11	-0.0874 (2)	0.08749 (11)	0.40559 (15)	0.0490 (4)
H11	-0.0620	0.1335	0.4542	0.059*
C12	0.2623 (2)	0.05042 (12)	0.08696 (19)	0.0601 (5)
H12A	0.2364	0.0237	0.0063	0.072*
H12B	0.2832	0.0099	0.1521	0.072*
C13	-0.09041 (19)	0.17322 (10)	0.05232 (15)	0.0471 (4)
C14	0.1591 (2)	0.10996 (11)	0.33379 (15)	0.0503 (4)
H14A	0.2492	0.0737	0.3487	0.060*
H14B	0.1803	0.1480	0.4024	0.060*
C15	0.1269 (2)	0.10175 (10)	0.09656 (15)	0.0477 (4)
C16	0.2976 (2)	0.20659 (12)	0.22068 (19)	0.0603 (5)
H16A	0.2777	0.2442	0.1515	0.072*
H16B	0.3214	0.2372	0.2980	0.072*
C17	-0.2169 (2)	0.29487 (12)	0.1613 (2)	0.0623 (5)
H17	-0.2597	0.3370	0.1965	0.075*
C18	-0.3009 (2)	0.26371 (13)	0.04740 (19)	0.0636 (5)
H18	-0.4011	0.2842	0.0079	0.076*
C20	0.4094 (2)	0.10320 (15)	0.1016 (2)	0.0743 (6)
H20A	0.5013	0.0695	0.1060	0.089*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H20B	0.3941	0.1375	0.0286	0.089*
C22	-0.2390 (2)	0.20246 (13)	-0.00932 (17)	0.0588 (5)
H22	-0.2957	0.1817	-0.0864	0.071*
C23	0.4413 (2)	0.15502 (15)	0.2191 (2)	0.0717 (6)
H23A	0.4675	0.1208	0.2926	0.086*
H23B	0.5321	0.1894	0.2230	0.086*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0533 (8)	0.0569 (9)	0.0419 (7)	-0.0040 (7)	0.0123 (6)	-0.0011 (6)
N2	0.0532 (9)	0.0588 (10)	0.0678 (10)	-0.0018 (8)	0.0132 (8)	0.0018 (8)
01	0.0780 (11)	0.0826 (11)	0.1356 (16)	-0.0255 (9)	0.0322 (10)	-0.0397 (11)
02	0.0896 (12)	0.1405 (18)	0.1213 (14)	-0.0460 (12)	0.0636 (11)	-0.0443 (13)
C2	0.0457 (9)	0.0468 (9)	0.0473 (9)	0.0012 (7)	0.0087 (7)	0.0058 (8)
C4	0.0638 (11)	0.0508 (10)	0.0518 (10)	-0.0033 (9)	0.0201 (8)	-0.0001 (8)
C5	0.0608 (11)	0.0441 (10)	0.0511 (10)	-0.0018 (8)	0.0143 (8)	-0.0053 (8)
C6	0.0473 (9)	0.0479 (9)	0.0363 (8)	0.0040 (7)	0.0070 (7)	0.0062 (7)
C7	0.0590 (11)	0.0489 (10)	0.0510 (10)	0.0048 (8)	0.0214 (8)	-0.0013 (8)
C8	0.0490 (9)	0.0456 (9)	0.0435 (8)	-0.0043 (7)	0.0145 (7)	0.0031 (7)
C9	0.0444 (9)	0.0513 (10)	0.0426 (9)	-0.0050 (7)	0.0097 (7)	-0.0003 (7)
C10	0.0499 (10)	0.0577 (11)	0.0475 (9)	0.0047 (8)	0.0160 (8)	-0.0008 (8)
C11	0.0550 (10)	0.0481 (10)	0.0420 (8)	0.0014 (8)	0.0102 (7)	-0.0042 (7)
C12	0.0594 (11)	0.0656 (12)	0.0577 (11)	0.0043 (9)	0.0203 (9)	-0.0031 (9)
C13	0.0484 (9)	0.0517 (10)	0.0415 (9)	-0.0037 (8)	0.0124 (7)	0.0057 (7)
C14	0.0493 (9)	0.0576 (11)	0.0410 (9)	-0.0017 (8)	0.0070 (7)	0.0018 (8)
C15	0.0491 (9)	0.0507 (10)	0.0445 (9)	-0.0049 (8)	0.0151 (7)	0.0012 (7)
C16	0.0561 (11)	0.0632 (12)	0.0595 (11)	-0.0159 (9)	0.0121 (9)	-0.0002 (9)
C17	0.0689 (12)	0.0556 (11)	0.0716 (12)	0.0104 (9)	0.0346 (10)	0.0123 (10)
C18	0.0522 (11)	0.0729 (13)	0.0675 (12)	0.0094 (10)	0.0196 (9)	0.0230 (11)
C20	0.0561 (12)	0.0945 (16)	0.0787 (14)	0.0032 (11)	0.0295 (10)	0.0032 (12)
C22	0.0514 (10)	0.0734 (13)	0.0487 (10)	-0.0020 (9)	0.0090 (8)	0.0098 (9)
C23	0.0458 (10)	0.0912 (16)	0.0780 (14)	-0.0130 (10)	0.0165 (9)	0.0027 (12)

Geometric parameters (Å, °)

