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Abstract The outbreak and spread of coronavirus disease 2019 (COVID-19) highlighted the impor-

tance and urgency of the research and development of therapeutic drugs. Very early into the COVID-

19 pandemic, China has begun developing drugs, with some notable progress. Herein, we summarizes

the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China.

Furthermore, we discussed the developmental prospects, mechanisms of action, and advantages and dis-

advantages of the anti-COVID-19 drugs in development, with the aim to contribute to the rational use of

drugs in COVID-19 treatment and more effective development of new drugs against severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) and the variants. Neutralizing antibody is an effective

approach to overcome COVID-19. However, drug resistance induced by rapid virus mutation will likely

to challenge neutralizing antibodies. Taking into account current epidemic trends, small molecule drugs

have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration

and affordable and broad-spectrum. Traditional Chinese medicines, including natural products and tradi-

tional Chinese medicine prescriptions, contribute to the treatment of COVID-19 due to their unique

mechanism of action. Currently, the research and development of Chinese anti-COVID-19 drugs have

led to some promising achievements, thus prompting us to expect even more rapidly available solutions.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Coronavirus disease 2019 (COVID-19), a novel infectious disease,
which is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has spread all over the world1. The main
symptoms of the patients affected by COVID-19 include fever,
cough, renal failure, and dyspnea. Patients are mostly affected by
respiratory disorders, some of which are characterized by acute
respiratory distress syndrome (ARDS) as well as acute lung injury
(ALI), occasionally leading to respiratory failure and death asso-
ciated with severe forms of the infection2.

SARS-CoV-2 can recognize and bind to host cell surface
angiotensin-converting enzyme (ACE2) with its spike protein (S
protein), and then mediate the fusion of virus and cells, finally
completing the whole infection process3,4. The key proteins, en-
zymes and RNA of SARS-CoV-2 can be used as the potential
targets for drugs against COVID-19, while the main action
mechanisms include: inhibiting viral proteins and enzymes so as
to prevent the replication and synthesis of RNA; acting upon the
viral structural proteins, inhibiting self-assembly or blocking the
virus from tethering to ACE2; targeting virulence factors and
facilitating resuming innate immunity of the host; influencing
human enzymes or receptors, and thus blocking viral entry.

Until now, there are no wonder drugs available for COVID-19
treatment. Various approaches have been used for the development
of drugs for COVID-19, which can be summarized in the
following three categories: drug repurposing (or repositioning),
convalescent plasma therapy and novel drug development (such as
small molecule drug, antibody and natural medicine, etc.)5,6.

Very early into the pandemic, China has begun developing
drugs for COVID-19. By analyzing the data obtained from the
websites of “ClinicalTrials.gov”, “Chinadrugtrials.org.cn” and
“Chinese Clinical Trial Registry”, as well as the scientific con-
ferences, published reports, company press releases, investor
presentations and other sources, we found more than 900 COVID-
19 associated clinical trials that were conducted in China, among
which some 260 anti-COVID-19 drug clinical trials involved over
160 drugs or prescriptions (listed in Tables 1 and 2). Due to a
shortage of clinical cases and/or other reasons, the clinical trials of
some Chinese anti-COVID-19 drugs were carried out abroad.
Furthermore, the trials for some drug candidates are yet to begin.
These research and development are steadily proceeding, gaining
positive results: small-molecule drugs such as azvudine, VV116,
FB2001 and SHEN26, etc.; traditional Chinese medicines such as
Lianhua Qingwen capsule/granule, Xuebijing injection, Lung
Cleaner and XuanFei Baidu prescription, as well as the natural
products, e.g., emetine, cephalotaxus fortune and hymecromone,
etc.; protein drugs including human immunoglobulin pH4 and
Table 1 The number of anti-COVID-19 drug clinical trials

in China and correlative drugs.

Drug type Number of drugs Number of

clinical trials

Small molecule drug 48 95

Neutralizing antibody 19 30

Other protein drugs 13 14

Traditional Chinese medicine 66 106

Natural product 10 14

Other drugs 5 4

Total number 161 263
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neutralizing antibodies BRII-196 and BRII-198, JS016 and JS026,
DXP604, BDB-001, 9MW3311 and LY-CovMab, etc. (Table 3)5,7.
Among the above-mentioned drugs, the combination therapy of
neutralizing antibody BRII-196 and BRII-198 and the small
molecule oral drug azvudine have been conditionally approved to
be marketed in China.
2. Small-molecule drugs

The proteins encoded by SARS-CoV-2 include structural proteins
and non-structural proteins. Structural proteins mainly include
nucleocapsid protein (N protein), an envelope protein (E protein),
and spike protein (S protein); non-structural proteins mainly
include Cathepsin L (3CLpro, also known as Mpro), papain-like
protease (PLpro), helicase and RNA dependent RNA polymerase
(RdRp)8. These non-structural proteins are key proteases in the
replication cycle of the virus and the potential targets for the
management of COVID-19 by small molecule drugs (as Fig. 1
shown).

Small-molecule drugs can block virus infection of host cells
and replicate in host cells. They also have a clear mechanism,
convenience in administration, easy large-scale manufacturing,
affordable price, etc9,10. Additionally, small molecule drugs are
not easy to encounter drug-resistant induced by various variant
viral strains due to their broad-spectrum antiviral effects.

2.1. Novel small molecule drugs

ALD-R491 exerts antiviral and anti-inflammatory dual effects by
targeting vimentin. Vimentin has a role in the entry, intracellular
transport, and release of the virus, as well as an inflammatory
response11. ALD-R491 can reduce endocytosis, endosomal
transport and exosome release, thus preventing the virus from
entering or leaving cells. ALD-R491 can also increase the
microbicidal capability of macrophages, thereby promoting the
clearance of the pathogen. Moreover, ALD-R491 can directly
activates regulatory T cells to inhibit the excessive immune
response. The in vitro studies indicated that ALD-R491 could
effectively inhibit the SARS-CoV-2 infection mediated by viral
spike protein and ACE2. The values of IC50 are 13.5, 34.7, and
64.9 nmol/L at multiplicities of infection (MOI) of 0.5, 5, and 50,
respectively. The in vivo studies suggested that ALD-R491
significantly reduces the lung damage and fibrosis. The above
results indicate that ALD-R491 can be used to treat COVID-19
and can also reduce the recurrence due to its effects on the pre-
vention and treatment of lung damage11.

VV116 is an oral nucleoside drug candidate for the treatment
of COVID-19, which can be metabolized into maternal nucleoside
116-N1 in vivo. 116-N1 forms an active form of nucleoside three
phosphoric acids in cells, after which it exerts an anti-SARS-CoV-
2 effects by inhibiting RdRp. In vitro antivirus trial suggested that
VV116 exerted a significant inhibitory effect against the SARS-
CoV-2 prime strains and the South African variant virus strain
(B.1.351). In the adenovirus-infected mice transduced with human
ACE2, VV116 reduced the viral load and viral titer in the lungs in
a dose-dependent and time-dependent manner. Additionally,
VV116 significantly improved the pathological changes in the
lung of mice. Compared with the positive control drug molnu-
piravir (Merck & Ridgeback), VV116 exhibited the same antiviral
effect at a lower dosage12. Phase I clinical trials of VV116 have
been completed in China, while two phase II/III international
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/



Table 2 The anti-COVID-19 drugs approved for clinical research in China.

