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Abstract
Cancer has traditionally been hailed a genetic disease, dictated by successive genetic aberrations which alter
gene expression. Yet, recent advances in molecular sequencing technologies, enabling the characterisation
of cancer patient phenotypes on a large scale, have highlighted epigenetic changes as a hallmark of cancer.
Epigenetic modifications, including DNA methylation and demethylation and histone modifications, have
been found to play a key role in the pathogenesis of a wide variety of cancers through the regulation of
chromatin state, gene expression and other nuclear events. Targeting epigenetic aberrations offers
remarkable promise as a potential anti-cancer therapy given the reversible nature of epigenetic changes.
Hence, epigenetic therapy has emerged as a rapidly advancing field of cancer research. A plethora of
epigenetic therapies which inhibit enzymes of post-translational histone modifications, so-called ‘writers’,
‘erasers’ and ‘readers’, have been developed, with several epigenetic inhibitor agents approved for use in
routine clinical practice. Epigenetic therapeutics inhibit the methylation or demethylation and acetylation
or deacetylation of DNA and histone proteins. Their targets include writers (DNA methyltransferases
[DNMT], histone acetyltransferases [HAT] and histone deacetylases [HDAC]) and erasers (histone
demethylases [HDM] and histone methylases [HMT]). With new epigenetic mechanisms increasingly being
elucidated, a vast array of targets and therapeutics have been brought to the fore. This review discusses
recent advances in cancer epigenetics with a focus on molecular targets and mechanisms of action of
epigenetic cancer therapeutics.
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Introduction And Background
Cancer is a leading cause of avoidable premature death in the United Kingdom (UK) [1]. One in two people
born after 1960 can expect to be diagnosed with cancer in their lifetime, with 367,167 new cancer cases and
164,901 cancer deaths occurring nationally each year in the UK [2]. Although risk factors vary between
cancer types, cancer is primarily a genetic disease arising through successive genetic aberrations. Through
projects such as the International Cancer Genome Consortium and The Cancer Genome Atlas Program, the
consequences of cancer gene mutations are emerging. However, the role of the epigenome in reshaping gene
expression profiles has also come to light (Figure 1). This review aims to highlight recent advances in our
understanding of cancer epigenetics and the key targets for and mechanisms of epigenetic cancer
therapeutics.

FIGURE 1: The antagonistic role of writers and erasers changes
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chromatin structure and regulates gene transcription, activating and
silencing oncogenes and tumour suppressors
In the nucleus, the human genome is highly organised into a tightly packaged DNA-protein complex called
chromatin, which consists of basic units called nucleosomes. Nucleosomes comprise 147 base-pairs of DNA
wrapped around an octamer of histone proteins (two H2A-H2B dimers and one H3-H4 tetramer), which is
covalently modified by enzymes called ‘writers’, ‘erasers’ and ‘readers’. These epigenetic machines, which
are the target of different anti-cancer drugs, are responsible for maintaining, removing and binding to
epigenetic modifications to direct epigenetic effects. Certain families of writers and erasers act
antagonistically to orchestrate changes in transcriptionally active euchromatin and transcriptionally silent
heterochromatin

Adapted from [3].

DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, histone deacetylase; HDM, histone
demethylase; HDMI, histone demethylase inhibitor; IDH, isocitrate dehydrogenase; TET, ten-eleven
translocation protein

Review
Table 1 provides a list of select epigenetic cancer therapeutics under development. Despite advances in
cancer epigenetics, only two epigenetic cancer therapeutics are currently recommended for the treatment of
cancer patients by the National Institute of Health and Care Excellence (NICE) in the UK. These include the
DNA methyltransferase (DNMT) inhibitor 5′-azacytidine (Aza; Vidaza®) for myelodysplastic syndrome and
certain types of leukaemia [4], and the histone deacetylase (HDAC) inhibitor panobinostat (LBH589) for
multiple myeloma [5]. In addition, the enhancer of zeste homolog 2 (EZH2) inhibitor tazemetostat (EPZ-
6348) has been granted orphan drug approval in Europe for large B-cell lymphoma by the European
Medicines Agency [6]. In the United States, however, nine epigenetic therapeutics have been approved by the
U.S. Food and Drug Administration, including two DNMT inhibitors (DNMTIs), four HDAC inhibitors, two
isocitrate dehydrogenase (IDH) inhibitors, and, recently, the EZH2 inhibitor tazemetostat [7].

