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Abstract: Living organisms from single cells to humans need to adapt continuously to respond to
changes in their environment. The process of behavioural adaptation can be thought of as improving
decision-making performance according to some utility function. Here, we consider an abstract model
of organisms as decision-makers with limited information-processing resources that trade off between
maximization of utility and computational costs measured by a relative entropy, in a similar fashion
to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free
energy to reach equilibrium states that balance internal energy and entropic cost. When there is
a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are
unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium
thermodynamics to characterize decision-makers that adapt to changing environments under the
assumption that the temporal evolution of the utility function is externally driven and does not
depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect
adaptation in a general manner and, additionally, to find relations for decision-making similar to
Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary
decision and inference problems in the discrete and continuous domains to illustrate the new relations.
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1. Introduction

A number of recent studies has pointed out mathematical equivalences between thermodynamic
systems described by statistical mechanics and information processing systems [1–4]. In particular,
it has been suggested that decision-makers with constrained information-processing resources can
be described in analogy to closed physical systems in contact with a heat bath that seek to minimize
energy [1]. In this analogy, decision-makers can be thought to act in a way that minimizes a cost
function or, equivalently, that maximizes a utility function in lieu of an energy function. Classic decision
theory [5,6] states that, given a set of actions X and a set of observations O, the perfectly rational
decision-maker should choose the best possible action x∗ ∈ X that maximizes the expected utility U(x):

x∗ = argmax
x

U(x) = argmax
x

∑
o∈O

p(o|x)V(o), (1)

where p(o|x) is the probability of the outcome o given action x and V(o) indicates the utility of this
outcome. However, maximizing the expected utility is in general a costly computational operation
that real decision-makers might not be able to perform.
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Decision-makers that are unable to choose the best possible action x∗ due to a lack of
computational resources have traditionally been studied in the field of bounded rationality. Originally
proposed by Herbert Simon [7,8], bounded rationality comprises a medley of approaches ranging
from optimization-based approaches like bounded optimality (searching for the program that achieves
the best utility performance on a particular platform) [9–11] and meta-reasoning (optimizing the cost
of reasoning) [12–14] to heuristic approaches that reject the notion of optimization [15–17]. Recently,
new impulses for the development of bounded rationality theory have come from information-theoretic
and thermodynamic perspectives on the general organization of perception-action-systems [1,3,18–27].
In the economic and game-theoretic literature, these models have precursors that have studied
bounded rationality inspired by stochastic choice rules originally proposed by Luce, McFadden
and others [2,28–39]. In most of these models, decision-makers face a trade-off between the attainment
of maximum utility and the required information-processing cost measured as an entropy or relative
entropy. The optimal solution to this trade-off usually takes the form of a Boltzmann-like distribution
analogous to equilibrium distributions in statistical physics. The decision-making process can then
be conceptualized as a change from a prior strategy distribution to a posterior strategy distribution,
where the change is triggered by a change in the utility landscape. However, studying changes in
equilibrium distributions neglects not only the time required for this change, but also the adaptation
process itself.

The main contribution of this paper is to show that the analogy between equilibrium
thermodynamics and bounded-rational decision-making [1] can be extended to the non-equilibrium
domain under the assumption that the temporal evolution of the utility function is externally driven
and does not depend on the decision-maker’s action. This allows for new predictions that can be
tested in experimental setups investigating decision-makers that choose between multiple alternatives.
When given sufficient time to adjust to the problem such a decision-maker may achieve a bounded
optimal performance given the available precision, which may be described by an equilibrium
distribution; for example, a dart thrower that has fully adapted her/his personal best performance
after extensive training with prism glasses. However, if given insufficient time, the decision-maker
may not achieve bounded optimal performance, but only an inferior performance biased by the specific
information-processing mechanisms used by the decision-maker, which may in general be described
by a non-equilibrium distribution; for example, a dart thrower that is wearing prism glasses for the
first time and plays according to a non-adaptive strategy thereby “dissipating” utility. The connection
between the non-equilibrium and equilibrium domains is tied with the concept of dissipation and its
role in fluctuation theorems, which are important recent results in non-equilibrium thermodynamics.

The paper is organized as follows. In Section 2, we recapitulate the relation between bounded
rational decision-making and equilibrium thermodynamics. In Section 3, we relate decision-making
processes to non-equilibrium thermodynamics. In Section 4, we generalize concepts from
non-equilibrium thermodynamics to make them applicable to a wider range of decision-making
problems. In particular, we include a derivation of a generalized Jarzynski equality and a generalized
Crooks’ theorem for decision-making. We provide simulations to illustrate the new relations in
different decision-making scenarios. In Section 5, we discuss our results.

2. Equilibrium Thermodynamics and Decision-Making

In thermodynamics, closed physical systems in thermal equilibrium with their environment are
described by equilibrium distributions that do not change over time. For example, a gas in a box
distributes its particles evenly over the entire space and will stay this way and not spontaneously
concentrate in a corner of the box. When changing constraints of the physical system, equilibrium
thermodynamics allows predicting the final state after the change has taken place. For example,
when opening a divider between two boxes, the gas will expand further until it fills the entire space
evenly. This way, equilibrium thermodynamics allows describing system behaviour as a change
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from a prior equilibrium distribution to a posterior equilibrium distribution triggered by a change in
external constraints.

On an abstract level, one can think about changes in the distribution of a random variable
from a prior to a posterior distribution as the basis of information-processing. In Bayesian inference,
for example, we update current prior beliefs p0(x) by means of a likelihood to obtain a posterior
belief p1(x). Similarly, decision-making can be regarded as a process of changing a prior strategy p0(x)
to a posterior strategy p1(x) through a process of deliberation [1], thereby emphasizing the stochastic
nature of choice [40]. According to [1], such transitions from prior to posterior with information
constraints can be formalized by optimizing the variational problem:

peq
1 (x) = argmax

p
∆F[p] (2)

where:
∆F[p] := ∑

x
p(x)∆U(x)− 1

β
DKL(p||p0), (3)

is a free energy functional, ∆U(x) is a change in utility (analogous to the notion of gains and losses
in prospect theory [15]), DKL(·||·) is the Kullback–Leibler divergence or relative entropy and β is
a real-valued parameter that translates from informational units into utility units. Accordingly,
Equation (3) optimizes a trade-off between utility gains and information-processing resources
quantified by the “information distance” between prior and posterior. In a physical system (where the
energy function corresponds to a negative utility), Equation (3) evaluated at the optimum peq

1 quantifies
the negative free energy difference ∆F[peq

1 ] between the final state 1 and the initial state 0 assuming
an isothermal process with respect to the inverse temperature β and a negative energy difference of
∆U = U1 −U0.

For a given information cost parameter β, the bounded rational decision-maker optimally trades
off utility gain against informational resources according to Equation (2), thereby following the strategy:

peq
1 (x) =

1
Zβ

p0(x)eβ∆U(x) (4)

with partition function Zβ = ∑x p0(x)eβ∆U(x). When inserting the optimal strategy peq
1 (x) into

Equation (3), the certainty-equivalent value of strategy peq
1 is determined by

∆Feq := ∆F[peq
1 ] =

1
β

log Zβ. (5)

For β → 0, the cost of computation dominates, and the optimal strategy is given by the prior
strategy peq

1 (x) = p0(x) with the value limβ→0 ∆F[peq
1 ] = 〈∆U(x)〉p0(x). This models a decision-maker

that cannot afford any information-processing. When information costs are low (β→ ∞), the optimal
strategy peq

1 (x) places all the probability mass on the maximum of ∆U(x), and the value of the strategy
is limβ→∞ ∆F[peq

1 ] = maxx ∆U(x). This models a perfectly rational decision-maker that can hand
pick the best action. While this model includes maximum (expected) utility decision-making of
Equation (1) as a special case, note that conceptually, the formulation of the decision problem as
a variational problem in the probability distribution is very different from traditional approaches that
define an optimization problem directly in the space of actions.

One possible objection to the strategy (4) is that it requires computing the partition sum Zβ over
all possible actions, which is in general an intractable operation; even though Equation (4) could
still be of descriptive value. It should be noted, however, that the decision-maker is not required to
explicitly compute peq

1 (x); it suffices to produce a sample from peq
1 (x) to generate a decision. This can

be achieved, for example, by Markov Chain Monte Carlo (MCMC) methods that are specifically
designed to avoid the explicit computation of partition sums [41]. In the following, we recapitulate
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two simple MCMC examples in the context of decision-making: a bounded rational decision-maker
that uses a rejection sampling scheme and a bounded rational decision-maker that uses a variant of the
Metropolis–Hastings scheme [42].

