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Atherosclerosis, a chronic inflammatory disease of the vascular system, presents

significant challenges to developing effective molecular diagnostics and novel
rapies. A systems biology approach integrating data from large-scale measure-

nts (e.g. transcriptomics, proteomics and genomics) is successfully contributing to

ciphering regulatory networks underlying the response of many different cellular

tems to perturbations. Such a network analysis strategy using pathway infor-

tion and data from multiple measurement platforms, tissues and species is a

mising approach to elucidate the mechanistic underpinnings of complex dis-

ses. Here, we present our views on the contributions that a systems approach can

ng to the study of atherosclerosis, propose ways to tackle the complexity of the

ease in a systems manner and review recent systems-level studies of the disease.
Atherosclerosis and systems
biology

Atherosclerosis is a complex multi-

factorial disease characterized by the

accumulation of inflammatory cells,

lipoproteins and fibrous tissue in the

wall of large arteries (Lusis, 2000). It is
the primary cause of heart attacks and strokes and thus is the

underlying cause of the majority of deaths globally, accounting

for approximately 29% of all deaths worldwide. Cardiovascular

disease disproportionately affects low and middle income

countries and is projected to remain the single leading cause

of death worldwide for the next 20 years (World Health

Organization, 2009). Despite the enormous economic and social

burden of this disease, we lack both a full understanding of its

underlying mechanism and the ability to personalize its

diagnosis and treatment.

Research over the past several decades has revolutionized our

understanding of the pathogenesis of atherosclerosis. Pre-

viously atherosclerosis was viewed primarily as a passive

process of cholesterol accumulation in the vessel wall, and the

clinical manifestations were attributed primarily to the degree of

stenosis. We now understand that atherosclerosis is a complex

and active process and that the ultimate clinical presentation

results from the interaction of multiple cell types and organ

systems (Corti et al, 2004; Libby & Theroux, 2005). Because of

its underlying complexity, the study and treatment of athero-
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sclerosis presents several fundamental challenges that the

emerging discipline of systems biology is uniquely suited to

address.

Systems biology is the comprehensive, quantitative analysis

of the manner in which all of the components of a biological

system interact over time (Zak & Aderem, 2009). To study

atherosclerosis, one would for example consider the human

body as the biological system and naturally, all the molecules,

cells, tissues and organs that play a role in the pathology of this

disease are its components. While systems biology is dependent

on new ‘omics’-scale technologies, it is not defined by these

technologies. Rather, the systems approach involves the

integration of the data derived from these measurement tools

into comprehensive predictive models.

Systems biology is hypothesis-driven, global, quantitative,

iterative, integrative and dynamic. Its practice begins with the

acquisition of global sets of biological data from as many

hierarchical levels of information as possible [i.e. deoxyribo-

nucleic acid (DNA) sequences, ribonucleic acid (RNA) expres-

sion, protein or lipid abundance]. This is the starting point for

formulating detailed graphical or mathematical models, which

are then iteratively refined through a hypothesis-driven process

of system perturbation and data integration. Cycles of this

process will result in more accurate models; ultimately, these
� 2010 EMBO Molecular Medicine 79
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models will explain the systems-level properties of the biological

system of interest. Once the model is sufficiently accurate and

detailed, it will allow researchers to accomplish two tasks never

before possible: (1) predict the behaviour of the system given

any perturbation and (2) redesign or perturb the molecular

network to create new emergent properties. Taking the

atherosclerosis analogy further, a researcher or clinician could

(1) predict the body’s response to, for example, a new diet or

medication and (2) design an appropriate intervention that

prevents atherosclerosis-promoting events or shifts them to

anti-atherosclerotic ones. This latter possibility lies at the heart

of preventative medicine.
Glossary

Cholesterol
A steroid metabolite found in cell membranes. It is transported in the

blood in lipoprotein particles and excess circulating cholesterol is

associated with atherosclerosis.

Data-mining
Pattern-finding in a large dataset.

Familial hypercholesterolemia
A genetic disorder usually caused by mutations in the LDL-receptor

or in ApoB that results in high levels of LDL and premature

atherosclerosis.

Fatty streak
Early atherosclerotic lesion containing mainly cholesterol and

macrophages.

