
1Scientific Reports | (2020) 10:366 | https://doi.org/10.1038/s41598-019-57242-9

www.nature.com/scientificreports

Active learning for accuracy 
enhancement of semantic 
segmentation with CNN-corrected 
label curations: Evaluation  
on kidney segmentation in 
abdominal CT
Taehun Kim   1,7, Kyung Hwa Lee1,7, Sungwon Ham1,7, Beomhee Park1, Sangwook Lee   1, 
Dayeong Hong   1, Guk Bae Kim4, Yoon Soo Kyung5, Choung-Soo Kim   6 & Namkug Kim   2,3*

Segmentation is fundamental to medical image analysis. Recent advances in fully convolutional 
networks has enabled automatic segmentation; however, high labeling efforts and difficulty in 
acquiring sufficient and high-quality training data is still a challenge. In this study, a cascaded 3D U-Net 
with active learning to increase training efficiency with exceedingly limited data and reduce labeling 
efforts is proposed. Abdominal computed tomography images of 50 kidneys were used for training. In 
stage I, 20 kidneys with renal cell carcinoma and four substructures were used for training by manually 
labelling ground truths. In stage II, 20 kidneys from the previous stage and 20 newly added kidneys were 
used with convolutional neural net (CNN)-corrected labelling for the newly added data. Similarly, in 
stage III, 50 kidneys were used. The Dice similarity coefficient was increased with the completion of each 
stage, and shows superior performance when compared with a recent segmentation network based on 
3D U-Net. The labeling time for CNN-corrected segmentation was reduced by more than half compared 
to that in manual segmentation. Active learning was therefore concluded to be capable of reducing 
labeling efforts through CNN-corrected segmentation and increase training efficiency by iterative 
learning with limited data.

Image segmentation is a fundamental component of medical image analysis1–3. It is a prerequisite for computer 
aided detection and provides quantitative information for treatment, surgical planning, and 3D printing in med-
icine, etc4,5. Recent advances in deep learning, such as the emergence of fully convolutional networks (FCN) have 
enabled the training of models for semantic segmentation tasks6. Especially, 3D U-Net, which has a contracting 
path and a symmetric expanding path, has been proven to be effective for 3D medical image segmentation7. Some 
authors have proposed novel cascaded architectures such as segmentation-by-detection networks and cascaded 
3D FCN to improve segmentation performance using region proposal network prior to segmentation8–12.

However, the aforementioned methods currently face serious obstacles, such as the difficulty in acquiring suf-
ficient and high-quality training data owing to the scarcity of medical image datasets, variation of human labels, 
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and high labeling efforts and costs. Deep learning architectures require large amounts of input data to train the 
network and avoid overfitting. However, real-world medical images are usually limited, and only trained med-
ical experts can annotate data in most cases. In particular, image segmentation in the cases of rare diseases and 
complex abdominal structures, such as renal cell carcinoma (RCC) and ureters of the kidney, labeling is relatively 
more difficult owing to high anatomical variability. To alleviate the burden of manual annotation, active learning 
frameworks were introduced in several studies13–20. Most authors proposed active learning to build generalizable 
models with the smallest number of additional annotations13–19. Generally, active learning aims to select the most 
informative queries or areas to be labeled among a pool of unlabeled or uncertain samples. Some authors applied 
interactive learning framework incorporating CNNs into a bounding box and scribble-based segmentation for 
generalizability to previously unseen object classes20.

In this study, we propose another active learning framework to reduce labeling efforts as well as increase 
efficiency with limited training data of medical images. The purpose of this study is to verify if segmentation 
accuracy and annotation efficiency can be improved through the use of active learning.

Results
Segmentation results.  Table 1 presents the DSC of five subclasses in each stage and the difference of DSC 
between stages. The average values of DSC for the five subclasses were increased with the completion of each 
stage. Among the aforementioned subclasses, parenchyma segmentation has the highest DSC and the lowest 
standard deviation (SD) values, while RCC demonstrated values of the lowest DSC and the highest SD. In addi-
tion, the final segmentation results in the last stage was superior when compared with the nnU-Net using our 
dataset as described in Table 2.

Comparison of time and root-mean-square between manual and CNN-corrected segmentation.  
The results of the comparison of segmentation time for the five substructures between manual and CNN-corrected 
segmentation are listed in Table 3. CNN-corrected segmentation decreased the time for artery segmentation by 
19 min 8 s, and that of the vein, ureter, parenchyma, and RCC by 12 m 1 s, 19 m 23 s, 8 m 20 s, and 17 m 8 s, respec-
tively. According to the results, the overall segmentation time was reduced by 76 min, which is more than half 
of the time required in manual segmentation. Except for the initial loading of the package, the CNN segmen-
tation took less than 1 s per case. The differences between manual, CNN, and CNN-corrected segmentation by 