Drug type Drug

Small-molecule drug Azvudine, Leflunomide, Acetylcysteine, Ambroxol hydrochloride, Heparin, Bromhexine hydrochloride tablet,

Fabiravir, Baicalein, Vitamin C, Hydroxychloroquine sulfate, Aliskiren, Nifedipine, Danoprevir sodium tablet,

Ritonavir, Celecoxib, ARBs, Nintedanib ethanesulfonate, Chloroquine phosphate, Pirfenidone, Ribavirin,

Dexmedetomidine, Enoxaparin sodium, Ebastine, Thioctic acid, Jaktinib hydrochloride tablet, Dipyridamole,

Sulamin sodium, Tranilast, Triazavirin, Polyinosinic-polycytidylic acid injection, Chloroquine,

Methylprednisolone, Arbidol hydrochloride, ASC09, Ruxolitinib, Baloxavir marboxil, Darunavir, Cobicistat,

Emtricitabine, Tenofovir alafenamide tablets, Remdesivir, Fingolimod, SSD8432, Nicotinamide, FB2001,

RAY1216

Neutralizing antibody BRII-196/BRII-198, Convalescent plasma (serum), Immunoglobulin, Ixekizumab, CMAB806, Adalimumab,

PD-1, Tocilizumab, IBI314, Bevacizumab, MW33, JS026/JS016, Meplazumab, SCTA01, 2B11, JMB2002,

YBSW015, BAT2022

Other protein drugs Recombinant human interferon a1b, Gamma globulin, IFN-k, Inflammation suppression factor TFF2, Interferon

a/b-1b, viral macrophage inflammatory protein (vMIP), Recombinant cytokine gene derived protein, DAS181,

rhACE2, MK-7110

Traditional Chinese

medicine

prescriptions

Buzhong Yiqi (plus and minus) formula, Huhuang Detoxicity Paste, Baimu Qingre Jiedu Paste, Jieji Xuanfei

Chuyi granules, Sanhan Huashi granules, LianHuaQingWen capsules/granules, Liushen pill, Qingjin Huashi

granules, Qingjin Yiqi granules, Chinese-herb-tea, Oviductus ranae, Lung Cleaner (QingfeiPaidu Decoction),

XuanfeiBaidu granules, cure 14 (HuashiBaidu granules), Fuzheng Yiqing prescription, Jinyinhua oral liquid/

decoction, Shugan Jieyu capsule, Lianhua Qingke tablet, Juxin Junzi granules, Qibei Fuzheng granules, Jinhua

Qinggan granules, Sancai granules, Shuanghuanglian oral Liquid, Ludangshen oral Liquid, Bufei Huoxue

capsules, Xiaoyao capsules, Xiangsha Liujun pill, Shengmai oral liquid, Qimai feiluoping mixture, Danggui

Shaoyao Powder, Kegan Liyan oral Liquid, Feiyan Yihao prescription, Toujie Quwen granules, Gushen

Dingchuan pill, Yinqiao Huopu Tuire mixture, Jingfang Huopu Jiedu mixture, Huocao Songrong, Hanma

capsule, Dendrobium candidum, Chushi Fangyi prescription, Pummelo Peel, Qingwen Shierwei pill, Secretio

bufonis injection, Maxing Shigan decoction, Zedoary turmeric oil injection, Yiqi Huashi prescription,

Compound Yuxingcao mixture, Xuebijing injection, Jingyin granules, Bupleurum Qingwen decoction, Qingfei

Jiebiao decoction, Chibai Rougan decoction, Qingwen Baidu decoction, Shenfu injection, Antiviral Oral-Liquid,

Wuzhi Fangguan decoction, KeSuTingTangJiang, Keqing capsule, Babao Dan, Tanreqing capsule/injection,

KangBingDuKeLi, Shenqi Fuzheng injection, Jinye Baidu granules, GuBiaoJieDuLing, Fuzheng Jiedu granules,

Fuzheng Huayu tablet, Hanshiyi formula, Reduning injection, Tanreqing injection

Natural product Homoharringtonine, Artemisinin/dihydroartemisinin piperaquine tablets, Xiyanping injection, Diammonium

glycyrrhizinate enteric-coated capsule, Sodium aescinate, Tetrandrine, Colchicine tablet, Berberine,

Hymecromone, Artemisinin

Other drugs microRNA2911 injection plasmid, Clostridium butyricum viable capsule, Bacillus coagulans viable tablet,

Glucocorticoid, Newgen beta-gluten probiotic composite powder
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multicenter clinical trials in patients with mild or moderate
COVID-19 and severe COVID-19 are in progress, respectively.

Besides the above drugs, there are several agents, such as
SHEN26, BH-103 and FB2001, etc., whose relevant study data
have not been published in a peer-review article, but the press
release of the preliminary data suggested that these drugs may be
effective against COVID-19. Among them, SHEN26 is a new
candidate oral drugs against COVID-19 developed by the research
team of Henan Normal University, which exerts effects by tar-
geting RdRp. The values of IC50 of SHEN26 for SARS-CoV-2 and
variants of beta and delta are 1.36, 1.12 and 0.35 mmol/L,
respectively.

The effective component of BH-103 is N-acetylneuraminic
acid methyl ester (NANA-Me), an analog of N-acetylneuraminic
acid. NANA-Me has good membrane permeability and can easily
enter cells. NANA-Me participates in the synthesis and expression
of intracellular sugar chains, which can repair the polysaccharide
structure on the surface of lung damaged cells, and block the
combination of pathogenic antibodies and autologous cells, so as
to prevent and treat serious symptoms caused by antibody-
dependent auto-attack (ADAA). Moreover, BH-103 can reduce
the excessive immune response caused by respiratory virus in-
fections such as cytokine storms. The “cytokine storm” is one of
the main pathogenic mechanisms of COVID-19. The infected
Please cite this article as: Ji Xiwei et al., Research and development of Chin

10.1016/j.apsb.2022.09.002
body produces and releases various inflammatory cytokines,
which can cause cell and organ damage. Therefore, inhibiting the
“cytokine storm” and improving the oxidative stress status can
presumably could reduce the severity and mortality rate of the
patients with COVID-19.

FB2001 is a peptide-like compound synthesized based on the
three-dimensional structure of SARS-CoV-2 main protease.
FB2001 can suppress 3CLpro in the nanomolar grade, which has
good broad-spectrum anti-virus activity in vitro. The IC50 of
FB2001 against SARS-CoV-2main proteaseMpro is 0.053 mmol/L,
and whose EC50 against SARS-CoV-2 is 0.42 mmol/L. Currently,
the phase II/III international multicenter clinical trials of FB2001
have been approved in China.

SSD8432, which was developed by Jiangsu Simcere Pharma-
ceutical Co., Ltd., exerts an anti-COVID-19 effects by targeting
3CLpro. Moreover, VV993 (JUNSHI Biosciences Co., Ltd.), GDI-
4405 (Global Health Drug Discovery Institute) and RAY1216
(RAYNOVENT Co., Ltd.) are also the anti-COVID-19 oral drugs
targeting 3CLpro. Recently, the phase I clinical trials of SSD8432
and RAY1216 have been carried out in China. Phase II clinical
trials of SSD8432 for the close contacts and patients also have
been approved in China. Regrettably, two recent phase III clinical
studies of Pfizer 3CLpro inhibitor paxlovid on standard risk pro-
phylaxis (EPIC-SR) and post-exposure prophylaxis (EPIC-PEP)
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/



Table 3 The main anti-COVID-19 drugs under research and development by China.