Feedback loop
A network motif in which a node (molecule) indirectly (or directly)

regulates itself.

Feed-forward loop
A network motif in which a node (molecule) both directly and

indirectly regulates a downstream target node.

High density lipoprotein (HDL)
High density lipoprotein—‘good cholesterol’, high levels are thought

to be protective against atherosclerosis.

Low density lipoprotein (LDL)
Low density lipoprotein—‘bad cholesterol’, high circulating levels

have been shown to correlate with atherosclerosis.

Plaque
The buildup of cells and cholesterol in the arterial wall. Severe plaque

buildup can narrow the arterial lumen interfering with the flow of

blood.

Seed
A group of nodes (molecules) used as the starting point in ad hoc

network construction.

Stenosis
The abnormal narrowing of an artery.

Tangier disease
A genetic disorder resulting in very low levels of HDL caused by a

mutation in the ABCA1 transporter.

Thrombosis
Formation of a blood clot.

� 2010 EMBO Molecular Medicine
The levels of complexity of atherosclerosis

Atherosclerosis involves the interplay among thousands of

molecules in multiple interacting cells types including macro-

phages, endothelial cells and smooth muscle cells (SMCs). The

disease occurs in different forms throughout the body (Trogan

et al, 2006) and is affected by inputs from multiple organ

systems including the vascular system, the endocrine system,

adipose tissue, the liver, the gastrointestinal tract and the

kidneys (Fig 1). Epidemiologic and treatment studies have also

shown that the disease is modulated by a variety of genetic and

environmental factors (Yusuf et al, 2004). For example,

alteration in the relative abundance of various plasma

lipoproteins such as low-density lipoprotein (LDL) and high-

density lipoprotein (HDL) has been shown to be of primary

importance in the development of the disease. The levels of

these lipoproteins are influenced by multiple genetic factors

(such as mutations in the LDL receptor gene which cause

familial hypercholesterolemia (Brown & Goldstein, 1974) and

mutations in theABCA1 gene which cause Tangier disease (Rust

et al, 1999) as well as diet, exercise and medications (Steinberg,

2004, 2005a, b, 2006).Many of the risk factors for atherosclerosis,

including dyslipidemia, hypertension, diabetes and obesity,

involve the interaction of several organ systems such as the

liver, kidneys, gastrointestinal tract and hormonal systems

(Assmann et al, 1999). Furthermore, systemic inflammation,

which has been shown to be critically involved in both the

development and eventual clinical complications of athero-

sclerosis, involves immune cells and mediators located at the site

of plaque formation as well as distal organ systems such as the

liver and adipose tissue (Libby et al, 2002; Ross, 1999). Thus,

atherosclerosis results from the complex interplay of genetic and

environmental risk factors at a whole-organism level (Fig 1).

Atherosclerosis progresses throughmultiple stages from early

fatty streaks, to advanced lesions to plaque rupture, with each

stage being characterized by different cellular and molecular

components (Fig 1D). Atherosclerotic plaque development

begins with endothelial cell activation, including overexpression

of leukocyte adhesion proteins such as vascular cell adhesion

molecule 1 VCAM-1 (Cybulsky & Gimbrone, 1991). Chemoat-

tractants such as monocyte chemoattractant protein 1 (MCP-1)

then promote migration of leukocytes into the intima (Boring

et al, 1998), wheremacrophage colony stimulating factor (CSF1)

promotes the differentiation of monocytes into macrophages

(Rajavashisth et al, 1990). These macrophages express

scavenger receptors that allow them to engulf and modify

lipoproteins and become foam cells which secrete inflammatory

mediators [such as interleukin-1 (IL-1), tumour-necrosis factor-

a (TNF-a), nitric oxide and endothelin] (Hansson et al, 2006),

that amplify inflammation in the vessel wall and can contribute

to additional leukocyte accumulation, SMC proliferation and

extracellular matrix remodelling (Brown & Goldstein, 1983;

Greaves & Gordon, 2009). Multiple other leukocytes are

recruited to the lesion and have been demonstrated to play a

critical role in disease development (Weber et al, 2008).

Whereas foam cell accumulation characterizes fatty streaks,

deposition of fibrous tissue defines the more advanced athero-
EMBO Mol Med 2, 79–89 www.embomolmed.org
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Figure 1. The pathophysiology of atherosclerosis involves interacting systems at multiple levels.