Group Target Compound Cancer

DNMT
inhibitor

DNMT1
5-aza-2′-deoxycytidine (5-aza-
CdR; decitabine, Dacogen®)

Myelodysplastic syndrome, acute myeloid leukaemia

DNMT1
5-azacytidine (5-aza-CR; Aza;
Vidaza®)

Myelodysplastic syndrome, acute myeloid leukaemia

DNMT1, DNMT3,
cytidine
deaminase

Zebularine (NSC309132; 4-
deoxyuridine)

Hematologic and solid cancers

DNMT1 Guadecitabine (SGI-110) Hematologic and solid cancers

HAT
inhibitor

p300 C646 Prostate cancer

p300, CBP Curcumin Multiple myeloma, breast cancer, pancreatic cancer

p300, PCAF Anacardic acid NA

p300, PCAF Garcinol NA

HDAC
inhibitor

Class I, II, IV
HDAC

Sulforaphane (SFN) Leukaemia, colorectal cancer, prostate cancer, other solid tumours

Class I HDAC Domatinostat (4SC-202) Leukaemia, colorectal cancer

Class I, II, IV
HDAC

Resminostat (4SC-201,
RAS2410)

Leukaemia, colorectal cancer, head and neck cancer, hepatocellular carcinoma

Class I, II, IV
HDAC

Panobinostat (LBH589)
Cutaneous T-cell lymphoma, Hodgkin’s lymphoma, breast cancer, head and
neck cancer, prostate cancer, colorectal cancer, thyroid cancer

Class I, II, IV
HDAC

Vorinostat (SAHA, Zolinza®)
Cutaneous T-cell lymphoma, leukaemia, prostate cancer, bladder cancer, breast
cancer

Class I, II, IV
HDAC

Romidepsin (depsipeptide,
FK228)

Cutaneous T-cell lymphoma

Class I HDAC1, 9,
11

Entinostat (MS-275, SNDX-
275)

Hodgkin lymphoma, kidney cancer, breast cancer

Follicular lymphoma, Hodgkin's lymphoma and acute myelogenous leukaemia,
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Class I, IV HDAC Mocetinostat (MGCD0103) chronic lymphocytic leukaemia, myelodysplastic syndrome, solid cancers