Exemplary Bounded Rational Decision-Makers

The optimal distribution (4) can be implemented, for example, by a decision-maker that follows
a probabilistic satisficing strategy with aspiration level T ≥ maxx ∆U(x). Such a decision-maker
optimizes the utility ∆U(x) by drawing samples from the prior distribution xs ∼ p0(x) and accepts
with certainty the first sample xs with utility ∆U(xs) ≥ T reaching the aspiration level T or any sample
with utility below the aspiration level with acceptance probability paccept = exp(β(∆U(xs) − T)).
The most efficient samplers use T = maxx ∆U(x). For samplers with T > maxx ∆U(x), the probability
distribution (4) is still recovered, but more samples are required, as the acceptance probability paccept

is decreased in this case. This strategy is a particular version of the rejection sampling algorithm and is
shown in pseudo-code in Algorithm 1. We can see the direct connection between informational
resources (“distance away from the prior”) and the average number of samples required until
acceptance, as the expected number of required samples from p0 to obtain one accepted sample from
peq

1 is given by n̄β = exp(βT)/Zβ ≥ exp DKL (p||p0) [43]. In the limit of zero information-processing
with DKL (p||p0) = 0 in the high-cost regime β→ 0, the sampling complexity tends to its minimum
n̄β→0 → 1.

Algorithm 1 Rejection sampling.

repeat
x ∼ p0(x)
u ∼ Uniform[0, 1]
if u ≤ exp (β(∆U(x)− T)) then accept

until accept
return x

In case we do not want to set an absolute aspiration level T, an incremental version of such
a decision-maker can be realized by the Metropolis–Hastings scheme. Given a current action
proposal x, the decision-maker generates a novel proposal x′ from p0(x). If ∆U(x′) ≥ ∆U(x),
then the sample is accepted with certainty. An inferior sample is accepted with probability
paccept = exp(β(∆U(x′) − ∆U(x)). The aspiration level in this case is variable and always given
by the utility of the previous sample. This corresponds to a Markov chain with transition probability
p(x′|x) = p0(x′)min{1, exp (β (∆U(x′)− ∆U(x)))} and stationary distribution peq

1 (x). This Markov
chain fulfils detailed balance, i.e., peq

1 (x)p(x′|x) = peq
1 (x′)p(x|x′), which implies that after infinitely

many repetitions, the samples x will follow the stationary distribution. This Markov chain is
a particular version of the Metropolis–Hastings algorithm and is shown in pseudo-code in Algorithm 2.
The longer the chain runs, the further the distribution of x will move away from the prior, i.e., the higher
the informational resources will be. Finally, the chain reaches the equilibrium distribution.

Algorithm 2 Metropolis–Hastings sampling.

x ∼ p0(x)
repeat

x′ ∼ p0(x′)
u ∼ Uniform[0, 1]
if u ≤ exp (β(∆U(x′)− ∆U(x))) then accept x ← x′

until chain has converged to equilibrium
return x
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3. Non-Equilibrium Thermodynamics and Decision-Making

If decision-making is emulated by a Markov chain that converges to an equilibrium distribution
and one wants to be absolutely certain that the chain has reached equilibrium, then one has to wait for
an infinitely long time. For finite times, when considering only a limited number of samples from the
chain, we are dealing in general with non-equilibrium any time process models, i.e., computational
processes that can be interrupted at any time to deliver an answer; a representative example being
the Metropolis–Hastings dynamics when Algorithm 2 is run for k ∈ N steps. The same holds true for
a rejection sampling decision-maker. Even though Algorithm 1 generates equilibrium samples with
a finite expected number of samples n̄β, before running the algorithm, it is unknown whether after
a particular number of steps k, a sample will be accepted or not; to have certainty, we would have
to allow for an infinite amount of time (k → ∞). In an any time version of rejection sampling, the
probability of not accepting a sample after k tries is given by qk = [1− Z(β) exp(−βT)]k, in which case
the sample xs will be distributed according to the prior distribution p0(x). The probability of accepting
a sample that is distributed according to peq

1 (x) after k tries is given by 1− qk. Accordingly, the action
at time k is a mixture distribution of the form:

pneq
k (x) = (1− qk)peq

1 (x) + qk p0(x). (6)

The distribution pneq
k (x) is a non-equilibrium distribution that reaches equilibrium

pneq
k (x) → peq

1 (x) for k → ∞. In the following, we ask how far the tools of non-equilibrium
thermodynamics are applicable to such any time decision-making processes.

3.1. Non-Equilibrium Thermodynamics

In thermodynamics, non-equilibrium processes are often modelled in the presence of an external
parameter λ(t) ∈ [0, 1] that determines how the energy function Eλ(x) changes over time; for example,
when switching on a potential in a linear fashion, the energy would be Eλ(x) = E0(x) + λ (E1(x)− E0(x)).
When the change in the parameter λ is done infinitely slowly (quasi-statically), the system’s probability
distribution follows exactly the path of equilibrium distributions (for any λ) pλ(x) = 1

Zλ
e−βEλ(x).

Importantly, when the switching of the external parameter λ is done in finite time, the trajectory
in phase space of the evolving thermodynamic system can potentially be very different from the
quasi-static case. In particular, the non-equilibrium path of probability distributions is going to
be, in general, different from the equilibrium path. We define the trajectory of an evolving system
as a finite sequence of states x := (x0, x1, . . . xN) at times t0, t1, . . . , tN , and the probability of the
trajectory as p(x) := p(x0|t0)∏N

n=1 p(xn|xn−1, tn) that follows Markovian dynamics. Since λ is then
a function of time λ(tn), we can effectively consider the energy as a function of state and time
E(xn, tn) := Eλ(tn)(xn). Accordingly, the internal energy of the system can change in two ways
depending on changes in the two variables tn and xn. Assuming discrete time steps, an energy change
due to a change in the external parameter is defined as the work [24,44]:

w(xn−1, tn−1 → tn) = E(xn−1, tn)− E(xn−1, tn−1)

and an energy change due to an internal state change is defined as the heat [24,44]:

q(xn−1 → xn, tn) = E(xn, tn)− E(xn−1, tn).

For an entire process trajectory x0, x1, . . . , xN measured at times t0, t1, . . . , tN , the extracted work
is W(x) = −∑N

n=1 w(xn−1, tn−1 → tn), and the heat transferred to the environment by relaxation
steps is Q(x) = −∑N

n=1 q(xn−1 → xn, tn). The sum of work and heat is the total energy difference
∆E(x) := −(E(xN , tN)− E(x0, t0)) = W(x) + Q(x). In expectation with respect to p(x), we define
the average work W := 〈W(x)〉p(x), the average heat Q := 〈Q(x)〉p(x) and the average energy change
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∆E := 〈∆E(x)〉p(x). With these averaged quantities, we obtain the first law of thermodynamics in its
usual form:

∆E = W + Q (7)

= W + T∆S + Wdiss.

The heat Q can be decomposed into a reversible and an irreversible part given by the entropy
difference ∆S = −(S(tN) − S(t0)), which is multiplied by the temperature T and the average
dissipation Wdiss. The concept of dissipation will be particularly useful later to quantify inefficacies in
decision-making processes with limited time. By identifying the equilibrium free energy difference
with ∆F := −(F(tN)− F(t0)) = ∆E− T∆S, we can then write the first law as:

W = ∆F−Wdiss. (8)

In case of a quasi-static process, the extracted work W exactly coincides with the equilibrium free
energy difference (thus, Wdiss = 0). In the case of a finite time process, we can express the average
dissipated work as [45–47]:

Wdiss :=
〈

Wdiss(x)
〉

p(x)
= ∆F−W =

1
β

DKL

(
p(x)||p†(x)

)
(9)

where DKL is the relative entropy that measures in bits the distinguishability between the probability
of the forward in time trajectory p(x) and the probability of the backward in time trajectory
p†(x) := p(xN |tN)∏N

n=1 p(xn−1|xn, tn−1). From the positivity of the relative entropy, we can
immediately see the non-negativity of entropy production Wdiss ≥ 0, which allows stating the second
law of thermodynamics in the form:

W ≤ ∆F. (10)

3.1.1. Crooks’ Fluctuation Theorem

Equation (9) can be given in a more general form without averages. It is possible to
relate the reversibility of a process with its dissipation at the trajectory level. Given a protocol
Λ = (λ0, λ1, . . . λN), i.e., a sequence of external parameters, the probability p(x) of observing
a trajectory of the system in phase space compared with its time-reversal conjugate p†(x) (when
using the time-reversal protocol Λ† = (λN , λN−1, . . . λ0)) depends on the dissipation of the trajectory
in the forward direction according to the following expression:

p(x)
p†(x)

= eβWdiss(x) ,

where Wdiss(x) = ∆F −W(x) is the dissipated work of the trajectory. For this relation to be true,
both backward and forward processes must start with the system in equilibrium. Intuitively, this means
that the more the entropy production (measured by the dissipated work), the more distinguishable are
the trajectories of the forward protocol compared to the backward protocol.