NI-CI5 1.727 (2) CI0-CII 1.5	//(2)
N1—C15 1.290 (2) C11—H11 0.92	300
C2—N2 1.463 (2) C12—H12A 0.9 ^o	700
C2—C5 1.375 (2) C12—H12B 0.9'	700
C2—C10 1.376 (2) C12—C15 1.44	37 (2)
N2—O1 1.223 (2) C12—C20 1.52	29 (3)
N2—O2 1.203 (2) C13—C22 1.33	30 (2)
C4—H4 0.9300 C14—H14A 0.9	700
C4—C8 1.377 (2) C14—H14B 0.9'	700
C4—C17 1.389 (3) C16—H16A 0.9'	700
C5—H5 0.9300 C16—H16B 0.9'	700
C5—C7 1.378 (2) C16—C23 1.52	25 (3)
C6—C7 1.391 (2) C17—H17 0.92	300

C6—C11	1 387 (2)	C17—C18	1 378 (3)
C6—C14	1.508 (2)	C18—H18	0.9300
С7—Н7	0.9300	C18—C22	1 384 (3)
C8 - C9	1 503 (2)	C20—H20A	0.9700
C8—C13	1 394 (2)	C20—H20B	0.9700
C9—C14	1 550 (2)	C_{20} C_{23}	1 525 (3)
C9—C15	1 523 (2)	C22—H22	0.9300
C9—C16	1 543 (2)	C23—H23A	0 9700
C10—H10	0.9300	C23—H23B	0.9700
C15_N1_C13	106 51 (14)	C8_C13_N1	111 75 (15)
$C_{2} = C_{2} = N_{2}^{2}$	118 76 (16)	C^{22} C^{13} N^{1}	126 84 (16)
$C_{5} - C_{2} - C_{10}$	121.97 (16)	C_{22} C_{13} C_{8}	120.01(10) 121.40(17)
$C_{10} - C_{2} - N_{2}$	119 26 (16)	C_{6} C_{14} C_{9}	121.10(17) 114.16(13)
$01 - N^2 - C^2$	119.20 (17)	C6-C14-H14A	108 7
0^{2} N2 0^{2}	119.10(17)	C6-C14-H14B	108.7
02 N2 C2	122 58 (18)	C9-C14-H144	108.7
C_{8} C_{4} H_{4}	122.38 (18)	C9-C14-H14B	108.7
$C_{8} - C_{4} - C_{17}$	118 61 (18)	$H_{14A} - C_{14} - H_{14B}$	107.6
$C_{17} - C_{4} - H_{4}$	120.7	N1_C15_C9	107.0 114.72(15)
$C_2 C_5 H_5$	120.7	N1_C15_C12	114.72(15) 125.36(16)
$C_2 = C_5 = C_7$	118 76 (16)	11 - 15 - 12	123.30(10) 110.35(15)
$C_2 = C_3 = C_7$	120.6	$C_{12} - C_{13} - C_{9}$	100.1
$C_7 = C_5 = C_1 A$	120.0 120.87(15)	C9 C16 H16P	109.1
$C_{1}^{11} = C_{0}^{12} = C_{1}^{12}$	118 46 (16)		107.0
$C_{11} = C_{0} = C_{1}$	110.40(10) 120.67(15)	$\begin{array}{c} 1110A - C10 - 1110B \\ C22 - C16 - C0 \\ \end{array}$	107.3 112.21(17)
$C_{11} = C_{0} = C_{14}$	120.07(13)	$C_{23} = C_{10} = C_{9}$	112.31 (17)
C5C7C0	120.90 (10)	C_{23} C_{16} U_{16}	109.1
$C_{5} - C_{7} - H_{7}$	119.5	C_{23} C_{10} H_{17}	109.1
$C_{0} = C_{1} = H_{1}$	119.5	$C_{4} = C_{1} = C_{1}$	119.7
$C_4 = C_6 = C_9$	132.30(10) 120.21(16)	$C_{18} = C_{17} = C_{4}$	120.70 (19)
$C_{4} = C_{6} = C_{15}$	120.21(10) 107.22(14)	$C_{10} - C_{17} - C_{18} + H_{18}$	119.7
C_{13} C_{0} C_{14}	107.22(14) 111.98(12)	$C_{17} = C_{18} = C_{18}$	119.4
$C_{0} = C_{1}$	111.00(13) 00.71(13)	$C_{17} - C_{18} - C_{22}$	121.23 (10)
C_{8} C_{9} C_{15}	99./1 (15) 112.04 (15)	C12 C20 U20A	119.4
$C_{8} - C_{9} - C_{10}$	113.94 (13)	C_{12} C_{20} H_{20} H_{20}	109.3
C15 - C9 - C14	115.58 (14)	C12-C20-H20B	109.3
C15 - C9 - C16	100.80(14)	$H_{20}A - C_{20} - H_{20}B$	107.9
C10 - C9 - C14	110.46 (15)	$C_{23} = C_{20} = C_{12}$	111.70 (10)
$C_2 = C_{10} = H_{10}$	120.7	C23—C20—H20A	109.3
$C_2 = C_{10} = C_{11}$	118.51 (10)	$C_{23} = C_{20} = H_{20B}$	109.3
	120.7	C13 - C22 - C18	117.80 (18)
	119.4	C13-C22-H22	121.1
	121.29 (16)	C18—C22—H22	121.1
	119.4	C16 - C23 - C20	111.76 (16)
H12A—U12—H12B	108.3	C10-C23-H23A	109.3
C15—C12—H12A	109.9	C10-C23-H23B	109.3
C15—C12—H12B	109.9	C_{20} C_{23} H_{23} H	109.5
C15 - C12 - C20	108.74(17)	C20—C23—H23B	109.3
C20—C12—H12A	109.9	H23A—C23—H23B	107.9
C20—C12—H12B	109.9		

Fig. 1