A. Genetic and environmental factors.

B. Multiple organs and organ systems are involved in the disease process.

C. Risk factors that are influenced by genetic and environmental inputs and that involve multiple organ systems contribute to the development and progression

of atherosclerosis.

D. Atherosclerosis progresses through several stages, each of which involves the interaction of multiple cell types and molecular processes.
sclerotic lesion. SMCs synthesize the bulk of the extracellular

matrix that characterizes this phase of plaque evolution (Raines

& Ferri, 2005). Plaque rupture resulting from inflammatory

activation and the ensuing thrombosis commonly cause the

most acute complications of atherosclerosis such as myocardial

infarctions or stroke (Fuster et al, 2005).

There are multiple challenges facing clinicians in the

treatment of atherosclerotic vascular disease. Atherosclerosis

is a chronic condition that develops silently over decades,

presenting with clinical manifestations only very late in the

course of the disease. Current strategies to detect early disease
www.embomolmed.org EMBO Mol Med 2, 79–89
rely heavily on population-based risk factor assessment but lack

the ability to individualize these risk assessments. Currently

available diagnostic tools are only able to detect advanced

disease. Furthermore, while many pharmacologic interventions

directed at reducing correlative risk factors have been shown to

reduce the population-based cardiovascular mortality rate, no

methods are currently available to track the vascular response in

an individual patient and therefore to predict that patient’s risk

of future events. Thus, current strategies do not holistically

address the multiple factors that contribute to the observed

pathology.
� 2010 EMBO Molecular Medicine 81
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Figure 2. Conceptualizing the disease process as

a network.

A. In a systems biology approach, the goal is to

uncover a network of molecular interactions

whose altered state can be correlated with

disease progression. In this simple conceptual

network diagram, a node (biomolecule) is

represented by a circle or hexagon, and an

interaction between two nodes (edges) is

represented by a line between them. A highly

interconnected subnetwork of molecules

(hexagons, inside dotted circle region) is shown.

B. Colored nodes denote changes in the network

during disease progression (a red node denotes

increased expression and green denotes

decreased expression).
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Applying network analysis to atherosclerosis
questions

Given the complexities of atherosclerosis, a systems biology

approach that samples multiple levels of hierarchical data and

then integrates the results into coherent network models offers

many advantages. Complex biological networks are organized

around sub-networks of gene modules that contribute to the

robustness of the entire system. From a systems-level pers-

pective, disease states represent perturbations, from genetic or

environmental factors, on complex networks of interacting

components on multiple scales (molecules, macromolecules,

organelles, cells, tissues and organs).

The recent development of global measurement and analysis

technologies, and their integration under the aegis of systems

biology, offer an unprecedented opportunity to overcome the

difficulties inherent in atherosclerosis research and treatment.

The complex spatial and temporal relationships involved in the

disease need to be understood in the context of a dynamic

interaction network. Because atherosclerotic plaques evolve

over time from simple fatty streaks to advanced lesions prone to

plaque rupture, a useful model of the disease process must be

able to accommodate changes in molecular composition and

interactions over time. Below, we describe the use of interaction

networks in systems biology and their application to athero-

sclerosis research.
Table 1. Public molecular pathway databases and software tools to access th

Database Link to database S

Reactome reactome.org Sky Painter

BioCarta biocarta.com Pathway Explorer, Gene Set E

BioCyc biocyc.org Pathway Tools, Mouse Genom

KEGG Pathways genome.jp/kegg KEGG Pathway Mapping tool,

PANTHER pantherdb.org Panther Gene Expression tool

GenMAPP/WikiPathways wikipathways.org PathVisio, Pathway Explorer,

Science STKE stke.sciencemag.org Gene Set Enrichment Analysis

Lipid MAPS lipidmaps.org VANTED, Pathway Editor

For each database, a link to the main website and a list of compatible data-m

mammalian pathways in each database is shown.

� 2010 EMBO Molecular Medicine
A network is a framework that represents the relationships

among the features that make up complex biological systems.