3.1.2. Jarzynski Equality

Additionally, another relation of interest in non-equilibrium thermodynamics has recently been
found transforming the inequality of Equation (10) into an equality, the so-called Jarzynski equality [48]:

〈
eβW(x)

〉
p(x)

= eβ∆F (11)
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where the angle brackets denote an average over all possible trajectories x of a process that drives
the system from an equilibrium state at λ = 0 to another state at λ = 1. Specifically, the above
equality says that, no matter how the driving process is implemented, we can determine equilibrium
quantities from work fluctuations in the non-equilibrium process; or in other words, this equality
connects non-equilibrium thermodynamics with equilibrium thermodynamics. In the following,
we are interested in the question whether there exist similar relations such as the Jarzynski equality or
Crooks’ fluctuation theorem and similar underlying concepts such as dissipation and time reversibility
for the case of decision-making.

3.2. Non-Equilibrium Thermodynamics Applied to Bounded Rational Decision-Making

In direct analogy to the previous section, in the following, we consider decision-makers faced
with the problem of optimizing a changing utility function. We assume that time is discretized into N
steps t0, . . . , tN . For each time step tn, the utility is assumed to be constant, but it can change between
time steps, such that we have a sequence of decision problems expressed by the changes in utility
∆U(x, t0 → t1), . . . , ∆U(x, tN−1 → tN). At each time point tn, the decision-maker chooses action xn,
such that we can summarize the decision-maker’s choices by a vector x := (x0, . . . , xN). The behaviour
of the decision-maker is characterized by the probability p(x) := p(x0|t0)∏N

n=1 p(xn|xn−1, tn) with
p(x0|t0) = p0(x0), assuming that the initial strategy is a bounded rational equilibrium strategy.
In this setup, we assume that the changes in the utility function are externally driven, i.e., the
decision-maker’s actions cannot change the temporal evolution of the utility function. Furthermore,
note that the decision-maker does not know how the utility changes over time. Accordingly, the best
the decision-maker can do is to optimize the current utility as much as possible.

At time t0, the decision-maker starts with selecting an action x0 from the distribution p(x0|t0)

and the utility changes instantly by ∆U(x, t0 → t1). The decision-maker can then adapt to this utility
change with the distribution p(x1|x0, t1) and select the action x1 at time t1, but at this point, the utility
is already changing again by ∆U(x, t1 → t2). The adaptation from p(x0|t0) to p(x1|x0, t1) is analogous
to a physical relaxation process and implies a strategy change between x0 and x1. In general, at each
time point tn−1, the decision-maker chooses action xn−1 while the current utility changes by:

∆U(xn−1, tn−1 → tn) = U(xn−1, tn)−U(xn−1, tn−1).

This way, the decision-maker is always lagging behind the changes in utility, just like a physical
system would lag behind the changes in the energy function. The utility ∆U(xn−1, tn−1 → tn) gained
by the decision-maker at time point tn−1 parallels the concept of work in physics. For a whole trajectory,
we define the total utility gain due to changes in the environment as U (x) = ∑N

n=1 ∆U(xn−1, tn−1 → tn).
Note that the last decision xN can be ignored in this notation, as it does not contribute to the utility.

In Figure 1 (left column), we illustrate the setup for a one-step decision problem ∆U(x, t0 → t1)

with behaviour vector x = (x0, x1). An instantaneous change in the environment occurs at time t0

represented by a vertical jump from λ0 to λ1 in the upper panels that translates directly into a change
in free energy difference represented by ∆F in the lower panels. The system’s previous state at t0 is
given by peq

0 (x), i.e., the equilibrium distribution for U0. The new equilibrium is given by peq
1 (x), i.e.,

the equilibrium distribution for U1. In this case, the behaviour vector is x = (x0, x1) with x0 ∼ peq
0 (x),

and x1 is ignored.
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Figure 1. Temporal structure of the one-step decision problem. An instantaneous change in the
environment occurs at time t0 represented by a vertical jump from λ0 to λ1 in the upper panels
that translates directly into a change in free energy difference represented by ∆F in the lower panels.
The system’s previous state at t0 is given by peq

0 (x), i.e., the equilibrium distribution for Uλ0 (x). The new
posterior equilibrium is given by peq

1 (x), i.e., the equilibrium distribution for Uλ1 (x). When given
unlimited time, the decision-maker will eventually evolve to peq

1 (x). Deliberative and non-deliberative
decision-makers differ in how much time they get to adapt to the change in utility before they have to
choose an action x that provides them with the utility gain ∆U(x) = Uλ1 (x)−Uλ0 (x). Left: In direct
analogy to physical thermodynamics, the non-deliberative decision-maker has to emit an action before
it can adapt to any changes in utility and therefore acts according to the previous strategy peq

0 (x)
at time t0. On average, with such a strategy, the utility gained is Unet = ∑x peq

0 (x)∆U(x) at t0 and
the dissipation is Udiss = ∆F − Unet. Right: The deliberative decision-maker is allowed to adapt
to the change in utility for a certain time ∆t∗ before the action has to be emitted. This deliberation
period allows the decision-maker to compute a better strategy p̃(x). In this case, the net utility is

Unet = ∑x p̃(x)∆U − 1
β DKL

(
p̃(x)||peq

0 (x)
)

.

Similarly to Equation (8), we can now formulate the first law for decision-making as:

U = ∆F−Udiss

stating that the total average utility U := 〈U (x)〉p(x) is the difference between the bounded optimal
utility (following the equilibrium strategy with precision β) expressed by the equilibrium free energy
difference ∆F and the dissipated utility Udiss. The dissipation for a trajectory Udiss(x) := ∆F−U (x)
measures the amount of utility loss due to the inability of the decision-maker to act according to the
equilibrium distribution. This is because the decision-maker cannot anticipate the changes in the
environment. At most, the decision-maker could act according to the equilibrium distributions of the
previous environment. Thus, even with full adaptation, the decision-maker will always lag behind one
time step and will therefore always dissipate.

Due to an equivalent version of Equation (9), we can also state the second law for decision-making
Udiss ≥ 0, which implies that a purely adaptive decision-maker can gain a maximum utility that cannot
be larger than the free energy difference:

U ≤ ∆F.
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Similarly, we can obtain equivalent relationships to the Crooks fluctuation theorem:

p(x)
p†(x)

= eβUdiss(x) , (12)

and the Jarzynski equality: 〈
eβU (x)

〉
p(x)

= eβ∆F (13)

which both have the same implications as in the physical scenario and can be derived in the same
way as in the physical counterpart [44]. In summary, we can say that an adaptive decision-maker,
which has to act without knowing that the utility function has changed, follows the same laws as
a thermodynamic physical system that is lagging behind the equilibrium.

3.3. Examples

In this section, we illustrate the applicability of thermodynamic non-equilibrium concepts in
a series of simulations for different decision-making scenarios. In particular, we study two model
classes: the first one contains simple one-step lag models of adaptation where equilibrium is always
reached with one time step delay, and the second one contains more complex models of adaptation
that do not necessarily equilibrate after one time step. In the first model class, we can easily study the
relation between dissipation and the rate of information-processing, whereas in the second class of
models, we can study more complex non-equilibrium phenomena such as learning hysteresis.

3.3.1. One-Step Lag Models of Adaptation

Consider a learner that is adapted to their environment such that their behaviour can be described
by the equilibrium distribution p0(x). For this idealized scenario, we assume that the learner can adapt
their behaviour to any environment perfectly after a time lapse of ∆t. This also means that before the
lapse of ∆t, the learner continues to follow their old strategy and is inefficient during this time span.
We now consider two scenarios: first, where the environment changes suddenly by ∆U(x), and second,
where the environment changes slowly in N small steps of ∆U(x)/N. In the first case, the learner is
going to dissipate the utility:

Udiss =
1
β

DKL

(
p0(x)||peq

1 (x)
)

,

in the first time step. In all subsequent time steps, no more utility is wasted, assuming the
environment does not change any more. In the second case, the utility function can be written
as Ut(x) = U0(x) + t

N ∆U(x) for t ∈ N : 0 ≤ t ≤ N. To compute the dissipated utility, we need to
compare the learner’s behaviour in time step t to the bounded optimal behaviour, which is:

peq(x, t) =
1
Z

peq(x, t− 1)e
β
N ∆U(x)

for t > 0. The overall average dissipated utility for the whole process is then

Udiss
N =

1
β

N

∑
t=1

DKL (peq(x, t− 1)||peq(x, t)) .