Class I, II, IV
HDAC

Pracinostat (SB939) Myelodysplastic syndrome, acute myeloid leukaemia

Class I, II, IV
HDAC

Belinostat (PXD101) Leukaemia, colorectal cancer, lung cancer, pancreatic cancer

HDM
inhibitor

HDAC-LSD1 4SC-202 Hematologic malignancies

JmjC domain
proteins

GSK-J1, GSK-J4 NA

JMJD3 GSK-J1 NA

KDM5B EPT-103182 Hematologic and solid cancers

LSD1 GSK2879552 Acute myeloid leukaemia, small cell lung cancer

LSD1 GSK354, GSK690 Acute myeloid leukaemia

LSD1 NCD25, NCD38 Myelodysplastic syndrome

LSD1 ORY-1001 Acute leukaemia

LSD1 Tranylcypromine Myelodysplastic syndrome, acute myeloid leukaemia

HMT
inhibitor

DOT1L EPZ00477 Hematologic malignancies

DOT1L Pinometostat (EPZ-5676) Hematologic malignancies

DOT1L SGC0946 Leukaemia

EZH1 UNC1999 Diffuse large B-cell lymphoma

EZH2 3-Deazaneplanocin A (DZnep) Acute myeloid leukaemia

EZH2 GSK126 B-cell lymphoma

EZH2 Tazemetostat (EPZ-6348) B-cell lymphoma

EZH2 EI1 Diffuse large B-cell lymphoma

EZH2 EPZ005687 EZH2 mutant non-Hodgkin lymphoma

EZH2 GSK343 Ovarian

EZH2 DZNep Breast, colon, prostate

G9a BRD4770 Pancreatic

G9a UNC0638 Acute myeloid leukaemia, breast

G9a BIX-01294 Leukaemia, bladder

PRMT1 AMI-408 Acute myeloid leukaemia

PRMT1/3/4/6/8 MS023 NA

PRMT5 GSK3326595 Solid tumours, non-Hodgkin lymphoma

SUV39H1 Chaetocin Lymphomas, leukaemia, colorectal cancer, lung cancer

IDH
inhibitor

IDH1 Ivosidenib (AG-120; Tibsovo®) Acute myeloid leukaemia, myelodysplastic syndrome

IDH2 Enasidenib (AG-221; Idhifa®) Acute myeloid leukaemia, myelodysplastic syndrome

TABLE 1: Select epigenetic cancer therapeutics
Adapted from [8].

DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, histone deacetylase; HDM, histone demethylase; HMT, histone
methyltransferase; IDH, isocitrate dehydrogenase; DNMT1, DNA (cytosine-5)-methyltransferase 1; DNMT3, DNA (cytosine-5)-methyltransferase 3;
p300, E1A binding protein p300; CBP, CREB-binding protein; PCAF, P300/CBP-associated factor; LSD1, lysine-specific histone demethylase 1A;
JMJD3, histone H3 lysine 27 (H3K27) demethylase KDM6B; KDM5B, lysine-specific demethylase 5B (also known as histone demethylase JARID1B);
DOT1L, histone H3K79 methyltransferase; EZH1, enhancer of zeste homolog 1 (histone-lysine N-methyltransferase); EZH2, enhancer of zeste
homolog 2 (histone-lysine N-methyltransferase);  G9a, protein-lysine methyltransferase; PRMT1/3/4/5/6/8, protein arginine N-methyltransferase
1/3/4/5/6/8; SUV39H1, histone-lysine N-methyltransferase
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Therapeutics targeting DNA methylation and demethylation
The writers and erasers responsible for regulating DNA methylation include DNMTs and ten-eleven
translocation (TET) proteins. DNMTs (DNMT1/2/3) transfer methyl groups from the methyl donor S-
adenosyl methionine (SAM) to the 5’ position of cytosine, forming 5-methylcytosine (5mC). Although
deposition of 5mC in the gene promoter is recognised as a cause of gene repression, gene activation may
result from 5mC deposition in hypermethylated promoters and enhancer elements [9]. Generally, however,
DNA methylation of ‘CpG islands’ (CGIs), which are highly concentrated clusters of cytosine-phosphate-
guanosine (CpG) dinucleotides, restricts binding of transcription factors at promoters, while promoter CGI
hypomethylation allows transcription factor binding and gene activation.

Dysregulation of these processes occurs in cancer. A number of anti-cancer drugs have been developed that
target DNMTs. DNMTIs, such as the cytosine analogues Aza (Vidaza) and 5-aza-2′-deoxycytidine
(decitabine; Dacogen®), and the second-generation hypomethylating prodrug SGI-110 (guadecitabine) are
classed as DNA hypomethylating agents. Their mechanism of action involves incorporation into DNA and
irreversible binding to DNMT1, leading to DNA-DNMT1 adduct formation, DNMT1 degradation and,
consequently, DNA demethylation (Figure 2). Aza also incorporates into RNA, more efficiently than DNA,
following phosphorylation by uridine-cytidine kinase into triphosphates, resulting in polyribosome
disassembly, defective methylation and acceptor function of transfer RNA and translation inhibition [10,11].
DNMTIs reduce aberrant hypomethylation and reactivate of silenced genes, thus restoring the function of
tumour suppressor genes and DNA repair genes. In addition to the reactivation of tumour suppressor genes,
DNMTIs enhance tumour immunogenicity through the upregulation of major histocompatibility complex
(MHC) class I, leading to the recruitment of macrophages, natural killer (NK) cells and CD8+ T cells that
secrete a variety of chemotactic and cytotoxic cytokines [12].