Biological networks are made up of nodes, which represent

molecular entities (such as DNA variations, RNA, proteins and

metabolites), edges that represent the relationships between

these entities, and network properties that represent the state of

the molecular entities over time (Fig 2). The network topology

represents all of the interactions involved in a given biological

system. A cornerstone of the systems biology approach is the

construction of a network representing the disease process,

using a collection of methods that together can be called network

analysis. Network analysis can help identify feedback mechan-

isms and network regulatory motifs that capture the emergent

properties of the system, such as robustness to perturbation,

multistability or homeostatic control.

Network analysis can be divided into two approaches, ad hoc

network construction and pathway analysis. Both are useful for

analysing expression data pertaining to a complex disease such

as atherosclerosis, and they have complementary advantages

and limitations. The pathway approach is more straightforward

to interpret, but it is limited to only those biological functions

and processes that are represented in a pathway database.

Arbitrary divisions between canonical pathways can also

limit the effectiveness of the pathway approach. On the other

hand, the ad hoc approach has greater potential to reveal novel

molecular connections within the data, but the networks
em

oftware tool used to access or mine Count

927

nrichment Analysis, Pathway Miner 360

e Informatics 347

Pathway Explorer, Gene Set Enrichment Analysis, Pathway Miner 337

s 165

Pathway Miner 158

, Pathway Studio 51

23

ining software tools is provided. The estimated number of non-redundant

EMBO Mol Med 2, 79–89 www.embomolmed.org
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Table 2. Public molecular interaction databases

Database Link to database Area(s) of focus Interactions

Pathway Commons pathwaycommons.org Meta-database of protein interactions 245,076

BIND bond.unleashedinformatics.com Meta-database of protein interactions 188,517

ConsensusPathDB cpdb.molgen.mpg.de Meta-database of protein interactions 137,224

IntAct www.ebi.ac.uk/intact Protein–protein interactions 39,212

HPRD hprd.org Protein–protein interactions 38,806

MINT mint.bio.uniroma2.it Protein–protein interactions 20,530

BioGRID thebiogrid.org Protein–protein and genetic interactions 24,011

ORegAnno oreganno.org Protein–DNA interactions 14,608

InnateDB innatedb.ca Innate immune system 7,060

NURSA nursa.org Nuclear receptor signalling �100

For each database, the Web address of the main portal for the database is given, along with a description of the database’s area(s) of emphasis. The ‘Interactions’

column provides an estimate of the number of human protein–protein interactions within each database (except for ORegAnno, where it lists the number of

transcription factor binding sites in the database).
generated in the ad hoc approach can be challenging to interpret.

We outline a procedure and relevant resources for each

approach below.

The pathway approach

In the pathway approach a network diagram is organized around

curated lists of interactions known to be involved in a specific

molecular process, for example, ‘eicosanoid biosynthesis’ or

‘toll-like receptor signalling’. These pathway-oriented interac-

tion networks can be obtained from freely accessible pathway

repositories (Table 1) and from commercial pathway databases

such as Ingenuity Pathways Analysis (IPA, Ingenuity), Meta-

Core (GeneGo) and Pathway Studio (Ariadne). There are also
Table 3. Freely available software tools that can be used for data integration

Software tool Reference Ca

BioConductor Reimers and Carey

(2006)

Data integration, b

statistical analysis

pathway analysis (

BiologicalNetworks Baitaluk et al (2006) Network construct

Cytoscape Shannon et al (2003) Network layout an

DAVID/EASE Dennis et al (2003) Functional analysis

FANMOD Wernicke and Rasche

(2006)

Network analysis (

Gaggle Shannon et al (2006) Data integration, b

InnateDB Lynn et al (2008) Network construct

using Cerebral (Bar

GenePattern Reich et al (2006) Data integration, b

statistical analysis

pathway analysis (

GSEA Subramanian et al

(2005)

Functional analysis

MEME Suite Bailey et al (2009) Sequence motif de

Osprey Breitkreutz et al (2003) Network construct

PathBLAST Kelley et al (2004) Network compariso

SPIA Tarca et al (2009) Pathway analysis o

TIGR MeV www.tm4.org Statistical/bioinform

visANT Hu et al (2008) Network layout an

Several commercial tools are also available for network construction and analysis, s

Professional (BioBase). The ‘databases’ column indicates interaction or pathway

www.embomolmed.org EMBO Mol Med 2, 79–89
several freely available software tools that can mine multiple

pathway databases (see Table 1). Beyond analysis in terms of

separate pathways, an atherosclerosis dataset can also be

analysed across multiple pathways to identify molecules or

genes that operate within more than one atherosclerosis-

associated pathway (e.g. see Ghazalpour et al, 2004).