The net utility gain for the N-step scenario is Unet
N = ∆F−Udiss

N . Note that:

Udiss
N ≥ Udiss

N+1

and consequently, in direct analogy to a quasi-static change in a thermodynamic system, we get
vanishing dissipation (Udiss

N → 0) if the utility changes infinitely slowly (N → ∞ and ∆U(x)/N → 0),
such that the net utility equals the free energy difference Unet

N = ∆F.
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3.3.2. Bayesian Inference as a One-Step Lag Process

Bayesian inference mechanisms naturally have step by step dynamics that update beliefs with
new incoming observations. Again, we can consider two scenarios: first where the learner updates
their belief abruptly by processing a huge chunk of data in one go, and second, where belief updates
are incremental with small chunks of data at each time step. Here, we show how the size of the chunks
of data affect the overall surprise of the decision-maker and how this relates to dissipation applying
the free energy principle to Bayesian inference.

Traditionally, Bayes’ rule is obtained directly from the product rule of probabilities
p(θ,D) = p(θ)p(D|θ) = p(D)p(θ|D) where θ correspond to the different available hypotheses
and D corresponds to the dataset. However, Bayes’ rule can also be considered to be a consequence
of the maximization of the free energy difference with the log-likelihood as a utility function [49–51].
In this view, the posterior belief p(θ|D) is a trade-off between maximizing the likelihood p(D|θ) and
minimizing the distance from the prior p0(θ) such that:

p(θ|D) = argmax
p̃

∆F[ p̃] = argmax
p̃

∫
p̃(θ|D) log p(D|θ)dθ − 1

β

∫
p̃(θ|D) log

p̃(θ|D)
p0(θ)

dθ (14)

=
1
Z

p0(θ)eβ log p(D|θ) =
1
Z

p0(θ)p(D|θ)β (15)

is identical to Bayes’ rule when β = 1. For β → ∞, we recover the maximum likelihood estimation
method as the density update is p(θ|D) = δ(θ − θMLE) with θMLE = argmaxθ log p(D|θ).

Such a Bayesian learner with prior p0(θ) that incorporates all the data X at once is going to
experience the expected surprise S = −

∫
p0(θ) log p(D|θ)dθ. In contrast, a Bayesian learner that

incorporates the data slowly in N steps (thus, the dataset D = (X1, . . . , XN) is divided in N parts)
experiences an expected surprise of S = −∑N

n=1
∫

p(θ|X1, . . . , Xn−1) log p(Xn|θ)dθ. Here, the surprise
S corresponds to the thermodynamic concept of work. The first law can then be written as:

∆F + S = Udiss

where the equivalent of dissipation corresponds to:

Udiss =
1
β

DKL(p0(θ)||peq(θ|D)).

when processing all the data at once and to:

Udiss =
1
β

N

∑
n=1

DKL(p(θ|X<n)||peq(θ|X≤n)).

when processing the data in N steps where X<n = (X1, . . . , Xn−1) and X≤n = (X1, . . . , Xn).
Thus, given that the equilibrium free-energy difference ∆F is a state function independent of the
path (that means independent of whether data are processed all in one go or in small chunks), a system
acquiring data slowly will have a reduced surprise S and therefore have less dissipation Udiss.

In Figure 2, we show how the number of data chunks has an effect on the overall surprise
and dissipation. In particular, we have a dataset D = (x1, . . . , xT) consisting of T = 100 data
points Gaussian distributed x ∼ N (x; µd = 5, σ2

d = 4) that we divide into batches of different sizes
b ∈ {100, 50, 25, 20, 10, 5, 2, 1}. The decision-maker has prior belief p0(θ) about the mean θ = µd and
incorporates the data of every batch of data according to Bayes’ rule until all the data are incorporated.
In general, the Bayesian learner processes the data in T/b steps; for example in the case of b = 100,
all data are processed at once (having thus high surprise), and in the case of b = 1, it incorporates
the data in T updates with an overall smaller surprise. In Figure 2, we show for different batch sizes
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the free energy optimum ∆F = log
∫

p0(θ)p(D|θ), the surprise S and the dissipation Udiss = ∆F− S .
It can be seen that when acquiring the data in small chunks, the surprise of the decision-maker and the
dissipation are lower.
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Figure 2. Surprise, dissipation and free energy optimum as a function of the number of data points
per batch in a Bayesian inference task. When the decision-maker processes all the data in one step,
it has maximum surprise and dissipation. However, when incorporating the data slowly, the surprise
and dissipation are humble. The free energy optimum is only a function of the data independent of
how they are incorporated.

3.4. Dissipation and Learning Hysteresis

A common paradigm to study how humans learn is through adaptation tasks where subjects are
exposed to changes in an environmental variable that they can counteract by changing an internal
variable. Sensorimotor adaptation in humans has been extensively studied in these error-based
paradigms, for example where subjects have to adapt their hand position (internal variable) to change
a virtual end effector position represented by a dot on a screen (external variable).

Consider a utility function Uv(x) = −(x− µv)2. For v = 0, we determine the prior behaviour

of a decision-maker with p0(x) = eβU0(x)

Z . Initially, the decision-maker obtains an average utility of
〈U0〉p0

, which corresponds to zero mismatch between the decision-maker and the environmental
variable. A change of the environmental variable to v = 1 effectively changes the utility function to
U1(x) = −(x− µ1)

2, making p0 non-optimal. This forces the decision-maker to reduce error adapting
to the environmental variable by changing its probability distribution over his/her actions. When fully
adapted to the new environment, the decision-maker again makes no errors (other than the errors due
to motor noise). We illustrate this adaptation paradigm with a decision-maker that adapts according to
the Metropolis–Hastings algorithm, which follows Markovian dynamics [52].

Crooks Theorem and Hysteresis Effects in Adaptation Tasks

Limited adaptation capabilities not only have an effect on the amount of obtained utility through
the second law for decision-making Unet ≤ ∆F, but also induce a time asymmetry in sequential
decision-making processes. Hysteresis loops are a typical example of this asymmetry. Hysteresis is the
phenomenon in which the path followed by a system due to an external perturbation, e.g., from state A
to B, is not the same as the path followed in the reverse perturbation, e.g., from state B to A. When the
system follows the same path for the forward perturbation and for the reverse perturbation, we say
that the process is time symmetric (and therefore, it is not subject to hysteresis effects).

In the two left panels of Figure 3, we show a simulated trajectory of actions composed of 80 trials
for an adaptation task using the Metropolis–Hastings algorithm with β = 22.5, a Gaussian proposal

g(x′|x) = N (x′; µ = x, σp = 0.1) and acceptance criterion α(x′|x) = min
(

eβU(x′)g(x|x′)
eβU(x)g(x′ |x) , 1

)
, when

changing the environmental variable from µ0 = 0.0 to µ1 = 1.0. In blue, we show the trajectory for
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the forward-in-time perturbation, which converges after a few dozen trials to the new equilibrium.
In brown, we show the trajectory for the reversed perturbation where the process starts with the last
trial (80) and ends with the initial trial (0). In the left panel, the perturbation is made instantaneously
in one step at Trial 40 and in the right panel in multiple steps (N = 23). The hysteresis effect is clearly
seen in the instantaneous perturbation where the path of actions followed by the decision-maker in
the forward perturbation is clearly different from a typical trajectory of actions taken when applying
the reversed perturbation. When the perturbation is made in multiple steps, both typical backward
and typical forward trajectories become more similar denoting a smaller hysteresis effect. In this way,
hysteresis effects are tightly connected to the concept of dissipation.
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Figure 3. Trajectories of actions from the Metropolis–Hastings algorithm with β = 22.5 and the
proposed standard deviation σp = 0.1 in a forward (blue) or backward (brown) protocol for an instant
change in the environment (first panel) and for a slow change in the environment (second panel). In both
cases, the total change in the environment is µ0 = 0 to µ1 = 1. The last panels shows the dissipation for
the forward protocol (blue) in both the instant or the slow change in the environment. The difference
in probability densities of forward and backward trajectories relates directly to dissipation and to
hysteresis effects.

Dissipation and the ratio between forward and backward probabilities of trajectories of actions
correspond exactly to the Crooks theorem for decision-making:

p(x)
p†(x)

= eβUdiss(x).

The probability of observing a trajectory of accepted actions x = (x0, x1, . . . xT) for the
Metropolis–Hastings algorithm is easily computed with p(x) = p(x0)∏T

t=1 g(xt|xt−1)α(xt|xt−1).
Similarly, the probability of observing the same trajectory in the backward protocol is
p(x†) = peq(xT)∏T

t=1 g(xT−t|xT−t+1)α(xT−t|xT−t+1). The dissipated utility is Udiss = ∆F − Utot

where the free energy difference is computed between the final p1(x) = 1
Z eβU1(x) and initial

equilibrium distributions p0(x) = 1
Z eβU0(x), and the total utility gained Utot is the sum of the utilities

∆U(x, tn → tn+1) at each environmental change at time tn. In the third panel of Figure 3, we show that
the protocol with the instantaneous perturbation has higher dissipation (related to higher hysteresis)
compared to the protocol with multiple small perturbations.