FIGURE 2: Mechanism of action of DNA methyltransferase inhibitors
5′-azacytidine (Aza; Vidaza) and 5-aza-2′-deoxycytidine (decitabine; Dacogen) incorporate into DNA and
irreversibly bind to DNMT1, leading to DNA-DNMT1 adduct formation, DNMT1 degradation and,
consequently, DNA demethylation and thus leading to the re-expression of tumour suppressor genes with
downstream anti-cancer effects.

DNMT1, DNA methyltranferase-1
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In contrast to DNMTs, erasers, such as TET proteins, demethylate DNA. TET proteins include a family of
enzymes (TET1/2/3) that utilise Fe(II) and 2-oxoglutarate (alpha-ketoglutarate) as cofactors to oxidise 5mC
to 5-hydroxymethylcytosine (5hmC). 5hmC formation alters transcriptional activation of gene expression.
TET proteins also convert 5hmC to 5-formylcytosine (5fC) or 5-carboxylcytosine (5caC) before an enzyme
called thymine-DNA glycosylase excises 5fC and 5caC from DNA. TET protein function is supported by IDH
enzymes, which provide the essential 2-oxoglutarate cofactors through conversion of isocitrate to 2-
oxoglutarate, and, together, these mechanisms complete DNA demethylation [13].

IDH1 and IDH2 mutations are present across several cancers including in 5-16% and 6-19% of acute myeloid
leukaemia (AML), respectively [14]. TET2 loss-of-function mutations are present in 16% of AML [15].
Anticancer drugs that alter IDH and TET enzyme activity have been developed, including the IDH inhibitors
AG-120 (ivosidenib) and AG-221 (enasidenib). These drugs inhibit IDH1/2-mediated conversion of α-
ketoglutarate to 2-hydroxygluterate [16]. 2-hydroxygluterate is an oncometabolite that competitively
inhibits TET enzymes [17], which leads to loss of 5hmC and is associated with carcinogenesis across several
malignancies (Figure 3) [18]. IDH inhibitors induce primary AML cell differentiation [19]. In clinical trials,
ivosidenib induced durable remission [20], while enasidenib was found to be well tolerated and induced
responses in AML patients [21].

FIGURE 3: Mechanism of action of IDH inhibitors
DNMT enzymes methylate cytosine bases (5-methylcytosine [5mC]), while TET proteins sequentially oxidise
5mC to 5-hydroxymethylcytosine (5hmC), which is ultimately excised from DNA, leading to DNA
hypomethylation. IDH1/2 enzymes convert α-ketoglutarate to 2-hydroxygluterate, with the latter inhibiting the
function of TET enzymes. IDH inhibitors AG-120 (ivosidenib) and AG-221 (enasidenib) reduce the
accumulation of 2-hydroxygluterate, relieving inhibition of TET-dependent DNA demethylation, leading to
downstream anti-cancer effects.

DNMT, DNA methyltransferase; TET, ten-eleven translocation; IDH, isocitrate dehydrogenase

Therapeutics targeting modifications in histone tails
Writers responsible for covalent modifications on charged NH2 termini (tails) of histones include histone
acetyltransferases (HATs; GCN5, MYST, p300/CBP families) and histone methyltransferases (HMTs; SET
[(Su(var)3-9, enhancer of zeste, trithorax)] domain containing and non-SET-domain containing lysine-
specific and arginine-specific families). In addition to acetylation and methylation, histone modifications
include phosphorylation, ubiquitylation, sumoylation and biotinylation. The type and location of these
modifications alters chromatin structure and gene expression. Gene-activating histone modifications
include acetylation of lysine 27 in histone H3, methylation of lysines 4 and 36 in histone H3, and
demethylation of lysine 9 of histone H3. Transcriptionally repressive histone modifications include
methylation of lysine 9 and 27 in histone H3 and sumoylation of lysine 59 in histone H4.