The ad hoc approach

As opposed to the pathway approach, the ad hoc approach is

unbiased. Here, differentially expressed molecules [ideally

identified using a significance threshold that accounts for

multiple hypothesis tests (Storey & Tibshirani, 2003)] are

grouped into sub-networks that are highly interconnected in an
, network construction and network analysis

pabilities Databases

ioinformatic analysis,

of high-throughput data,

using SPIA)

KEGG, most major annotation databases

ion, layout and analysis KEGG, BIND, TRANSFAC Public

d analysis KEGG

of gene sets BioCarta, KEGG

motif detection) n/a

ioinformatic analysis KEGG, EBI STRING

ion and analysis [layout

sky et al, 2007)]

InnateDB

ioinformatic analysis,

of high-throughput data,

using GSEA)

MSigDB (via GSEA)

of high-throughput data MSigDB

tection and searching TRANSFAC, Jaspar

ion, layout and analysis BioGRID

n DIP

f gene expression data KEGG

atics analysis BioCarta, KEGG (via DAVID/EASE)

d analysis BIND, MIPS, BioGRID, MINT

uch as Ingenuity Pathways Analysis, Pathway Studio, MetaCore and TRANSFAC

databases that the software tool can directly query or interact with.

� 2010 EMBO Molecular Medicine 83
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Figure 3. Regulatory molecules implicated by network analysis.

A. A regulatory molecule ‘X’ that is not differentially expressed can be

implicated by its connectivity to differentially expressed molecules, in the

interaction network.

B. A differentially expressed molecule ‘Y’ can be identified as a key regulator

through its connections to key disease-associated molecules and

biological processes. Red/green colours denote up/downregulation

of mRNA.

84
interaction dataset. Often, differentially expressed molecules

may share an interacting partner that is not itself differentially

expressed, such as a common regulator, substrate, etc. To

reveal such indirect connections, molecules can be added to the

network that, by virtue of their interactions, enhance the

network’s connectedness [e.g. its clustering coefficient (Watts &

Strogatz, 1998)]. The ad hoc network construction approach

does not rely on curated pathway information, but instead

is applied using large databases of molecular interactions

or associations. Most commonly used are databases of protein–

protein interactions (PPI), protein–DNA interactions and

protein–metabolite interactions. Interaction databases fall into

two categories, large-scale interaction repositories, which may

aggregate interactions from high-throughput PPI screens from

various species and tissue types, and interaction databases that

are focused on a specific class of molecules or functions. A

listing of commonly used, publicly accessible interaction

databases is given in Table 2. An important limitation of many

of these databases is that they aggregate findings from a variety

of model cell types, and thus the interaction data are not

necessarily derived from atherosclerosis-relevant tissues or

models. Another caveat is that literature-based interaction

databases necessarily provide more information on better-

studied molecules, which may introduce bias into the network

model.

Typically, ad hoc network analysis begins with a network

constructed from a ‘seed’ collection of molecules identified in an

expression study and any direct interactions between them. To

this seed network are then added molecules that have high

connectivity to the seed network, thus growing a highly

interconnected molecular network in an iterative fashion. The

resulting network can be analysed for enrichment of functional

annotations to gain insight into its specific biological functions.

Several software tools are available that can perform ad hoc

network construction and analysis, as well as statistical and

bioinformatic analysis of high-throughput data (Table 3).

Integrating data from different high-throughput measurement

platforms (e.g. transcriptomic and proteomic) can be particu-

larly useful to comprehensively detect disease-associated genes,

and statistical approaches have been specifically developed to

iteratively expand a molecular network using multiple data

types (Hwang et al, 2005).