Drug type Drug R&D institution Therapeutic

targets

Route of

administration

COVID indications R&D stage Therapeutic effects

Small-molecule drug Azvudine (FNC) Genuine Biotechnic Co.,

Ltd.

RdRp Oral Mild, moderate,

severe

Gain conditional

market approval in

China

Antiviral effect

VV116 JUNSHI Biosciences Co.,

Ltd.

RdRp Oral Mild, moderate,

severe

Gain approval in

Uzbekistan

Antiviral effect

Proxalutamide Kintor Pharmaceutical

Co., Ltd.

ACE2, TMPRSS2 Oral Mild, moderate,

severe

Gain emergency use

authorization in

Uruguay

Antiviral effect;

inhibit inflammation;

control the cytokine

storm

FB2001 Frontier Biotechnologies

Inc.

Cathepsin L Intravenous injection Moderate, severe Phase II/III clinical

study

Antiviral effect

SHEN26 Kexing

Biopharmaceutical Co.,

Ltd.

RdRp Oral Mild, moderate Preclinical study Antiviral effect

SSD8432 Jiangsu Simcere

Pharmaceutical Co., Ltd.

3CLpro Oral Mild, moderate, post-

exposure prophylaxis

Phase I/II clinical

study

Antiviral effect

RAY1216 RAYNOVENT Co., Ltd. 3CLpro Oral Unreported Phase I clinical study Antiviral effect

Carrimycin Chinese Academy of

Medical Sciences;

Tonglian Group

Viral RNA, JAK/

stat, ISGS, and

PI3K Akt mTOR

Oral Severe, critical Phase III clinical

study

Fenofibrate Jiangsu Nhwa

Pharmaceutical Co., Ltd.

S protein, ACE2 Oral Severe Phase II/III clinical

study

Antiviral effect;

inhibit inflammation;

regulate immunity

Danoprevir (Ganovo) Ascletis Bioscience Co.,

Ltd.

Chymotrypsin-

like protease

Oral Mild, moderate Phase IV clinical

study

Antiviral effect

Neutralizing

antibody

BRII-196&BRII-198 Brii Biosciences Co., Ltd. S protein Intravenous injection Pre-exposure

prophylaxis, post-

exposure prophylaxis,

mild, moderate,

severe

Gain conditional

market approval in

China

Antiviral effect

BDB-001 Staidson Pharmaceutical

Co., Ltd.

C5a Intravenous injection Severe Phase III clinical

study

Antiviral effect;

inhibit inflammation

JS016 JUNSHI Biosciences Co.,

Ltd.

S protein Intravenous injection Post-exposure

prophylaxis, mild,

moderate

Phase II clinical study Antiviral effect

DXP604 DANXU

Biopharmaceutical Co.,

Ltd.; China National

Biotechnic Group

RBD, ACE2 Intravenous injection Post-exposure

prophylaxis, mild,

moderate

Phase II clinical study Antiviral effect

JS016/JS026 JUNSHI Biosciences Co.,

Ltd.

S protein/S

protein S1 subunit

Intravenous injection Post-exposure

prophylaxis, mild,

moderate

Phase I clinical study Antiviral effect

HLX70 Fosun Pharmaceutical

Co., Ltd.

Intravenous injection Moderate, severe Phase II clinical study Antiviral effect

pH4 China National S protein, RBD, Intravenous injection Moderate, severe Phase II/III clinical Antiviral effect;
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Biotechnic Group N-terminal

domain (NTD), N

protein

study regulate immunity

LY-CovMab Luye Pharmaceutical Co.,

Ltd.

RBD, ACE2 Intravenous injection Mild, moderate Gain approval of

phase II clinical study

Antiviral effect

IBI314 Innovent Biologics

(Suzhou) Co., Ltd.

RBD, ACE2 Intravenous injection Mild, moderate Phase I/II clinical

study

Antiviral effect;

reduce pulmonary

pathological damage

YBSW015 Yabao Pharmaceutical

Group Co., Ltd.

RBD Intravenous injection Unreported Phase Ia clinical study Antiviral effect

BAT2022 Bio-Thera Solutions, Ltd. S protein, ACE2 Intravenous injection Unreported Gain approval of

phase I clinical study

Antiviral effect

9MW3311 Mabwell (Shanghai)

Bioscience Co., Ltd.

RBD Intravenous injection Mild, moderate Phase II clinical study

(suspended)

Antiviral effect

MW33 Mabwell (Shanghai)

Bioscience Co., Ltd.

RBD Intravenous injection Mild, moderate Phase II clinical study Antiviral effect

SCTA01 (HB27) Sinocelltech Ltd. RBD Intravenous injection Severe Phase II/III clinical

study

Antiviral effect

35B5 Zhejiang University RBD Nasal cavity Unreported A small-scale clinical

trial on healthy

subjects

Antiviral effect

F61 and H121 China National

Biotechnic Group

RBD, ACE2 Nasal cavity Unreported Preclinical study Antiviral effect

LQ050 Novamab

Biopharmaceuticals Co.,

Ltd.

ACE2 Inhalation Unreported Preclinical study Antiviral effect

Other protein drug Novaferon Genova Biotech Co., Ltd. C-reactive protein

(CRP), IL-6

Inhalation Moderate, severe Phase III clinical

study

Antiviral effect

HLX71 Fosun Pharmaceutical

Co., Ltd.

Intravenous injection Moderate, severe Phase I clinical study Antiviral effect

Natural product Phillyrin Jilin Yatai Pharmaceutical

Co., Ltd.

3CLpro Oral Mild, moderate Phase II clinical study Antiviral effect;

inhibit inflammation

Emetine Institute for Viral Disease

Control and Prevention

IL-6, TNF-a Oral Unreported Preclinical study Inhibit inflammation,

control the cytokine

storm

Homoharringtonine Minsheng Pharmaceutical

Co., Ltd.

Host transfer RNA

to host ribosome

Inhalation Unreported Preclinical study Antiviral effect

Tetrandrine Kangenbei

Pharmaceutical Co., Ltd.

TPC2 Oral Unreported Preclinical study Antiviral effect;

prevention and

treatment of

pulmonary fibrosis

Baicalein Kanion Pharmaceutical

Co., Ltd.

3CLpro Oral Mild, moderate Exploratory clinical

study

Antiviral effect

Diammonium

glycyrrhizinate and

Glycyrrhizic acid

CHIA TAI TIANQING

Pharmaceutical Co., Ltd.

ACE2, PGE2 Oral Unreported Exploratory clinical

study

Antiviral effect;

inhibit inflammation;

protect from hepatic

injury

Hymecromone Fudan University Hyaluronic acid Oral Unreported Exploratory clinical Inhibit inflammation;
(continued on next page)
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Table 3 (continued )

Drug type Drug R&D institution Therapeutic

targets

Route of

administration

COVID indications R&D stage Therapeutic effects

study control the cytokine

storm

Cepharanthine Yigang Tong et al. ACE2, NF-kB Oral Unreported Preclinical study Antiviral effect

Artemisinin Academy of Military

Medicine Sciences

S protein, NF-kB,

TGF-b

Oral Unreported Exploratory clinical

study

Inhibit inflammation;

inhibit ARDS;

antiviral effect

Berberine Being recommended in

guidelines issued by

China National Health

Commission for COVID-

19

AP-1, NF-kB Oral Unreported Phase IV clinical

study

Inhibit inflammation;

control the cytokine

storm

Traditional Chinese

medical

prescription

Xuebijing injection Chase Sun

Pharmaceutical Co., Ltd.