Class

DSC (%) P-value

Stage 1 Stage 2 Stage 3
Stage 1 
and 3

Stage 2 
and 3

Artery 44.30 ± 10.12 66.03 ± 8.65 63.56 ± 12.86 0.372 0.704

Vein 72.60 ± 10.39 77.94 ± 8.42 75.00 ± 13.40 0.837 0.873

Ureter 48.04 ± 12.02 60.43 ± 7.66 60.56 ± 8.45 0.088 0.655

Parenchyma 95.83 ± 0.56 96.12 ± 0.72 96.27 ± 0.70 0.697 0.772

Renal Cell 
Carcinoma 11.47 ± 14.63 46.76 ± 30.42 52.55 ± 34.57 0.239 0.131

Total 54.45 ± 30.34 70.65 ± 21.30 71.07 ± 21.65 0.252 0.330

Table 1.  The Dice similarity coefficient (DSC) evaluation.

Time
Manual 
segmentation

CNN-corrected 
segmentation

Artery 41 m 8 s 22 m

Vein 35 m 1 s 23 m

Ureter 24 m 23 s 5 m

parenchyma 26 m 26 s 18 m 6 s

RCC 22 m 8 s 5 m

Total 149 m 6 s 73 m 6 s

Table 2.  Comparison of segmentation time between manual and CNN-corrected segmentation.

Comparison RMS (mm)

Manual and CNN segmentation 2.22 ± 2.06

CNN and CNN-corrected segmentation 2.77 ± 2.77

Manual and CNN-corrected segmentation 0.86 ± 0.80

Table 3.  Root-mean-square (RMS) evaluation from 3D modeling.
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quantitative evaluation in 3D models are presented in Table 3 and Fig. 1. The results of CNN-corrected segmen-
tation are observed to highly correspond with those of manual segmentation, while those of CNN segmentation 
do not.

Discussion
Medical image segmentation is a tedious and labor-intensive task. Although the recent developments in CNNs 
has enabled easy and fast segmentation, segmentation of complex abdominal organs with insufficient medical 
images is still a challenge. In this study, we used a cascaded 3D U-Net with an active learning framework for 
semantic segmentation of RCC and fine substructures of the kidney. Consequently, the network demonstrated an 
improved performance in several respects. First, active learning was found to improve the network by iterative 
learning with limited data for training. The segmentation accuracy increased over the stages, and overall perfor-
mance was reasonable compared with other state-of-the-art segmentation network. Furthermore, it was able to 
reduce the effort required for creating new ground truths from scratch. Just modification from the CNN segmen-
tation was more efficient and timesaving as well as less variable compared to manual annotation.

In this study, the authors used cascaded 3D U-Net architecture for coarse region detection followed by fine 
region segmentation and trained this architecture with active learning. Recent 3D U-Nets have achieved impres-
sive results in medical image segmentation, thereby becoming the most popular networks for semantic segmenta-
tion7. However, some authors developed this network by combining detection modules in a cascading manner8–12. 
Tang et al. proposed a cascade framework comprising a detection module using VGG-16 model followed by a 
segmentation module9. Roth et al. also demonstrated a second-stage FCN in a cascading manner that focused 
more on the target boundary regions10. In their studies, the cascaded network showed a superior performance 
compared to a single 3D U-Net. To validate the performance of proposed method, we compared it with the recent 
competitive network, nnU-Net21. This network had achieved excellent performance in KiTS19 challenge with the 
ability to dynamically adapt to the details of the datasets. However, the result of nnU-Net applied to our dataset 
was inferior than ours. Some of the reasons might be explained by insufficient pre-processing for a dataset and 
that the tuning process for training data had been far different in our dataset.

Active learning framework has been introduced in several studies for segmentation on histology data to 
reduce annotation effort by making judicious suggestions on the most effective annotation areas13–20. Yang et al. 
presented a deep active learning framework by combining FCNs and active learning. In this framework, an anno-
tation suggestion approach directed manual annotation efforts to the most effective annotation areas14. Lubrano 
di Scandalea et al. also proposed a similar framework for the segmentation of myelin sheath from histology data, 
wherein they employed Monte-Carlo Dropout to assess model uncertainty and select samples to be annotated for 
the next iteration17. In this study, active learning was used for the new ground truths to be segmented preliminary 
to manual correction and the network to be iteratively trained with limited data, instead of suggesting the most 
effective annotation area. Our model demonstrated superior performance during the later stages. The DSC value 
in each stage was increased with the completion of each stage, which means that the network improved by itera-
tive learning and the use of additional labels.

CNN-corrected segmentation was found to be more effective when compared to manual segmentation. The 
former can be conducted in a much easier and faster way than manual segmentation. Considering that labeling 
is fundamental but extremely labor-intensive, which makes it difficult to initiate deep learning, this model can 
be considered to be a useful alternative in this regard. In addition, human labels are not always constant in the 
segmentation process due to intra-human and inter-human variabilities. Active learning frameworks may reduce 
this uncertainty by increasing collaboration with the deep learning algorithm, leading to enhanced accuracy.