Analysing large-scale expression measurements in the

context of molecular pathways or interaction networks can

reveal key regulatory molecules and functional modules

involved in the disease process and suggest hypotheses

regarding the system response to perturbation. Originally used

in the context of model organisms such as yeast and bacteria, ad

hoc network analysis has more recently been applied to the

study of mammalian systems. Particularly relevant to athero-

sclerosis, several studies have examined networks involved in

the inflammatory response in macrophages. Gilchrist et al

combined transcriptional profiling and analysis of promoter

sequences to identify activating transcription factor 3 ATF3 as a

regulator of macrophage response to the bacterial endotoxin

lipopolysaccharide (Gilchrist et al, 2006). Based on the network

analysis, ATF3 was predicted to act as a negative regulator of
� 2010 EMBO Molecular Medicine
Toll-like receptor 4 TLR4-induced expression of key pro-

inflammatory genes such as Il6 and Il12b, and this prediction

was validated both in vitro and in vivo. A second transcriptomic

study analysed the dynamic transcriptional response of

macrophages to stimulation with various Toll-like receptor

TLR agonists. Using a probabilistic framework, transcriptomic

data were integrated with promoter sequence scanning (scan-

ning for cis-regulatory motifs from the TRANSFAC database) to

predict transcription factors that regulate clusters of TLR-

responsive genes. TGFB-induced factor homeobox 1 TGIF1 was

identified as a potential novel transcriptional regulator of a

cluster containing the cytokines Csf2 and Gm1960 (Ramsey et al,

2008).

Taking network analysis further

Network analysis can enhance the utility of even simple

transcriptomic studies, as we illustrate in Fig 3. Expression

data-mining based solely on gene functional annotations is

limited by incomplete annotations and the fact that key

regulators of disease progression may not be differentially

expressed. Furthermore, within a disease-associated functional

module, only a small fraction of molecular species may be

differentially expressed. Network analysis can extend beyond

gene annotation enrichment analysis by taking into account

interactions between the molecules in the expression dataset

(and intermediaries). Among other advantages, this enables the

identification of regulatory molecules that may not be

differentially expressed (Fig 3A). A differentially expressed

molecule can also be identified as a candidate regulator based on

its proximity to disease-associated molecules in the interaction

network (Fig 3B). Moreover, the sub-network involving a
EMBO Mol Med 2, 79–89 www.embomolmed.org
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Box 1: Network analysis of macrophage response
oxLDL

As an example of network analysis, we analysed transcriptomic data

from murine macrophages treated with oxLDL, a stimulus that is

associated with foam cell formation. Using the PLIER algorithm

(Affymetrix, 2005), 542 geneswere identified as differentially expressed.

Ad hoc network analysis was performed on the 542 genes using

MetaCore, yielding a network (Fig 4) associated with three biological

processes relevant to foam cell formation: ‘regulation of foam cell

differentiation’ (P< 10�10), ‘regulation of macrophage differentiation’

(P<10�9) and ‘lipoprotein catabolic process’ (P<10�9). A functional

enrichment test of only the differentially expressed genes in the network

fails to detect these enrichments, because only a fraction of the

molecules in the network are differentially expressed. The interaction

network has multiple interactions with sphingolipids, consistent with

the findings of Wheelock et al (2009) based on the data from Kleemann

et al (2007).

Figure 4. Network involving macrophage genes with altered expression in response to oxLDL. The network includes 20 oxLDL-responsive genes.

Nodes (molecules) are arranged based on subcellular location. A red (blue) circle on the upper right-hand side of the molecule indicates upregulation

(downregulation) when cells are treated for 24 h. Each node is designated by a glyph that indicates the type of molecule (receptor, kinase/phosphatase,

scaffold, etc.) (Kleemann et al, 2007). Each edge indicates an interaction, with an arrowhead indicating the flow of control in the specific interaction (if

known).

www.embomolmed.org EMBO Mol Med 2, 79–89 � 2010 EMBO Molecular Medicine 85
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differentially expressed molecule may indicate its significance,

for example, if it resides in a feedback loop regulating the level of

a disease-associated protein or metabolite. As an example of this

network-oriented approach, we analysed transcriptomic data

from murine macrophages treated with oxidatively modified

LDL (oxLDL), a stimulus that is associated with foam cell

formation. The analysis and the resulting network, which are

detailed in Box 1 and Fig 4, show how a potential regulator of the

response (p65/Rela) can be identified even though it is not

differentially expressed. This simple example also reveals the

potential for network analysis to provide a more complete

picture of the cellular response than would analysing the

annotations of only the differentially expressed genes. More-

over, network analysis can uncover network regulatory motifs

[e.g. feedback loops, feed-forward loops, etc. (Alon, 2007)]

controlling the response.