4. Generalized Non-Equilibrium Thermodynamics for Decision-Making with Deliberation

So far, we have studied decision-makers that were forced to select an action with no opportunity
to respond to a change in the utility function. This could correspond, for example, to a scenario
of trial-and-error learning, where the best available strategy is the prior strategy adapted to the
environment before the utility changed. However, this restriction may not always be suitable. Consider
for example a chess player that is shown a particular board configuration (corresponding to a change
in utility) and now has a certain amount of time to decide on the next move. Similarly, consider the
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two introductory examples in Section 3, where we allow a sampling algorithm to run for a certain
number of steps, and then, we stop and evaluate the action after the algorithm has adapted to the new
utility. In general, such deliberation processes are expensive, and we assume in the following that the
Kullback–Leibler divergence is an appropriate measure of this computational expense, as outlined in
the Introduction.

In the following, we consider again decision-makers facing a sequence of decision problems
expressed by the utility changes ∆U(x, t0 → t1), . . . , ∆U(x, tN−1 → tN). In contrast to the
previous section where decision-makers had to decide before they could adapt to the utility change,
decision-makers that deliberate select their action xn after they have (partially) adapted to the
utility change:

∆U(xn, tn−1 → tn) = U(xn, tn)−U(xn, tn−1).

Using this notation, we are able to summarize the decision-maker’s choice by a vector
x := (x0, . . . , xN) and characterize its behaviour by the probability p(x) := p(x0|t0)∏N

n=1 p(xn|xn−1, tn)

with p(x0|t0) = p0(x0), assuming that the initial strategy is a bounded rational equilibrium strategy.
Note that in the deliberation scenario, the initial state x0 does not constitute a decision, but instead, we
include the last decision xN .

This setup is illustrated again in Figure 1 (right column) for a one-step decision problem
∆U(x, t0 → t1) with behaviour vector x = (x0, x1) and with an instantaneous change in the
environment occurring at time t0. In the deliberation scenario, the utility is determined after the
deliberation time. During deliberation, the decision-maker has changed the strategy distribution
from peq

0 (x) to a non-equilibrium distribution p̃(x) (for example, the distribution (6) in the rejection
sampling scheme) spending in the process a certain amount of resources and achieving an average net
utility of Unet = ∆F[ p̃(x)] according to Equation (3). In this case, the behaviour vector is x = (x0, x1)

with x0 ignored and x1 ∼ p̃(x). In such a scenario with a single decision problem, we define, in analogy
with the previous section, the average dissipated utility as [24,53]:

Udiss := ∆F−Unet

=
1
β

DKL

(
p̃(x)||peq

1 (x)
)

. (16)

See Appendix for a derivation of (16) from (9). It readily follows from the positivity of the relative
entropy DKL (p||q) ≥ 0 that:

Unet ≤ ∆F (17)

with equality when p̃(x) = peq
1 (x). In the case of the rejection sampling decision-maker of Equation (6),

this would correspond to an infinite amount of samples k → ∞. The inequality (17) shows that we
cannot obtain more utility than the equilibrium free energy difference.

Let us now look at the general case. In contrast to an agent without deliberation capabilities,
an agent that deliberates will be able to act according to a different distribution than the prior strategy.
This means that when facing the utility change ∆U(x, tn−1 → tn) at time tn, the agent chooses the
action xn sampled from the posterior strategy, contrary to an agent without deliberation that chooses
xn−1 sampled from the prior strategy. The deliberation process incurs a computational cost that
is measured (in a similar fashion to stochastic thermodynamics [54] and previous formulations of
bounded rationality given in the introduction) with the difference between the conditional stochastic
entropies from prior to posterior:

s(xn|xn−1, tn)− s(xn|xn−1, tn−1) := − log
p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
.
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Note that the prior distribution p(xn|xn−1, tn−1) is the previous posterior distribution evaluated at
xn instead of xn−1. Basically, this measures the change in probability from prior behaviour to posterior
behaviour of the newly chosen action xn.

Taking into account the computational cost of deliberation, we define the net utility of action xn

due to a change in the environment as

u(xn, tn−1 → tn) = ∆U(xn, tn−1 → tn)−
1
β

log
p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
,

which generalizes the concept of work from the previous section. The expected change in net utility
is the objective function that the decision-maker optimizes at each time step. The total net utility
Unet(x) = ∑N

n=1 u(xn, tn−1 → tn) takes the form of a non-equilibrium free energy:

Unet(x) =
N

∑
n=1

∆U(xn, tn−1 → tn)−
1
β

N

∑
n=1

log
p(xn|xn−1, tn)

p(xn|xn−1, tn−1)
. (18)

at the trajectory level. Similarly to Equation (8), the first law for decision-making with deliberation
costs is:

Unet = ∆F−Udiss

and states that the total net utility Unet = 〈Unet(x)〉p(x) is the difference between the bounded optimal
utility (following the equilibrium strategy with precision β) expressed by the equilibrium free energy
difference ∆F and the dissipated utility Udiss. The dissipation:

Udiss(x) := ∆F−Unet(x) (19)

measures the amount of utility loss if the decision-maker’s plan does not manage to produce an action
from the equilibrium distribution, for example due to the lack of time for deliberation. However,
a decision-maker with infinite deliberation time will not have this problem and therefore will not
dissipate by wasting utility.

To investigate the counterpart of the second law, we need to determine whether Udiss ≥ 0 holds.
This can be achieved, for example, by first deriving the counterpart of the Crooks fluctuation theorem
or the counterpart of the Jarzynski equation with subsequent application of Jensen’s inequality. In the
following two theorems, we assume that the decision-makers satisfy the detailed balance condition.
The detailed balance condition ensures two important characteristics. First, the stochastic process
reaches equilibrium, and second, it ensures time-reversibility when in equilibrium. In a decision-
making scenario, this translates into the following. First, when given enough computation time, the
decision-makers manage to sample actions from the correct equilibrium distributions. Second, ideal
decision-makers in equilibrium should not produce any entropy, which is exactly what happens if
detailed balance is satisfied.

Theorem 1. Crook’sfluctuation theorem for decision-making with deliberation costs states that:

p(x)
p†(x)

= eβUdiss(x) (20)

where the dissipated utility of a particular trajectory is U diss(x) = ∆F − Unet(x) as defined in
Equation (18) and the probability of the trajectory using the backward protocol is p†(x) = p†(x0|x1, t0)

p†(x1|x2, t1) · · · p†(xN |tN) for N decision problems starting at time tN and going backwards up to t0. For the
relation to be valid, we must assume that the starting distribution in the backward process is also in equilibrium,
p(xN |tN) ∝ eβU(xN ,tN).
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Proof. Here, we derive the relationship between reversibility and dissipation.

p(x)
p†(x)

=
p(x0|t0)p(x1|x0, t1) · · · p(xN |xN−1, tN)

p†(x0|x1, t0)p†(x1|x2, t1) · · · p†(xN |tN)

=
eβU(x0,t0)

Z0

1
eβU(x0,t0)

p(x1|x0, t1)

p(x1|x0, t0)

eβU(x1,t0)

eβU(x1,t1)
· · · p(xN |xN−1, tN)

p(xN |xN−1, tN−1)

eβU(xN ,tN−1)

eβU(xN ,tN)
ZN

=
ZN
Z0

e
β 1

β log p(x1 |x0,t1)
p(x1 |x0,t0) e−β∆U(x1,t0→t1) · · · eβ 1

β log
p(xN |xN−1,tN )

p(xN |xN−1,tN−1) e−β∆U(xN ,tN−1→tN)

= eβ∆F−βUnet(x) = eβUdiss(x)

where in the second line, we have substituted p†(xn−1|xn, tn−1) using the identity:

p†(xn−1|xn, tn−1) =
eβU(xn−1,tn−1)

eβU(xn ,tn−1)
p(xn|xn−1, tn−1)

from detailed balance, and we assumed the initial distribution to be in equilibrium p(x0|t0) =
eβU(x0,t0)

Z0
and that in the backward process the decision-maker starts also using the equilibrium strategy
p†(xN |tN) =

1
ZN

eβU(xN ,tN). In the third line, we cancel out terms and apply the following two equalities

p(xn |xn−1,tn)
p(xn |xn−1,tn−1)

= e
β 1

β log
p(xn |xn−1,tn)

p(xn |xn−1,tn−1) and ∆U(xn, tn−1 → tn) = U(xn, tn)−U(xn, tn−1). Finally, in the

last line, we employ the definition of the net utility in Equation (18) and ZN
Z0

= eβ∆F.

Although at first sight, Equation (20) looks the same as the previous Crooks’ relation for the
no-deliberation case (12), it is not the same. Here, the net utility is defined by Equation (18), which
takes into account both the gain in utility and the computational costs of deliberating.