3CLpro, ACE2,

etc.

Intravenous injection Severe, critical Being included in the

diagnosis and

treatment program of

COVID-19

Antiviral effect;

inhibit inflammation;

regulate immunity

Jinhua Qinggan

granules

Juxiechang

Pharmaceutical Co., Ltd.

MAPK, NF-kB,

IL-6, etc.

Oral Mild, moderate Antiviral effect;

inhibit inflammation;

Lung Cleaner

(QingfeiPaidu

Decoction)

China academy of

Chinese Medical sciences

IL-17, 3CLpro,

ACE2, etc.

Oral Mild, moderate Antiviral effect;

inhibit inflammation;

control the cytokine

storm

LianHuaQingWen

capsules

Yiling Pharmaceutical

Co., Ltd.

NF-kB, IL-6,

TNF-a, ACE2,

etc.

Oral Mild, moderate Antiviral effect;

control the cytokine

storm

XuanfeiBaidu

granules

Buchang Pharmaceutical

Co., Ltd.

IL-6/1b, MAPK,

etc.

Oral Mild, moderate Inhibit inflammation;

regulate immunity

Cure 14 (HuashiBaidu

granules)

EFONS Pharmaceutical

Co., Ltd.

IL-6/17, MAPK,

TNF, etc.

Oral Mild, moderate,

severe

Inhibit inflammation;

control the cytokine

storm

FuzhengJiedu

granules

Guangdong Provincial

Hospital of Traditional

Chinese Medicine

IL-2/6/17, NF-kB,

MAPK, TNF, etc.

Oral Mild, moderate,

severe

Gain approval of

emergency use

Antiviral effect;

inhibit inflammation

Hanshiyi formula Xiaolin Tong, et al. Mpro, ACE2 Oral Mild, moderate Being included in the

diagnosis and

treatment program of

COVID-19

Reduce the

progression to severe

disease

Reduning injection Kanion Pharmaceutical

Co., Ltd.

ACE2, 3CLpro,

PLpro, MAPK,

PKC, NF-kB

Intravenous injection Severe, critical Antiviral effect;

inhibit inflammation

Tanreqing injection Yongyan Wang, et al.;

Shanghai KAIBAO

Pharmaceutical Co., Ltd.

TNF, MAPK, NF-

kB

Intravenous injection Severe, critical Improve lung injury,
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Figure 1 SARS-CoV-2 life cycle and potential therapeutic targets of anti-COVID-19 drugs.
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failed successively. These defeats increased the uncertainty to the
study of other 3CL protease inhibitors on the patients with risk
factors for severe complications (SCORPIO-SR) during the Om-
icron variants epidemic.

2.2. The repurposed (or repositioned) small-molecule drugs

Besides developing the novel drugs, drug repurposing is also an
effective approach for treating COVID-19. As a poly-ADP-ribose
polymerase 1 (PARP1) inhibitor, CVL218 (mefuparib hydro-
chloride) can bind to the catalytic subunit nsp 12 in the N protein
of SARS-CoV-2, thus inhibiting the process of the packaging,
replication and transcription of SARS-CoV-2. In addition,
CVL218 can target to SARS-CoV-2-N, thus interfering with the
phase separation process of the N protein-viral RNA-nsp12
complex and making it easier for other antiviral drugs to enter the
virus. Therefore, CVL218 can be used to treat COVID-19 as a
single drug or in combination with other drugs13.

S-Nitrosocaptopril (CapNO) is a stable captopril monohydrate
that can rapidly decompose into NO and captopril in the respiratory
tract. NO has a variety of clear therapeutic effects, such as relaxing
pulmonary microvessels and tracheal smooth muscle, improving
the alveolar blood gas exchange, alleviating ARDS, inhibiting viral
RNA replication and palm glycosylation of viral spike protein,
suppressing the fusion of virus and host ACE2, reducing pulmonary
mucus viscosity, etc. CapNO atomizing agent has unique superi-
ority in the treatment of COVID-19; it can suppress virus replica-
tion, inhibit virus entry into host cells, resist coagulation, improve
blood oxygen level, relax pulmonary vessels, reduce pulmonary
hypertension, and alleviate ARDS symptoms14.

Carrimycin is the first macrolide compound developed by the
synthetic biology technology. Previous studies found that carri-
mycin exerts efficacy after the virus enter cells, which can reduce
Please cite this article as: Ji Xiwei et al., Research and development of Chin
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the newly synthesized RNA level of coronavirus, indicating that
carrimycin can play an anti-coronavirus role by affecting coro-
navirus RNA replication. In addition, Carrimycin can regulate the
interferon signaling pathway JAK/stat, ISGS, and PI3K Akt
mTOR signaling pathway15. A phase III clinical trials of carri-
mycin in hospitalized patients with severe COVID-19 have been
completed.

Fenofibrate exhibits the therapeutic effect on COVID-19 by
multiple mechanisms of action, which can effectively prevent
SARS-CoV-2 infection mainly by blocking the combination of S
protein and ACE2. Fenofibrate can also inhibit the replication of
SARS-CoV-2 by affecting the lipid metabolism pathway of lung
cells16. In addition, fenofibrate also has immunomodulatory and
anti-inflammatory effects17e20. Phase II/III clinical trials of
fenofibrate are in progress.

Danoprevir (Ganovo) was developed by Ascletis Bioscience
Co., Ltd., which was a potent orally-administered antiviral agent
to treat hepatitis C. The completed phase Ⅳ clinical trial results
show that danoprevir, in combination with ritonavir, can effec-
tively inhibit the viral replication of SARS-CoV-2 and improve the
health condition of the patients with COVID-1921,22.

Azvudine (FNC) is a novel nucleoside small molecule antiviral
drug. Previous studies have indicated that the therapeutic target of
azvudine is the RNA dependent RNA polymerase (RdRp) of the
virus, which can effectively inhibit COVID-19 replication. In
addition, azvudine can be enriched in the lymphatic system,
effectively inhibiting virus replication and enhancing immune
function, which may exert antiviral efficacy against SARS-CoV-2
by a double target mechanism23e25. The phase III clinical trials of
azvudine in China, Russia, and Brazil have been completed. So
far, azvudine obtained the approval for conditional marketing
authorization as China’s first self-developed oral small molecule
anti-COVID-19 drug.
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/
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Proxalutamide is a novel androgen receptor (AR) antagonist
which can effectively reduce the expression of ACE2 and
TMPRSS2, the two key proteins responsible forCOVID-19 invading
host cells26. Therefore, proxalutamide may inhibit the further
infection of normal host cells (ACE2 positive cells) by affecting the
S protein of SARS-CoV-2 to identify the ACE2 protein, thereby
cutting off the replication and reproduction of the virus so as to
achieve the effective treatment of COVID-19. Further mechanism
study found that proxalutamide can activate the Nrf-2 pathway, thus
reducing inflammatory injury and reducing the probability of cyto-
kine storm. Phase III clinical trials of proxalutamidewere conducted
simultaneously in Brazil and the United States27e29. The interim
results of phase III clinical trials indicated a statistically significant
difference between the treatment and control groups.