Some histone modifications (H3K27 methylation) form docking sites for interactions with polycomb group
proteins (PcGs). Once docked, polycomb repressive complex 1 (PRC1) compacts chromatin, causing the
physical hinderance of RNA polymerase II, repressing gene transcription. PRC1 has E3 ligase activity, while
polycomb repressive complex 2 (PRC2) has HMT activity. One of the best characterised PRC2 subunits is
EZH2, which is involved in the methylation of lysine 27 on histone H3. PcG-target genes often contain both
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repressive (H3K27me3) and active (H3K4me3) modifications [22]. Thus, PcG-target genes exist in a poised
ready-to-transcribe state with PcGs holding RNA polymerase II at the transcription start site [22].

HATs (e.g. p300/CBP) are classified into type A (nuclear) and type B (cytoplasmic), depending on whether
they acetylate nucleosomal histones or newly translated non-nucleosomal histones, respectively. HATs
transfer acetyl groups from acetyl-CoA donors to the amino group of lysine residues of histones. Acetylation
of an ε-amino group neutralises the charge of lysine residues, reducing interactions between histones and
DNA and making DNA less compact and more accessible to transcription factors. Histone acetylation is
associated with gene activation, while deacetylation silences genes. Anti-cancer drugs that target HATs (HAT
inhibitors) include the small molecule C646, which selectively inhibits p300/CBP, resulting in reduced
acetylation of histone H3 [23]. C646 reduces cell survival and induces cell cycle arrest, mitotic catastrophe
and apoptosis [23,24].

Anti-cancer drugs (HMT inhibitors) have also been developed that target the HMTs EZH2, DOT1-like histone
lysine methyltransferase (DOT1L), euchromatic histone lysine methyltransferase 2 (G9A), the histone-lysine
N-methyltransferase SUV39H1 and protein arginine methyltransferases (PRMT1/3/45/6/8). The EZH2
inhibitor DZNEP reduces H3K27 trimethylation, leading to apoptosis and reduced cell migration (Figure 4)
[25]. GSK343 induces apoptosis by increasing caspase-3 and poly ADP-ribose polymerase expression, induces
autophagy by inhibiting expression of p62 and suppresses cancer stem cell-like phenotypes [26,27]. GSK126
reduces anti-tumour immunity by increasing the number of myeloid-derived suppressor cells, leading to
fewer CD4+ and CD8+ T cells in the tumour microenvironment [28]. DOT1L inhibitors include pinometostat
(EPZ5676), which reduces H3K9 methylation and produces a modest clinical response in a subset of adults
with advanced acute leukaemia [29], although resistance does occur through drug efflux dependent (ABCB1)
and independent mechanisms [30]. The G9A inhibitor BIX01294 inhibits proliferation by downregulating
H3K9me1, H3K9me2, H3K27me1 and H3K27me2 modifications, downregulating the anti-apoptotic protein
Bcl-2 and upregulating the pro-apoptotic proteins Bax, caspase-3 and caspase-9 [31]. Finally, the SUV39H1
inhibitor chaetocin increases production of reactive oxygen species (ROS), upregulates death-receptor genes
and increases expression of CD11b, a surface integrin involved in adhesion interactions with immune cells
[32,33].

FIGURE 4: Mechanism of action of HMTIs
HMTIs inhibit histone methylation by HMTs (e.g. EZH2, DOT1-like histone lysine methyltransferase [DOT1L],
euchromatic histone lysine methyltransferase 2 [G9A]), leading to reduction of repressive histone marks (e.g.
H3K9 and H3K27 methylation) and adoption of an ‘open’ transcriptionally active chromatin state with
downstream anti-cancer effects.