Theorem 2. The Jarzynski equality for decision-making with deliberation costs states that:
〈

eβUnet(x)
〉

p(x)
= eβ∆F. (21)

Proof.
〈

exp

(
β

N

∑
n=1

[
∆U(xn, tn−1 → tn)−

1
β

log
p(xn|tn, xn−1)

p(xn|tn−1, xn−1)

])〉

p(x)

=

(1.)
= ∑

x0, xn ,···xN

p(x0|t0)
N

∏
n=1

p(xn|tn, xn−1)
N

∏
n=1

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N

∏
n=1

p(xn|tn−1, xn−1)

p(xn|tn, xn−1)

(2.)
= ∑

x0,···xn ,···xN

p(x0|t0)
exp(βU(x1, t1))

exp(βU(x1, t0))

N

∏
n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))
p(x1|t0, x0)

N

∏
n=2

p(xn|tn−1, xn−1)

(3.)
=

1
Z0

∑
x1···xn ,···xN

exp(βU(x1, t1))
N

∏
n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N

∏
n=2

p(xn|tn−1, xn−1)

(4.)
==

1
Z0

∑
x2···xn ,···xN

N

∏
n=2

exp(βU(xn, tn))

exp(βU(xn, tn−1))

N

∏
n=3

p(xn|tn−1, xn−1)∑
x1

exp(βU(x1, t1))p(x2|t1, x1)

︸ ︷︷ ︸
=exp(βU(x2,t1))(Detailed Balance)

(5.)
=

1
Z0

∑
xN

exp(βU(xN , tN)) =
ZN
Z0

= eβ∆F

In (1.), we unfold the expression and exploit the equality elog p+log q = pq for the summation inside
the exponential. In (2.), we cancel the trajectory probabilities ∏N

n=1 p(xn|tn, xn−1) and then take one term
out of the two remaining products. In (3.), first, we use the equivalence exp(βU(x1, t0)) = Z0 peq(x1|t0)
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(because at time t0, the decision-maker is acting according to the equilibrium distribution) that allows
us to cancel with p(x1|t0, x0) = peq(x1|t0), and second, we sum over x0 with the only term that
depends on it being p(x0|t0). In (4.), we take one term of the second product and perform the sum
over x1 to obtain by detailed balance exp(βU(x2, t1)) that will allow us to cancel with the term in the
denominator of the first product. We perform Steps (3.) and (4.) repeatedly until obtaining the last
equivalence that proves the theorem.

Again, we note that the previously-proven Jarzynski relation from Equation (21) is not the same
equation as in the no-deliberation case (13). In the deliberation case, the definition of the net utility is
different and takes into account both the utility gain and the computational cost of deliberating.

We can now state the second law of decision-making with deliberation costs as:

〈
Udiss(x)

〉
p(x)

=
1
β

DKL

(
p(x)||p†(x)

)
≥ 0 (22)

from Equation (20) by rearranging and taking expectations. The same inequality can be obtained
from Equation (21) by applying Jensen’s inequality 〈exp x〉 ≥ exp 〈x〉 to recover 〈Unet(x)〉p(x) ≤ ∆F.
Equation (21) connects finite with infinite time decision-making. That is, there is a relation between
the equilibrium free-energy differences that is the maximum attainable net utility with unlimited
computation time and the net utility obtained by decision-makers with limited computation time.
In the next section, we will provide examples of how to use these relations to extract useful information
from decision-making processes.

4.1. Examples

For the deliberation scenario, we illustrate the novel Jarzynski equality and Crooks theorem
for decision-making in two decision-making scenario with clearly defined independent episodes:
the first case is a discrete decision-making problem, and the second case is a continuous
decision-making problem.

4.1.1. Jarzynski and Crooks Relations for Episodic Decision-Making with Deliberation

Choice-reaction-time experiments aimed to study information-processing in humans typically
consider episodic tasks consisting of many trials; see [55] for a recent example. Here, we take a variation
of Hicks episodic task with discrete action space, commonly used in the decision-making literature.
In our variation of Hicks task, the decision-maker is shown a set of eight light bulbs. Initially, all light
bulbs are turned off. Upon stimulus presentation, all light bulbs are turned on with different light
intensities (representing different utilities) for a limited amount of time in which the decision-maker
must choose the brightest light associated with the highest utility. The choice task is repeated many
times, each time with different light intensities. For simplicity, our example contains only two stimuli:
compare Utility 1 and Utility 2 in Figure 4A. When given enough time, a decision-maker with prior
p0(x) chooses its actions according to the equilibrium distribution from Equation (4), as illustrated in
Figure 4A for the uniform prior p0(x) = 1

8 that we assume in our example. In this case, the precision β

specifies how well the light intensities can be told apart by a bounded optimal decision-maker.
In Figure 4, we model a decision-maker using the rejection sampling algorithm with the most

efficient aspiration level given by the maximum utility maxx ∆U(x). In particular, we simulate the
rejection sampling algorithm with a limited number of samples (parameterized by k), where the choice
strategy is given by non-equilibrium probability distribution in Equation (6) from the Introduction,
because we assume that a response has to be produced within a fixed amount of time.
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Figure 4. Episodic decision-making with deliberation. (A) Utility functions and equilibrium
distributions for the two decision problems; (B) we show for different β and k (left) the average
net utility, (middle) the free energy difference and (right) the average dissipated utility; (C) top
panels: empirical averages approximating the Jarzynski expression in dependence of the number
of trajectories T using different β and different number of available samples k; bottom panels: the
associated expected net utility gain, which in the limit T → ∞ is lower than the free energy difference
(horizontal light red line).

In this kind of episodic task, the decision-maker always starts with the same prior p0(x) over the
possible choices x. The probability of a trajectory of decisions x is defined as p(x) := ∏N

n=1 p(xn|tn) for
each episode n, and the net utility for a trajectory is:

Unet
0 (x) :=

N

∑
n=1

[
∆U(xn, tn−1 → tn)−

1
β

log
p(xn|tn)

p0(xn)

]
.



Entropy 2018, 20, 1 18 of 28

Consequently, the equilibrium free energy is defined as ∆F := maxp̃(x)
〈
Unet

0 (x)
〉

p̃(x),
which can also be decomposed into the sum of N independent equilibrium free energies
∆F = ∑N

n=1

〈
∆U(xn, tn−1 → tn)− 1

β log peq(xn |tn)
p0(xn)

〉
peq(xn |tn)

where:

peq(xn|tn) =
p0(xn) exp(β∆U(xn, tn−1 → tn))

Zn

and the dissipated utility for a trajectory is Udiss(x) := ∆F−Unet
0 (x).

We simulate trajectories with N = 2 by sampling repeatedly from Equation (6). In the first
panel of Figure 4B, we show that, as expected, the more samples k a decision-maker can afford,
the higher the average net utility

〈
Unet

0
〉

p(x). In the second panel, it can be seen that the equilibrium
free energy difference is invariant with respect to k and increases with higher precision β. Lastly, in the
third panel, we plot the average dissipated utility

〈
Udiss〉

p(x) that measures how much utility is lost
due to the limited number of available samples. The highest dissipation occurs for high β and few
samples k because such a high-precision decision-maker can potentially obtain high utility, but the
limited amount of samples restrain it. In the following, we consider both a Jarzynski-like relation and
a fluctuation theorem valid for a fixed prior.

Jarzynski Equality for Decision-Making with Fixed Prior p0

For a fixed prior, it can readily be shown that the following relation is valid:

〈
eβUnet

0 (x)
〉

p(x)
= eβ∆F. (23)

To illustrate the validity of Equation (23), we simulated a decision-maker that faces T times the
same two decision problems from Figure 4A. We can estimate the left-hand side of Equation (23)
with the empirical average 1

T ∑i exp(βUnet
0 (xi)) with the T trajectories of decisions, where xi ∼ p(x).

In the top row of Figure 4C, we show the empirical average converging to exp(β∆F) (as expected by the
law of large numbers) depending on the number of simulated trajectories T and precision β, empirically
validating Equation (23). In the bottom row, we show how the second law for decision-making
is fulfilled as the average net utility is less than the equilibrium free energy, thus satisfying the
inequality (17).

Crooks’ Fluctuation Theorem for Decision-Making with Fixed Prior p0

For the fixed prior, it can readily be shown that the following fluctuation relation holds:

p̃(x)
peq(x)

= eβ(∆F−Unet
0 (x)) = eβUdiss(x) (24)

where peq(x) := ∏N
n=1 peq(xn|tn) is the optimal equilibrium distribution over trajectories x. Note in

this case that the probability distribution of the backward process p†(x) coincides with the optimal
equilibrium distribution p†(x) = peq(x) because of the independence of the decision problems. More
specifically, the original Crooks theorem for decision-making from Equation (20) is valid only when the
backward process starts in equilibrium. In our episodic task, all decision problems are independent,
which makes the starting equilibrium distributions for all the backward processes coincide with the
posterior equilibrium distributions of the forward process.