HC-1119 is also an AR antagonis, its mechanism of treatment
of COVID-19 are as follows: 1) prevent SARS-CoV-2 from
infection of host cells; 2) inhibit the excessive inflammatory re-
action; 3) reduce the platelet aggregation induced by COVID-1930.
3. Neutralizing antibody and other protein drugs

Neutralizing antibodies are becoming increasingly attractive as the
therapy for COVID-19, as they can be designed to specifically
target viral antigens. The patients suffering COVID-19 without
endogenous antibodies may benefit from neutralizing antibody
therapy31.

3.1. Neutralizing antibody

LQ050 is a monovalent nanobody phage developed by Novamab
Biopharmaceuticals Co., Ltd., which exhibited the highest activity
against authentic SARS-CoV-2 with a 50% neutralizing dose
(ND50) of 0.55 mg/mL. As a single domain antibody with a small
size, LQ050 can be delivered to the site of infection through
inhalation, which is supported by its high stability and its
consistent post-nebulization stability profile32.

The neutralizing antibodies F61 and H121 exhibited broad
neutralizing activity against the SARS-CoV-2 wild strain and
variants, including the beta, delta and omicron strains. F61 can
block the virus binding with ACE2 through recognizing a linear
epitope in ACE2-RBD binding domain, while H121 binds to an
ACE2 conformational epitope located in a conserved side of RBD.
Due to the different binding epitopes, the combination of F61 and
H121 (1:1) exhibited synergistic neutralization. The in vitro
studies indicated that the EC50 value of F61/H121 combination
against omicron variant is 200 ng/mL. The in vivo studies sug-
gested that the F61/H121 combination can induce significant
prophylactic protection against lethal challenge with delta and
omicron variants at the administration dose of 20 mg/kg. More-
over, F61 and H121 can be used as the nasal spray preparations in
management of the COVID-1933,34.

As a promising and pan-neutralizing monoclonal antibody,
35B5 can efficiently neutralize the wild-type and mutant SARS-
CoV-2, including omicron variants both in vitro and in vivo.
Furthermore, cryo-electron microscopy (cryo-EM) revealed that
35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that
avoids the prevailing mutation sites on RBD (receptor-binding
domain) identified in circulating variant of concerns (VOCs), thus
providing the molecular basis for its pan-neutralizing efficacy35.

The monoclonal neutralizing antibody HLX70 and the ACE2
Fc fusion protein HLX71 have both been developed by Henlius
Please cite this article as: Ji Xiwei et al., Research and development of Chin
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Biopharmaceutical company. HLX70 is an IgG1 kappa immuno-
globulin, which can target and recognize the spike protein on
SARS-CoV-2. The binding site with the spike protein of HLX70 is
the same as that of human angiotensin converting enzyme 2
(hACE2), which are the RBD regions on S1. Therefore, HLX70
possesses a high binding affinity with spike protein. HLX71 is a
recombinant hACE2 protein with an IgG1 FC tag on its C-ter-
minal. After binding to spike protein, both HLX70 and HLX71
can inhibit the virus binding to ACE2 on the host cell surface, thus
exerting exert the antiviral effect. In addition, HLX71 exhibits
ACE2 enzyme activity, which can inhibit the occurrence of in-
flammatory reactions by regulating the renin-angiotensin signaling
pathway, and further enhance its therapeutic effect on COVID-19.
Currently, phase I clinical trials of HLX70 and HLX71 are being
carried out in the America. Moreover, the in vitro antiviral
experiment indicated that HLX70 and HLX71 had synergistic
effects in the combination ratio of 1:5 and 1:1036.

BDB-001 is developed by Staidson biopharmaceuticals Co.,
Ltd., which is a monoclonal antibody against complement mole-
cule C5a37. BDB-001 can specifically bind C5a and inhibit its
receptor-binding activity, thus interrupting the biological functions
induced by C5a, such as neutrophil chemotaxis, release of intra-
cellular lysozyme, increase of inflammatory cytokine and oxygen
production induced by respiratory burst, etc. Thus, BDB-001 can
be used for preventing severe pneumonia induced by the inflam-
matory reaction caused by complement system activation for the
treatment of COVID-19. Currently, phase II/III multicenter clin-
ical trials of BDB-001 are being conducted in Spain, India,
Indonesia and Bangladesh.

LY-CovMab is a monoclonal antibody against COVID-19,
which belongs to the IgG4 subtype. The cryo-electron microscopy
revealed that LY-CovMab had multiple advantages of high affinity
and high activity. LY-CovMab occupies 13 amino acid epitopes on
the SARS-CoV-2 spike protein, where nine coincide with the
epitope of ACE2. Under cryo-electron microscopy, LY-CovMab
can bind and block all three RBD on the spike protein. One LY-
CovMab IgG molecule can simultaneously bind two RBD on the
spike protein simultaneously. Furthermore, LY-CovMab can avoid
the antibody-dependent enhancement (ADE) effect by designing
and modifying the FC end of McAb. The preclinical study indi-
cated that LY-CovMab could significantly reduce the viral titers in
the lungs and tracheas of the BALB/c mice that received MAScp6
challenge compared with a vehicle control group. Phase I clinical
study of LY-CovMab in China has been completed, revealing good
safety and pharmacokinetic characteristics. At present, phase II
clinical trials of LY-CovMab have been approved to be carried out
in China38.

JS016 (Etesevimab) is a potent anti-spike neutralizing mono-
clonal antibody isolated from COVID-19 survivors that can bind
to the overlapping epitopes in RBD, which is a primary target for
producing neutralizing monoclonal antibodies. The preclinical
study results indicated that JS016 could bind to a different epitope
from bamlanivimab (an authorized neutralizing monoclonal anti-
body specifically developed to treat COVID-19) and to neutralize
resistant variants with mutations in the epitope bound by bamla-
nivimab39. So far, the phase II international multicenter clinical
trials of JS016 have been completed. Neutralizing antibody JS026
has excellent neutralizing activity against SARS-CoV-2. In addi-
tion, the combination of JS026 and JS016 has synergistic effects,
as their binding sites are complementary to the virus40,41. Phase I/
II/IIIIII clinical trials of JS016 and JS026 have been approved in
China.
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/
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Neutralizing antibody DXP604 was screened from the plasma
of convalescent patients infected with SARS-CoV-2 by high-
throughput single-cell sequencing. In the preclinical study, the
results of virus neutralization assay and the high-throughput yeast
display technology indicated that DXP604 has broad-spectrum
antivirus activity, as well as high neutralizing activity on wild-type
and mutant SARS-CoV-2, including variants of delta and omicron.
The results of the mutation pressure screening test showed that
DXP604 has a strong escape ability against mutation. The high-
throughput yeast display technology test data showed that
DXP604 had a broad spectrum and was still effective for the
omicron variant; however, its neutralization activity was reduced.
In terms of clinical trials, phase I clinical trials have been
completed in China and Australia42,43. At present, phase I clinical
trials are being conducted in China.

9MW3311 is also a potent neutralizing monoclonal antibody
isolated from COVID-19 survivors, which was screened by a B
lymphocyte screening platform, and the FC end of the antibody
was modified. The phase II clinical trials of 9MW3311 have been
completed in the Philippines. The study is currently in a sus-
pended state.