The application of both pathway (Cagnin et al, 2009) and ad

hoc (Skogsberg et al, 2008) network analysis has facilitated

extraction of biologically meaningful information from micro-

array messenger RNA (mRNA) studies of atherosclerotic

plaques. Such studies are critical in that they analyse disease-

relevant tissue [e.g. whole mouse aorta (Skogsberg et al, 2008)

or human coronary and carotid arteries (Cagnin et al, 2009)] but

they pose numerous analysis challenges. For example, the

lesion samples contain a mix of cell types obtained at a fixed

time point. These studies allow the construction of a ‘parts list’

of molecules that may participate in the process—which

is extremely useful in the interpretation and analysis of

complementary in vitro studies. However, to go beyond such

lists requires the application of network analysis. By doing this

type of analysis the authors provided insights into disease

pathogenesis that would not otherwise have been apparent. For

example, network analysis of transcriptional data from lesions

suggested a small group of cholesterol-responsive genes whose

functional annotations were suggestive of involvement in lipid

uptake or metabolism (Skogsberg et al, 2008). Screening this

gene network with siRNA in an in vitro macrophage cholesterol

accumulation assay showed that no single intervention ablates

foam cell formation. These findings are consistent with the

viewpoint that foam cell formation in vivo is likely to be resistant

to targeting a single molecule, and instead may require a

combined therapeutic approach.

Both pathway and ad hoc network analysis depend on the

quality and comprehensiveness of the underlying interaction

database. One approach to extend beyond the available

databases is to construct networks using molecular associations

based on semantic mining of relevant scientific literature. This

has the advantage of enabling an investigator to explore

networks organized around relevant biological search terms

such as ‘atherosclerosis’, ‘foam cell’ or ‘cardiovascular disease’.

The interactions in these networks are based on co-occurrence

of molecule names within abstracts of disease-associated

articles, with the molecule names separated by a keyword that

is suggestive of molecular interaction (e.g. ‘binds’, ‘modifies’,

‘phosphorylates’, etc.). This literature network approach has

been used in the analysis mRNA profiles of human athero-

sclerotic tissue (Ashley et al, 2006; King et al, 2005). Due to
� 2010 EMBO Molecular Medicine
limitations inherent in human studies, these investigations

could not identify transcriptional markers of early-stage disease,

and they identified a relatively modest number of differentially

expressed genes compared to controlled transcriptomic studies

of lesions in mice. Integrating data from both human and model

systems maximizes the probability of obtaining robust, physio-

logically relevant findings. Tabibiazar et al leveraged transcrip-

tional data from mouse aortas and human coronary arteries

to identify atherosclerosis-related genes that are predictive

of disease severity in mouse and lesion grade in human

(Tabibiazar et al, 2005). Their analysis confirmed many genes

whose transcript levels are known to correlate with disease

severity and identified functional classes of genes that are

novel in the context of atherosclerosis (such as RUNX

transcription factors and histone deacetylases). Such a dual-

species approach has the benefit of ensuring that the transcrip-

tional correlates of disease severity identified in mice are

relevant in human.

Integrating transcriptomic, proteomic and metabolomic

measurements into network analysis can yield a more complete

picture of changes responsible for the initiation of athero-

sclerotic vascular disease than can be obtained by analysing a

single measurement type. Applying such an approach in a

mouse model of atherosclerosis has demonstrated the impor-

tance of transcriptional and metabolic reprogramming of

the liver as a key driver of the inflammatory process underlying

atherogenesis (Clish et al, 2004; Kleemann et al, 2007).

Examining a combination of genetic and transcriptomic

measurements in the context of molecular pathways and

biological processes associated with atherosclerosis has also

been used as a novel method to uncover disease biomarkers

(Hagg et al, 2008; Torkamani et al, 2008). For example, this

approach identified insulin receptor substrate 2 (IRS2), whose

expression is higher in macrophages from individuals with

atherosclerosis than from control subjects. Through genetic

association analysis of a larger cohort, a single nucleotide

polymorphism SNP in the IRS2 promoter was identified that

results in higher IRS2 gene expression and increased risk of

coronary heart disease (Hagg et al, 2008). Thus, this approach

utilizing a tiered study design has identified a potential novel

biomarker for the development of coronary heart disease.