The fluctuation relation (24) for episodic tasks adopts a different meaning than the conventional
relation. Specifically, the ratio between probabilities is now between the probability of observing
a trajectory of actions when having finite time to make a decision (a sequence of non-equilibrium
probabilities) and the probability of observing the same trajectory when having infinite time (a sequence
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of equilibrium probabilities). This ratio is governed by the exponential of the dissipated utility Udiss(x)
similarly to the original Crooks equation.

Equation (24) can be rewritten by re-arranging the terms and averaging over p(x) as

1
β

DKL (p(x)||peq(x)) =
〈
Udiss(x)

〉
p(x)

.

Consequently, we see that purely from the trajectories of actions, we can obtain the average
dissipated utility. We can test this relation in human experiments by comparing the trajectories
of actions in two different conditions, first when having finite time and second when having as
much time as needed. Then, from the probabilities of action trajectories, we can extract the average
dissipated utility.

4.1.2. Jarzynski and Crooks Relations for Deliberating Continuous Decisions

Since many decision tasks take place in the continuous domain (for example, sensorimotor tasks),
we now consider continuous state space problems. In particular, we repeat the same analysis as in
the previous section by validating our Jarzynski equation, but this time in the continuous domain.
Moreover, in this example, we allow for adaptive changes in the prior, such that the prior in one trial is
equal to the posterior of the previous trial. In the following, we model decision-making as a diffusion
process with Langevin dynamics that stops after a certain time t and emits an action x. The diffusion
process uses gradient information to find the optimum utility and will converge to an equilibrium
distribution for t → ∞. In our example, we will employ quadratic utility functions that allow for
a closed form solution of the non-equilibrium probability density that changes over time.

Let x(t) ∈ R be the dynamics of computation that a decision-maker carries out when deliberating.
The differential equation that describes the dynamics is:

∂x
∂t

= α
∂U(x)

∂x
+ αξ(t) (25)

where ξ(t) is white Gaussian noise with mean 〈ξ(t)〉 = 0 and correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′).
Note that Equation (25) is closely related to learning algorithms that use gradient information such as
Stochastic Gradient Descent (SGD). These algorithms find the minimum of a cost function by taking
steps in the state space in the opposite direction of the gradient. Here, we see that the learning rate
corresponds to the parameter α, which, in contrast with plain GD, not only multiplies the gradient, but
also the noise term.

Equation (25) gives the dynamics of the decision-making process in terms of a stochastic
differential equation, which can equivalently be expressed by the evolution of the probability p(x, t)
described by the Fokker–Planck equation [56]:

∂p(x, t)
∂t

= −αp(x, t)
∂2U(x)

∂x2 − α
∂U(x)

∂x
∂p(x, t)

∂x
+ Dα2 ∂2 p(x, t)

∂x2 . (26)

In order to compute the net utility, we need the probability of the non-equilibrium distribution up
to a desired time t; thus, we need to solve the Fokker–Planck equation. For quadratic utility functions
Uy(x) = −(ayx2 + byx) with coefficients ay and by for environment y and initial Gaussian distribution
with mean µ0 and variance σ2

0 , the solution is (see Appendix):

p(x, t) =
1√

2πσ2(t)
e
−(x−µ(t))2

2σ2(t) (27)
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with:

σ2(t) =
α2D
2c

(
1− e−2ct

)
+ σ2

0 e−2ct

µ(t) = e−ctµ0 −
b1

2a1
(1− e−ct)

where c = 2αa1, and we assumed that the prior strategy is Gaussian distributed with mean µ0 and
variance σ2

0 . The precision parameter relates to the other parameters with the relation β = 2α
D , which

means that the higher the α, the more we take into account the gradient leading to a higher β, and the
lower the noise D, also the higher β.

Following a similar approach as in the previous section, we expose a decision-maker to two utility
functions given by U1(x) = 0.2x2 − 0.4x− 0.8 and U2(x) = 0.4x2 − 1.8x + 1.025 shown in Figure 5A.
The prior for the first utility is given by µ0 = 0 and σ2

0 = 1. In Figure 5B, we show the net utility,
equilibrium free-energy differences and dissipated utility (according to Equations (18) and (19)) for
different values of β and number of steps k; corresponding to time t = k∆t in Equation (27) for a given
reference ∆t. In Figure 5C, we show the convergence of the Jarzynski term towards the true equilibrium
free energy difference term depending on the number of trajectories to make the estimation. We can
see on the bottom row that the second law for decision-making represented by the inequality (17)
is fulfilled.
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Figure 5. Langevin dynamics simulations. (a) In blue, the different utility changes ∆U1 and ∆U2, in red
the prior p0 and in purple the posterior for β = 0.5; (b) We show for different β and time t = k∆t
directly depending on k, (left) the average net utility, (middle) the free energy difference and (right) the
average dissipated utility; (c) top panels: convergence of the empirical Jarzynski estimate depending
on the number of trajectories T using different β and different numbers of update steps k. Bottom
panels: the associated expected net utility gain, which in the limit T → ∞ is lower than the free energy
difference (horizontal light red line). With these simulations, we validate Equation (21).

5. Discussion

In this paper, we highlighted the similarities between non-equilibrium thermodynamics and
bounded rational decision-making in the case of agents that can deliberate before selecting an action
and agents that cannot. Additionally, we derived a novel Jarzynski equality and a Crooks fluctuation
theorem for decision-making scenarios with deliberation. We have shown how to use Jarzynski’s and
Crooks’ equations in different scenarios to extract relevant variables of the decision-making process
such as the equilibrium free energy difference, the average dissipated utility and the action-path
probabilities for both equilibrium posterior distributions and distributions of the backward-in-time
protocol. We have provided a number of examples for the no-deliberation and deliberation scenario,
such as one-step lag dynamics, discrete choice tasks and continuous decision-making tasks that may
be applicable both to cognitive and sensorimotor experiments [57].

In Section 3, we started out by directly translating physical non-equilibrium concepts to
the decision-making domain in the case of decision-makers that cannot deliberate before acting
and therefore lag behind changes in the utility landscape. In analogy to physical systems, we assumed
that such decision-makers adapt to each utility change even though they are lagging behind, i.e.,
even after they have already chosen their action and there is no benefit of this adaptation at the
current time step, but to improve their prior for the next choice. In physical systems, this does not
constitute an issue, because there is a continuous adaptation to the energy gradient at every instant
independent of how time is discretized. However, in the decision-making scenario, we assumed
a single distinguished moment where the action is issued and the utility is evaluated. Therefore:
Why should such decision-makers adapt at all after the action has been selected? Following the
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argument of no-free lunch theorems, there would be no benefit in adapting to arbitrary changes.
Having a closer look at our examples in Section 3.3, it becomes evident that we implicitly assumed
that the utility changes in each step were small, so there is a benefit in adapting the prior for the next
trial. Such assumptions are typically made in learning scenarios, for example the i.i.d. assumption for
inference problems or assumptions that utility changes in each time step are limited to a finite interval
in decision-making problems. However, none of the non-equilibrium relations we discussed necessarily
assume small utility changes. It should therefore be noted that, while the discussed non-equilibrium
relations hold for arbitrary utility changes, in the context of non-deliberative decision-making, we
would have to make additional assumptions such that utility changes in each step are small and can
accumulate so that adaptation is beneficial. Importantly, the appropriateness of adaptation is not
an issue when we assume a deliberation process where adaptation occurs before emitting an action, as
there is a direct benefit of adaptation in the current trial. This is the general decision problem discussed
in Section 4.

While we have considered mainly non-sequential decision-making problems here for simplicity,
the same formalism could also be applied to sequential decision-making problems. In that case,
one would replace the notion that an action corresponds to a discrete or continuous state x with
the notion that an action might consist of choosing an entire trajectory x1:τ . In this case also, the
utility U(x1:τ , t) would be defined over trajectories, and these utilities would change over episodes
t. Again, one would have to assume that the utility function does not change while the trajectory
x1:τ is generated. This corresponds to the fact that we assume that the utility is constant for each
single episode t (cf. Figure 1), while the deliberative decision-maker can, as it were, sample the new
utility function before emitting an action. An example would be finding a trajectory for a pendulum
swing-up or a sequence of actions to navigate a maze. A path integral controller [58] would for
example exactly produce such trajectories. A deliberative decision-maker would sample many such
trajectories until time is up and one trajectory has to be selected, then the utility changes again, and the
path integral controller samples new trajectories that have a different shape in line with the new utility
function. Our assumption that the temporal evolution of the utility function does not depend on the
decision-maker’s action implies that consecutive episodes are independent and can have different
utility functions, but the decision-maker can carry its prior from one episode over to the next.