MW33, which was developed by Mabwell (Shanghai)
Bioscience Co., Ltd., is a recombinant fully-humanized SARS-
CoV-2 RBD-targeting monoclonal antibody. It is one of the IgG1k
subtypes, which exhibits high neutralization activity by disrupting
the interaction of the RBD with the ACE2 receptor44. The phase II
clinical trials of MW33 in patients with mild or moderate COVID-
19 are currently in progress.

SCTA01 (HB27), a novel monoclonal antibody of the IgG1
subtype developed by Sinocelltech Ltd., which can inhibit SARS-
CoV-2 by binding with the receptor-binding domain of the virus45.
Phase II/III clinical trials of SCTA01 are being carried out in
North America.

IBI314 is a new antibody cocktail therapy composed of the
antibodies of p5-22 and p14-44 at the 1:1 ratio, which was
screened by a yeast library expressing mutant RBDs of the spike
protein. The crystal structure of the P5-22 and P14-44 indicated
that IBI314 could bind two different RBDs on the spike protein
and block the interaction of the RBDs with the ACE2 receptor.
Moreover, in vivo study suggested that IBI314 can reduce the lung
virus titer and pulmonary pathological damage in the SARS-CoV-
2 infection mouse model46. Currently, the phase I/II clinical trials
of IBI314 are in progress.

BRII-196 and BRII-198 were derived from patients who
recovered from COVID-19; these two human neutralizing IgG
(immunoglobulin G) monoclonal antibodies can inhibit the
replication of SARS-CoV-2 and effectively counteract COVID-19.
BRII-196 and BRII-198 bind distinct and complementary epitopes
of the SARS-CoV-2 spike protein. The Fc regions of BRII-196 and
BRII-198 are engineered with triple amino acid modifications
(Met252Tyr, Ser254 Thr, and Thr256Glu) to extend half-life and
reduce the binding affinity to Fc-g receptors with the goal of
reducing the potential for antibody-dependent enhancement47. The
BRII-196/BRII-198 combination therapy obtained the approval
for conditional marketing authorization as China’s first self-
developed neutralizing antibodies against COVID-19.

Advances in protein engineering technology have generated
multiple bispecific antibodies (BsAbs), which can simultaneously
and synergistically target two antigens or different epitopes of the
same antigen as a single agent. Compared with monoclonal anti-
body, bispecific antibody possesses broader neutralizing breadth
for resistance against viral evasion induced by mutation48e50.
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There are 14 bispecific antibodies against COVID-19 in devel-
opment worldwide, of which eight are from China. Among the
bispecific antibodies being developed in China, phase Ia clinical
trials of YBSW015 (Yabao Pharmaceutical Group Co., Ltd.) are in
progress. Recently, phase I clinical trials of BAT2022 (Bio-Thera
Solutions, Ltd.) have been approved in China. BAT2022 simul-
taneously binds two independent epitopes on the spike protein,
and prevents the virus binding with ACE2.

Convalescent plasma/serum is considered a viable option for
COVID-19 treatment. Convalescent plasma/serum is an important
source of neutralizing antibodies, whose action mechanism is
similar to antibodies’51,52. However, using convalescent plasma/
serum has certain limitations as it has to be obtained from
COVID-19 survivors, and standardization of convalescent plasma
is challenging as the neutralizing antibody titers vary depending
on the different sources. Currently, approximately ten clinical
trials on convalescent plasma/serum in patients with mild, mod-
erate, severe, or critical COVID-19 are in progress.

Human immunoglobulin pH4, which was developed by Chi-
nese firm Sinopharm, can rapidly improve the level of IgG in the
blood, directly neutralize exogenous antigens, regulate a variety of
immune functions, including regulating immune mediators, and
improve the immune ability of natural immune cells and lym-
phocytes53. The phase II clinical trials of pH4 have been carried
out in the United Arab Emirates.

3.2. Other protein drugs

Besides antibody drugs, other protein drugs are also employed for
the treatment of COVID-19, such as polypeptides and nucleosides,
etc. Novaferon is a novel unnatural protein based on 12 human
interferons a subtype genes, which was obtained by gene shuttling
and cell function screening technology. Novaferon was commonly
used for the treatment of HBeAg positive chronic hepatitis B in
clinic54e56. The in vitro antiviral experiment showed that it
exhibited significant anti-virus activity against COVID-19 wild-
type and mutant viruses, including omicron mutated strains.
Novaferon can be administered through respiratory atomization
inhalation and can be directly delivered to respiratory epithelial
cells and alveolar tissues directly. The phase III clinical trials of
novaferon are currently in progress.

4. Traditional Chinese medicine

4.1. Natural products

Natural product is an important source of drug development,
which has an indispensable role in counteracting infectious dis-
eases because numerous natural products possess antiviral activity
against a broad range of pathogenic viruses, including HIV,
influenza and SARS-CoV57. Therefore, it is of great significance
to develop drugs for the treatment of COVID-19 based on natural
products. To date, there are hundreds of natural products have
been proposed to possess anti-SARS-CoV-2 activities, such as
terpenoids, polyphenols, flavonoids, alkaloids and terpenoids.
They exert antiviral effects through inhibiting the essential com-
ponents of SARS-CoV-2, including Mpro, RdRp, ACE2 and
TMPRSS2, etc.58e61. We summarized some representative natural
products or those entered clinical stage as follows.

Emetine is an isoquinoline alkaloid extracted from plant rhi-
zomes, which is used to treat amebiasis or is used as an emetic in
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/
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clinic. Previous studies have shown that emetine has high antiviral
activity and can accumulate in the virus-targeted organs. More-
over, in vitro anti-inflammatory experiments suggested that iso-
quinoline alkaloid has an anti-inflammatory effect and can reduce
the release of interleukin 6 (IL-6) and tumor necrosis factor.
Therefore, emetine may be used as a promising strategy for
controlling the cytokine storm. The results of clinical trials sug-
gested that emetine has certain curative efficacy on COVID-19,
such as the negative conversion of nucleic acid, rapid recovery
of blood oxygen concentration and improvement of cough
symptoms. Additionally, emetine was found to have good safety
during the treatment of COVID-1962e65.

Cephalotaxus fortune is an endemic plant in China. Homo-
harringtonine (HHT) is a natural product extracted from C. for-
tune, which can limit protein translation by interfering with the
binding of host transfer RNA to host ribosome. The genome of
SARS-CoV-2 encode a protein of more than 8000 amino acids,
which contain 16 non-structural proteins closely associated with
virus replication. Once the translation process of non-structural
proteins is interfered, the replication of SARS-CoV-2 is inhibi-
ted, which eventually helps to overcome COVID-1964,66.

Tetrandrine is an antagonist of calmodulin, which may inhibit
SARS-CoV-2 by blocking two-pore channel 2 (TPC2), which can
suppress the release of the viral genome from the endolysosomal
system67. In addition, tetrandrine can inhibit fibroblasts, thereby
inhibiting pulmonary fibrosis. Tetrandrine can be potentially used
to treat patients with mild and severe COVID-19, thereby reducing
the disease progression and improving prognosis by reducing the
incidence of pulmonary fibrosis during rehabilitation68.