A number of excellent genome-wide association studies

(GWAS) have uncovered multiple genetic loci that are associated

with the development of atherosclerosis (Assimes et al, 2008;

Aulchenko et al, 2009; Erdmann et al, 2009; Jarinova et al, 2009;

McPherson et al, 2007; Tregouet et al, 2009), the subsequent

clinical complications of atherosclerosis such as myocardial

infarction (Kathiresan et al, 2009a) as well as risk factors for

atherosclerosis such as hypertension (Newton-Cheh et al, 2009),

dyslipidemia (Kathiresan et al, 2007, 2008a, b, 2009b) and obesity

(Lindgren et al, 2009; Willer et al, 2009). These studies

demonstrate the power of current high-throughput technologies

as they have revealed multiple loci that would not have been

uncovered with more traditional hypothesis-based methods.

However, the utility of these studies is limited by the fact that

GWAS does not necessarily directly indicate the causal gene and

does not establish the biological context in which the causal
EMBO Mol Med 2, 79–89 www.embomolmed.org
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gene operates. The integration of GWAS data with studies that

examine the downstream changes in the RNA, protein and

metabolite state has the potential to reveal the perturbations in

molecular networks that are associated with disease. Additional

discovery power can be achieved through integration of QTL

and transcriptional profiling analysis of strain-intercrossed mice

with varying susceptibility to atherosclerosis (Smith et al,

2006a, b).

The identification of the macrophage-enriched metabolic

network (MEMN) is an excellent example of the power of such

integrated approaches. This network was constructed by

integrating multiple data types including genetic studies and

expression data from human andmouse liver and adipose tissue

(Chen et al, 2008; Emilsson et al, 2008). The MEMN was

strongly associated with obesity, diabetes and heart disease and

this was confirmed experimentally in studies that indicate

complex feedback control within the network (Mehrabian et al,

2005; Schadt et al, 2008; Yang et al, 2009). These studies

identified several genes, including a newly discovered phos-

phatase gene Ppm1l, that were associated with multiple

cardiovascular risk factors including weight, glucose tolerance,

levels of free fatty acids and blood pressure. Additionally, these

studies suggested that the macrophage not only plays a key role

at the local level in the plaque but that it is also a driver of many

complex metabolic diseases that are associated with athero-

sclerosis (Schadt, 2009).

This body of literature has made substantial contributions to

the study of atherosclerosis. By increasing our ability to extract

biologically meaningful information from high-throughput data

sets, network analysis has allowed the identification of potential

novel therapeutic targets and diagnostic markers. Moreover,

studies that publish complete high-throughput data sets are

particularly valuable to the research community because they

enable other investigators to mine the data and formulate novel

testable hypotheses.

Toward a systems-level disease model

The network analysis tools andmethods described above can be

extended and refined to accommodate complex study designs

spanning multiple tissues. This is particularly relevant to

atherosclerosis, where available models of plaque formation

and leukocyte infiltration necessarily involve a trade-off be-

tween ease of expression profiling and physiological relevance.

Network analysis can be performed on data from multiple

expression studies, for example, from studies using different

models or using different high-throughput measurement plat-

forms. We briefly mention two possible strategies. (i) Dif-

ferential expression data across multiple studies can be

clustered and the clusters used as ‘seed’ lists for ad hoc network

construction. This approach is predicated on the hypothesis that

clusters derived from data from multiple complementary

expression studies (which will have different model artefacts

and ‘blind spots’) will enable the construction of a more

physiologically relevant network than would be possible using a

single expression study. (ii) Present/absent detection calls for

gene expression from more physiological models can be used to

constrain the list of possible molecules for network construc-
www.embomolmed.org EMBO Mol Med 2, 79–89
tion. We believe this is a particularly promising strategy for

extracting maximal information from in vitro expression studies

using in vivo-derived expression data.

Although the application of systems biology to the study of

complex diseases is in its early stages, these studies are already

providing novel insights into atherosclerosis and powerful tools

to continue to decipher the intricacies of this disease. The

promise of a systems approach includes disease prediction and

prevention as well as personalized medicine.
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