Recently, there has been a renewed interest in modelling decision-making with computational
constraints [59,60] both in the computer science and the neuroscience literature, where there is
growing evidence that the human brain might exploit sampling [22,61–65] for approximate inference
and decision-making [66,67]. Such sampling models have been used for example to explain
anchoring biases in choice tasks, because MCMC has finite mixing times and therefore exhibits
a dependence on the prior distribution [68,69]. In particular, the idea of using the (expected) relative
entropy or the mutual information as a computational cost has been suggested several times in the
literature [2,3,23,33,70–72]. In [33] and similarly in [20], the authors derive the relative entropy
as a control cost from an information-theoretic point of view, under axioms of monotonicity and
invariance under relabelling and decomposition. In other fields such as robotics, the relative
entropy has also been used as a control cost [18,21,25,58,73,74] to regularize the behaviour of the
controller by penalizing controls that are far from the uncontrolled dynamics of the system or to
deal with model uncertainty [75]. Naturally, questions regarding the generality of entropic costs as
information-processing costs and their potential relation to algorithmic space-time resource constraints
carry over to the non-equilibrium scenario and remain a topic for future investigations.

So far, only very few studies have established connections between non-equilibrium
thermodynamics and decision-making in the literature, even though non-equilibrium analysis might
provide a promising way to relate mechanistic dynamical models to conceptually simpler utility-based
models that are often employed as normative models. Jarzynski-like and Crooks-like relations have
been noted in the economics literature in gambling scenarios [76] and when studying the arrow of time
for decision-making [77,78]. We reported preliminary results for the one-step delayed decision-making
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in [79,80]. In the machine learning literature, generalized fluctuation theorems have recently been used
in [81] to train artificial neural networks with efficient exploration. In general, fluctuation theorems
and Jarzynski equalities allow one to estimate free energy differences, which are very important in
decision-making because the free energy directly relates to the value function, which is a central
concept in control and reinforcement learning. Fluctuation theorems typically make the assumption
that the temperature parameter is constant (isothermal transformations) and that initial states are in
equilibrium. In our paper, we also made these assumptions, which may limit the generality of our
results. Loosening these restrictions (cf. for example [82,83]) might be an important next step for future
investigations of non-equilibrium relations in the decision-making context.

Regarding the connection between predictive power and dissipation, [24] has found that
non-predictive systems are also systems that are highly dissipative. In [24], the authors consider
the effects of a stochastic driving signal x mediated by an energy function E(x, s) on the state s of
a Markov system with fixed transition probability p(s′|s, x). They regard the Markov system as
a computing device and study how much information the state s carries about the driving signal x.
They find a fundamental relationship between dissipation (energy efficiency) and lack of predictive
power. Their results concern non-equilibrium trajectories when x changes at every time point.
The intuition is that when a system naturally moves in the direction of a changing energy landscape,
then this is not only more efficient energetically, but it can also be interpreted in the sense that the
system predicts the changing energy landscape. Once the system equilibrates, the energy landscape
(i.e., the external variable x) does not change any more, and the mutual information between state and
external variable xvanishes, as does the dissipation. Therefore, the equilibrium state is of no particular
interest in this analysis. If one were to apply this framework to a decision-maker, the decision-maker
would be represented by the system with the state s, and the driving signal x would be the input
provided to the decision-maker. One important difference between [24] and our formulation is that
in [24], the driving signal x is stochastic and is sampled from a stationary probability distribution,
whereas in our formulation, we assume a fixed deterministic driving signal (the sequence of utility
functions) without an underlying probability distribution. Assuming such a fixed input does prohibit
an analysis in terms of mutual information between s and x. Nevertheless, it would be straightforward
to allow for stochastic changes in the utility function also in our formulation, and the results of [24]
would be applicable and complementary. While in [24], the equilibrium is of no particular interest,
in our analysis, we are interested in the approach to equilibrium and in the resources spent on the
way, that is the time that is spent during deliberating where the environment is assumed to be roughly
constant, i.e., it does not change too much on the short time scale of deliberating, then the environment
changes again, and the decision-maker can adapt to this change by deliberation (in contrast, in [24],
the decision-maker follows a fixed dynamics and does not adapt).

In conclusion, the results presented here bring the fields of stochastic thermodynamics and
decision-making closer together by studying decision-making systems as statistical systems just
like in thermodynamics. In this analogy, the energy function in physics corresponds to the utility
functions in decision-making. Importantly, the statistical ensembles of both decisions and physical
states can be conceptualized as non-equilibrium ensembles that reach equilibrium after a finite time
adaptation process.
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Appendix A. Dissipation for a One-Step Decision Problem

In the following, we derive Equation (16) from Equation (9) for a one-step decision problem.
Let x = (x0, x1). The probabilities p(x) of the forward trajectory are p(x) = peq

0 (x0)p(x1|x0, t1), and
the probabilities p†(x) of the backward trajectory are p†(x) = peq

1 (x1)p†(x0|x1, t0). The detailed

balance condition allows us to re-write p†(x0|x1, t0) as p†(x0|x1, t0) = eβU(x0,t0)

eβU(x1,t0)
p(x1|x0, t0) with

eβU(x0,t0) = Z0 peq
0 (x0) and eβU(x1,t0) = Z0 peq

0 (x1). With our notation in the deliberation scenario,
x1 is the decision, and x0 is arbitrary and can be ignored. This effectively implies independence

between x0 and x1, such that p(x1|x0, t1) = p(x1|t1) and p†(x0|x1, t0) =
peq

0 (x0)

peq
0 (x1)

p(x1|t0) = peq
0 (x0).

Substituting the previous identities in the KL-divergence, we obtain:

1
β

DKL

(
p(x)||p†(x)

)
=

1
β ∑

x0,x1

peq
0 (x0)p(x1|t1) log

peq
0 (x0)p(x1|t1)

peq
1 (x1)peq

0 (x0)

=
1
β

DKL

(
p(x1|t1)||peq

1 (x1)
)
=

1
β

DKL

(
p̃(x)||peq

1 (x)
)

where we have made the replacement p(·|t1) = p̃(·) to obtain the notation from Figure 1.

Appendix B. Fokker-Planck Solution of Continuous Decision-Making Problem

A solution of the Fokker-Planck Equation (26) for known initial state x0 can be found in [84].
Here, we sketch the solution when the initial state is Gaussian distributed.

Consider the following dynamics:

dx
dt

= A(x, t) + B(x, t)ξ(t)

where A(x, t) = α ∂U1
∂x , B(x, t) = α. When imposing a quadratic utility function:

Uy(x) = −(ayx2 + byx)

for an environment indexed by y = 1, the associated Fokker–Planck equation is

∂P
∂t

= 2αa1
∂

∂x
xP + αb1

∂

∂x
P + α2D

∂2

∂x2 P.

We will solve this equation by first taking the Fourier transform in the variable x and then solving
by the method of characteristics. The Fourier transform is:

∂P̂
∂t

=− cs
∂P̂
∂s
− α2Ds2P̂ + αb1isP̂

=− cs
∂P̂
∂s

+ P̂
(

c2is− α2Ds2
)

where c = 2αa1 and c2 = αb1. Now, applying the method of characteristics:

dP̂
dx

=
∂P̂
∂s

ds
dx

+
∂P̂
∂t

dt
dx

we obtain that dt = dx, s = s0ect, and applying these relations, we get:

dP̂
dx

=
dP̂
dt

= P̂
(

c2is0ect − α2Ds2
0e2ct

)
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Integrating over t between t = 0 and t = t′, we have that

dP̂
P̂

= dt
(

c2is0ect − α2Ds2
0e2ct

)

log P̂
∣∣∣
P̂(s,t′)

P̂(s0,t=0)
=

c2is0

c
ect − α2D

2c
s2

0e2ct
∣∣∣
t=t′

t=0
.

Assuming a Gaussian distribution as a boundary condition with mean µ0 and variance σ2
0 ,

the Fourier transform for the boundary is:

P̂(s, t = 0) = exp

{
−σ2

0
2

s2
0 − is0µ0

}
.

Then, the solution in frequency space is:

P̂(s, t) = exp
{
−α2D

2c
s2(1− e−2ct)− σ2

0 s2e−2ct + is
b1

2a1
(1− e−ct)− ise−ct

}

= exp
{

s2 f1(t)− is f2(t)
}

with f1(t) = − α2D
2c
(
1− e−2ct)− σ2

0
2 e−2ct and f2(t) = e−ctµ0 − b1

2a1
(1− e−ct). Transforming back to the

signal domain, we obtain:

σ2(t) = −2 f1(t) =
α2D

c

(
1− e−2ct

)
+ σ2

0 e−2ct

µ(t) = f2(t) = e−ctµ0 −
b1

2a1
(1− e−ct).
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