Baicalein (5,6,7-trihydroxyflavone) is a monomer flavonoid
extracted from Scutellaria baicalensis or other plants. The pre-
vious study revealed that Baicalein has a therapeutic effect on
COVID-19, as it can reduce cell damage in vitro and inhibit
SARS-CoV-2 replication in mice69. A clinical trial of Baicalein in
patients with mild or moderate COVID-19 has been completed in
China.

Diammonium glycyrrhizinate and glycyrrhizic acid are the
main bioactive components of Glycyrrhiza uralensis. Dia-
mmonium glycyrrhizinate can control inflammation by signifi-
cantly inhibiting proinflammatory prostaglandin E2 (PGE2).
Glycyrrhizic acid can exert an obvious antiviral effect on SARS-
CoV-2 by binding to the angiotensin converting enzyme 2
(ACE2) receptor. Therefore, glycyrrhizic acid derivatives can be
used to treat COVID-1970,71. In addition, critical COVID-19 pa-
tients are prone to sepsis, and severe hepatic injury is a key factor
in sepsis and septic shock. Diammonium glycyrrhizinate partici-
pates in protecting hepatocyte membrane and ameliorating liver
function, which may fight off the shock episodes from sepsis. Two
exploratory clinical trials of diammonium glycyrrhizinate were
approved in China for COVID-19 patients.

As a coumarin derivative, hymecromone is commonly used for
the treatment of cholecystitis. According to previous research,
hymecromone can inhibit the hyaluronic acid accumulation
mediated by human identical sequence (HIS). Also, HIS can
enhance the activation of inflammation-related genes of the non-
immune cells in lung and blood vessels, thus suggesting that non-
immune cells activated by COVID-19 may be an important cause
of “cytokine storm”. Hyaluronic acid can induce pulmonary
ground-glass lesion in COVID-19 patients, which is closely
related to inflammation72. Therefore, hymecromone can presum-
ably be used to treat COVID-19, which is achieved by suppressing
hyaluronic acid accumulation. In China, an exploratory clinical
Please cite this article as: Ji Xiwei et al., Research and development of Chin
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trial of hymecromone in patients with COVID-19 have been car-
ried out.

As a key ingredient of Forsythia suspensa, phillyrin is
demonstrated to have anti-inflammatory, anti-oxidant, and anti-
viral activities. In vitro studies indicated that phillyrin can
significantly inhibit the replication of SARS-CoV-2. Additionally,
phillyrin can markedly reduce the production of proinflammatory
cytokines at the mRNA levels by regulating the activity of the NF-
kB signaling pathway. Therefore, phillyrin may have the potential
to fight COVID-1973. The phase II clinical trials of phillyrin are
currently in progress.

Cepharanthine is a biscoclaurine alkaloid derived from Ste-
phania cepharantha Hayata, which possesses the antiviral, anti-
infammatory, antioxidative and immunomodulating properties.
Cepharanthine was found to have significant antiviral effects on
SARS-CoV-2 by binding to the spike protein and interfering with
viral engagement to ACE2. In vitro study indicated that viral RNA
yield in cells treated with 10 mmol/L cepharanthine was 15,393-
fold lower than that in the untreated cells74. Moreover, cepha-
ranthine can inhibit NF-kB, lipid peroxidation, NO production,
cyclooxygenase, and expression of cytokine production75,76. As a
potential drug candidate, further clinical trials will be required for
the identification of the efficacy of cepharanthine.

As a well-known anti-malarial compound, artemisinin is iso-
lated from the herbs of Artemisia apiacea (Qinghao). Artemisinin
and its derivatives including artesunate, arteannuin B, arteether,
dihydroartemisinin and lumefantrine are found to be effective
against COVID-19 due to their ability to inhibit NF-kB signaling
pathway leading to reduce TNF-a and IL-6 which are the key
mediators of ARDS77,78. Among its derivatives, arteannuin B
exerted the highest anti-SARS-CoV-2 activity with an EC50 of
10.28 mmol/L79, while lumefantrine presented favorable PK
characters owing to its high plasma and lung concentrations after
multiple administrations80. In addition, artesunate is proven
effective in a faster recovery of COVID-19 in a prospective,
controlled clinical study81. An open-label non-randomized study
indicated that COVID-19 patients received standard of care ther-
apy combined with artemisinin plus piperaquine showed a faster
clearance of SARS-CoV-2 than the patients only received standard
of care therapy82. These clinical trials suggested that artemisinin
may contribute to therapy of COVID-19.

Berberine is a quaternary ammonium alkaloid isolated from
Rhizoma Coptidis, which can inhibit AP-1 and NF-kB, the key
factors in cell signal transduction, thereby reducing the inflam-
matory response. Berberine can be used to treat COVID-19 by
blocking “cytokine storms” and maintaining intestinal microen-
vironment balance83,84. A phase IV clinical trial of berberine in
severe patients with COVID-19 has been completed in China.

4.2. Traditional Chinese medicine prescriptions

Traditional Chinese medicine was found to achieve satisfactory
results in the treatment of COVID-19. According to some reports,
the condition of over 92% patients received traditional Chinese
medicine treatment was improved, while only 5% of them were in
critical condition7. Traditional Chinese medicine has the advan-
tage of a full course of treatment and a full range of treatments85.
As early prevention and early treatment can reduce the mortality
rate, improve symptoms (including fever, fatigue, cough, dry and/
or sore throat, breathing difficulties, myalgia, and so on)86e90, and
decrease the occurrence of complications and recurrence, they
have broad application prospects60,91.
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/
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The traditional Chinese medicine prescriptions such as Jinhua
qinggan granule92, Lianhua Qingwen capsule/granule93, Xuebij-
ing injection94, Lung Cleaner (Qingfei Paidu decoction)95, cure 14
(Huashi Baidu granules)96, XuanFei Baidu granules97e99 are
collectively termed “three medicines and three formulas”. Besides
the above six prescriptions, other traditional Chinese medicine
prescriptions, such as Fuzheng Huayu tablets100, Buzhong Yiqi
decoction101, Hanshiyi formula102,103, Reduning injection104e106,
Tanreqing injection107,108 and FuzhengJiedu granules109,110, etc.
were reported to be effective in the treatment of COVID-19.

The possible mechanisms of traditional Chinese medicine for the
treatment of COVID-19 mainly include the following aspects: anti-
virus, anti-inflammation, immunoregulation, and others. Xuebijing
injection111 and Lung Cleaner112 exerted antiviral effect by regu-
lating PI3KeAkt. Jinhua qinggan granule113, Lianhua Qingwen
capsule/granule114,115, Hanshiyi formula103 and Reduning injec-
tion106 can inhibit SARS-CoV-2 by targeting Mpro or ACE2.
Furthermore, Jinhua qinggan granule, Lung Cleaner, cure 14, Xue-
bijing injection and Tanreqing injection, etc. could affect signaling
pathways such asTNF,MAPK,NF-kB, thus alleviating the “cytokine
storm”116e119. Virus-infected cells release signals to recruit and
activate immune cells. These immune cells secrete a variety of cy-
tokines and chemokines to recruit more immune cells to the lesion
site. However, this can lead to excessive immune responses and
damage the body. Traditional Chinese medicines do not only exert
antiviral effects, but by improving human immunity to treat COVID-
19. Viral infection may induce host humoral and cellular immunities,
which play an important role in fighting the virus120.
5. Discussion

The risks of outbreaks of coronavirus remain clear and present.
Thus, it is imperative that work continues to develop effective
broad-spectrum drugs against coronaviruses to respond to current
and future global challenges. Most Chinese pharmaceutical groups
and R&D teams are striving for their anti-COVID-19 drugs in
development being approved as soon as possible. Complete and
accurate clinical data and real-world verification are essential for
approval, and a “head-to-head” comparison with the anti-COVID-
19 drugs that have been approved in the world is more convincing.
However, the success of drug development cannot only be
measured by the speed of approval, and the efficacy and safety are
the most important.