HMTIs, histone methyltransferase inhibitors; HMT, histone methyltransferase

Erasers, such as HDACs and histone demethylases (HDMs), remove histone acetyl and methyl groups from
histones. HDACs are classified as class I (HDAC1/2/3/8), II (HDAC4/5/6/7/9/10), III or IV. Classes I, II and IV
are Zn2+-dependent, while class III is nicotinamide adenine dinucleotide (NAD)-dependent. Dysregulation
of HDACs causes a global reduction in histone acetylation, which silences tumour suppressor genes. Anti-
cancer drugs that target HDACs (HDAC inhibitors) include hydroxamates, benzamides, cyclic peptides and
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fatty acids; many of which target the Zn2+ ion in the HDAC active site. HDAC inhibitors reduce oncogene
transcription and signalling, thereby promoting cell cycle arrest and apoptosis (Figure 5). Hydroxamate
HDAC inhibitors (belinostat and givinostat) reduce cell survival by causing cell cycle arrest through the
induction of p53, induce autophagy and inhibit stemness through the upregulation of differentiation
markers (GFAP, Tuj-1) [34,35]. Novel hydroxamate HDAC inhibitors (CG200745, CUDC-101, CUDC-907)
reduce cell survival by inducing apoptosis through the downregulation of Hippo pathway proteins and the
upregulation of microRNAs (miR-210-3p, miR-509-3p), triggering caspase-dependent degradation of the
promyelocytic leukaemia-retinoic acid receptor alpha (PML-RARA) fusion protein and apoptosis in a Mcl-1,
Bim and c-Myc dependent manner [36-38]. The benzamide HDAC inhibitor chidamide induces mitochondrial
dysfunction, necroptosis and apoptosis [39]. The cyclic peptide HDAC inhibitor romidepsin induces cell cycle
arrest and apoptosis by increasing the acetylation of BCL6 [40]. Finally, the fatty acid HDAC inhibitor AR-42
induces cell cycle arrest and apoptosis by inhibiting the AKT/NFκB pathway [41]. Unlike DNMTIs, HDAC
inhibitor monotherapy offers low clinical efficacy, achieving poor overall response in AML. However,
combination regimens of HDAC inhibitors with DNMTIs, conventional chemotherapy or allogeneic stem cell
transplantation have produced encouraging results. Notably, isozyme-selective HDAC inhibitors offer
improved safety profiles and comparable efficacy to pan-HDAC agents [42].

FIGURE 5: Mechanism of action of HDACIs
HDACIs inhibit the deacetylation of histones by HDACs, leading to an increase in activating histone marks
(e.g. H3K9 and H3K16 acetylation) and adoption of an ‘open’ transcriptionally active chromatin state with
downstream anti-cancer effects.

HDACIs, histone deacetylase inhibitors; HDAC, histone deacetylase

HDM inhibitor anti-cancer drugs have been developed that target the HDMs lysine demethylase 1A
(LSD1/KMD1A) and 5B (KDM5B) as well as JmjC domain-containing proteins. JmjC demethylases are protein
hydroxylases involved in free radical-dependent histone modification reactions [43]. LSD1 inhibitors
(ORY1001, GSK2879552, tranylcypromine) induce cell cycle arrest and apoptosis by regulating the
hexokinase 2 expression and increase the expression of the transcriptional repressor GFI1 as well as the
transcription factor PU.1, thus inducing differentiation [44,45]. However, a recent phase I open-label trial of
the LSD1 inhibitor GSK2879552 was terminated early due to poor disease control and an unfavourable side-
effect profile [46]. JmjC domain-containing protein inhibitors (GSK-J1, GSK-J4) induce apoptosis and inhibit
tumour growth by increasing global levels of repressive trimethylated H3K27 and downregulating cancer-
promoting HOX genes [47,48].

Conclusions
Cancer epigenetics is a highly complex and rapidly evolving field, with many exciting developments that
enhance our understanding of carcinogenesis and disease progression. By examining epigenetic networks,
novel therapeutic approaches can be identified that encompass a wide variety of solid and haematological
cancers. Therapeutics that normalise or disrupt epigenetic aberrations hold promise across several
malignancies, with well-defined clinical efficacy established in distinct clinical settings. Considering the
abundance of epigenetic targets and agents in development, a systematic approach for the identification and
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validation of potential drug targets is essential to optimise drug development and translate the promise of
upcoming epigenetic agents to routine patient management. Future research should focus on achieving a
deeper understanding of epigenetic mechanisms to yield better therapies as well as exploiting therapeutics
that promote global epigenetic normalisation to counteract epigenetic aberrations. These approaches will
enhance the utility of epigenetic drugs, maximising benefits in terms of returns of research investment and
alleviating the burden of cancer on public health.
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