An ideal antiviral drug for the therapy of COVID-19 should
have the following features: 1) convenient administration; 2) high
efficiency and low toxicity; 3) affordability and easily accessible;
4) be effective against SARS-CoV-2 variants. However, these re-
quirements are difficult to achieve concurrently at present. For
instance, the neutralizing antibodies have high clinical efficacy
against COVID-19, but they are mostly confined to mildly affected
the COVID-19 patients with high risk factors due to their
administration methods (as Fig. 2 shown). Furthermore, most
action mechanisms of neutralizing antibodies preventing viral
infection of SARS-CoV-2 focus on inhibiting interference with
virus entry, virus protein maturation, and viral RNA synthesis.
Thus, treatment with neutralizing antibodies is more likely to
encounter the challenge of drug resistance induced by rapid virus
mutation42. Therefore, research and development of the broad-
spectrum antiviral oral agents, e.g., the small molecule antiviral
drugs, are among the most important research directions for
treating COVID-19. So far, the original research and development
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of small molecule drugs and neutralizing antibodies in China have
made encouraging progress, and the process is speeding up. In
addition to the drugs in clinical phases, some potential drug
candidates in development exhibited promising efficacy in pre-
clinical trials, such as SSD8432, VV993, GDI-4405, SHEN26 and
RAY003, etc. The pathogenesis of COVID-19 is complex; how-
ever, few drugs that can act concurrently on multiple targets are
being developed. Therefore, combined medication is an effective
way to fight against COVID-19. The combination of different sorts
of drugs can reduce the adverse events. Moreover, the drug
combination can simultaneously alleviate clinic symptoms and kill
the virus121. One challenge for the therapy of COVID-19 is the
time window for the treatment. The earlier treatment is started, the
better effects can be achieved. Clinical trials showed that antiviral
drugs should be used in the earlier virus replication phase of
COVID-19. Thus, the pre- and post-exposure prophylactic effects
of anti-COVID-19 drugs should be given more attention, and more
relevant clinical trials should be conducted.

Due to pressure from the high infectivity and mortality of
COVID-19, there is insufficient time to develop novel drugs and
conduct clinical trials. Consequently, some drugs that are currently
in use as investigational therapeutic agents for the treatment of
COVID-19 are the repurposed (or repositioned) medications, e.g.,
azvudine and proxalutamide, which are usually used for treating
other diseases122. Drug repurposing is a rapid and effective mea-
sure for managing COVID-19, as these drugs have already been
approved for use in other indications. The main advantage of drug
repurposing is that the approved drugs are already well docu-
mented in terms of their safety and pharmacokinetics, etc. Thus, if
the efficacy against COVID-19 is demonstrated, the repurposed
drugs can be directly tested in phase II/III clinical trials without
conducting the preclinical or phase I clinical trials.

Traditional Chinese medicine has been widely used for fighting
against COVID-19 in China, as its safety and efficacy have been
confirmed. Traditional Chinese medicine should have a valuable
and active role in confronting the worldwide COVID-19
pandemic. Traditional Chinese medicine may not be the best
strategy for directly eliminating the virus, but it is effective in the
early phase and treatment phase of SARS-CoV-2 infection.
Traditional Chinese medicine can be used in a full course of
treatment and a full range of treatments due to its multiple com-
ponents that exert different efficacy via multiple mechanisms and
multi-targets. Among the multiple mechanisms, the regulation of
various immune functions has an important role in treating
COVID-19. Traditional Chinese medicine can regulate the host
immune response to achieve balanced immunity through two
important approaches: 1) regulating the innate immune system and
enhancing the body’s resistance to viruses; 2) inhibiting inflam-
matory reaction and reducing lung damage, which contributes to
control and eliminate viral infection123. In addition, other mo-
lecular targets of traditional Chinese medicine may also be
involved in the pathogenesis of COVID-19 and thus may have
other benefits that may not yet be known. However, there are
many unsolved issues for COVID-19 treatment with traditional
Chinese medicine. One main characteristic of traditional Chinese
medicine treatment is that the components and dosages of pre-
scriptions often change due to the different syndromes of different
patients. Therefore, the standardization of traditional Chinese
medicines therapy needs to be concerned. The mechanisms, active
ingredients and in vivo pharmacokinetic properties (absorption,
distribution, metabolism, and excretion) of most traditional Chi-
nese medicines are unclear, which still needs further explored.
ese anti-COVID-19 drugs, Acta Pharmaceutica Sinica B, https://doi.org/
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Moreover, unique theoretical system of traditional Chinese med-
icine also limits in the global promotion of traditional Chinese
medicine against COVID-19.

In COVID-19 patients, especially the elderly, the high viral
load of virus at an early stage of the disease often results in a poor
outcome124. The shortened time of SARS-CoV-2 ribonucleic acid
turned negative is often used as an indicator of efficacy of anti-
COVID-19 drugs. The shorter turning-to-negative time reflects
viral load decreases faster, but the improvement of symptoms
(e.g., decrease in the proportion of severe cases) is also critical for
efficacy evaluation. Thus, researchers should pay more attention to
the therapeutic effects of anti-COVID-19 drugs on reducing the
incidence of severe cases and death in clinical study.

The knowledge of COVID-19 has increased greatly with the
in-depth study, which give a boost to the continuous development
of candidate drugs in COVID-19 treatment. For instance, several
original findings on the pathogenesis of COVID-19 reported by
Chinese researchers indicated that some inhibitors of signaling
pathways may also be used in combating SARS-CoV-2125e128. It
was reported that SARS-CoV-2 N protein is a key mediator for
acute kidney injury (AKI), which can induce AKI via the Smad
3-dependent G1 cell cycle arrest mechanism127. As a Smad3
inhibitor, SIS3 is able to protect kidneys from SARS-CoV-2 N-
Please cite this article as: Ji Xiwei et al., Research and development of Chin

10.1016/j.apsb.2022.09.002
induced cell death through the G1 cell cycle arrest129,130.
Furthermore, some preclinical studies suggested that N protein
can aggravate lung injury, accelerates death in sepsis and acute
inflammation induced upon SARS-CoV-2 infection, and pro-
motes IL-1b and IL-6 activation in mouse models131. MCC950 (a
specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of
caspase-1) can block N-induced lung injury and cytokine pro-
duction126. HIF-1a plays an extensive role in facilitating SARS-
CoV-2 infections and aggravating inflammatory responses to
COVID-19, which can be inhibited by BAY87-2243 (a HIF-1a
inhibitor)125. The repression of NF-kB signaling pathway has
therapeutic applications in inflammatory diseases and virus-
induced cytokine storms132. Treatment with NF-kB inhibitors
caffeic acid phenethyl ester and parthenolide were found they
can improve the survival rate of mice infected with SARS-
CoV133. Although these inhibitors have not be subjected to
clinical trials so far, they also offer more choices for coping with
COVID-19.
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