However, there are several limitations to this study. As the error must be less than 2 mm when the results of 
segmentation are applied to other medical technologies such as 3D printing, virtual reality and augmented real-
ity, the proposed framework is not suitable for direct application without manual correction. Further efforts to 
increase accuracy by increasing the amount of training data and utilizing superior networks to resolve ambigui-
ties22,23, may be required. In addition, further validation using more data and comparison with other segmenta-
tion networks should be performed to verify its stability and efficiency.

Figure 1.  Results of part comparison analysis in 3D models between (a) manual and CNN segmentation, (b) 
CNN and CNN-corrected segmentation, and (c) manual and CNN-corrected segmentation.
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Conclusion
Active learning in semantic segmentation was proven to cause reduction of labeling effort and time using 
CNN-corrected segmentation and also increase training efficiency through iterative learning with very limited 
training data.

Methods
First, we trained the model using a cascaded 3D U-Net with exceedingly small amount of training data and the 
corresponding ground truths were generated by manual labeling at the initial stage. The cascaded architecture 
was designed to improve segmentation performance using region proposal network (RPN) prior to segmentation 
within the available memory of the graphics processing unit (GPU). Second, the results of the additional data 
through the trained network were manually corrected instead of creating new ground truths from scratch. This 
step is called convolutional neural network (CNN)-corrected segmentation, as depicted in Fig. 2. Third, all the 
data initially used and newly added were used again for subsequent training. Figure 2 illustrates the overall pro-
cess of the active learning framework for segmentation.

Dataset acquisition.  A total of 50 kidneys, of which 30 had RCCs and 20 were normal kidneys, from 36 
patients in abdominal computer tomography (CT)-scans (Sensation 16, Siemens Healthcare) with slice thickness 
of 1–1.25 mm each were utilized. There were four types of phases in the CT scans; the non- contrast, renal cortical, 
renal parenchymal and renal excretory phases. We used the renal cortical phase, which enhanced the arteries, 
and classified kidneys into five subclasses such as artery, vein, ureter, parenchyma with medulla, and RCC in 
the case of kidneys with RCC. We excluded kidneys that included any cysts or stones. The Institutional review 
board for human investigations at Asan Medical Center (AMC) approved the retrospective study with a waiver of 
informed consent. The imaging data were de-identified in accordance with the Health Insurance Portability and 
Accountability Act privacy rule.

Cascaded 3D U-Net.  We used a cascaded 3D U-Net architecture, which replaced the first RPN in the study 
of Tang et al.9 into 3D U-Net7, which shows superior accuracy in the detection of the region of interest (ROI) 
of the kidney in the abdominal CT. The 3D U-Net (Fig. 3) can be divided into two main sections. The left side 
reduces the number of dimensions and the right side extends to the original number of dimensions. The two sides 
consist of convolution and up or down sampling layers. Down-sampling was used by max pooling (3 × 3 × 3). The 
prominent feature of 3D U-Net is that it has a concatenation function to the left and to the right. The concatena-
tion results lead to an improved segmentation by preventing the loss of information.

Cascaded 3D U-Net was separately trained in an end-to-end manner. The ROI was determined as cuboidal 
bounding box around the kidney after first U-Net module. Subsequently, second U-Net module for final segmen-
tation was trained to make the mask for 5 subclasses of the kidney. Each input image was added with a Gaussian 
noise. The errors were calculated using the dice similarity coefficient (DSC), same as that in Eq. (1). The loss 

Figure 2.  Workflow of active learning framework.
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function, denoted by dice loss (DL), was defined as Eq. (2) in each 3D U-Net. VGT and VCNN were defined as the 
volume of ground truth and CNN segmentation, respectively.

DSC (V , V )
2 V V
V V (1)

GT CNN

GT CNN
GT CNN

∩=
+

∩= −
+

DL 1
2 V V
V V (2)

GT CNN

GT CNN

Active learning.  In stage I, 5 subclasses of the 20 kidneys including artery, vein, ureter, parenchyma, and 
RCC were manually delineated as ground truths for initial training. After stage I, the ground truths of new data 
for next stage were prepared by manual correction on the results from CNN segmentation, which was referred 
to as CNN-corrected segmentation. In stage II, 16 kidneys in the previous stage were reused for training, with 
new data including 8 kidneys with RCCs and 8 normal kidneys shown as Fig. 4. After stage II, the results of CNN 
segmentation for the new data were manually amended for the next stage, as in stage I. Finally, in stage III, 40 
kidneys were used for training, and 10 kidneys were used for testing. The results of all the aforementioned stages 
were used for accuracy evaluation. The manual and CNN-corrected segmentations were conducted using Mimics 
software (Mimics; Materialise, Leuven, Belgium).

Experimental settings.  The model was executed in Keras 2.2.4 with Tensorflow 1.14.0 backend and trained 
with a GPU of NVIDIA GTX 1080 Ti. Our cascade method generally requires a large number of epochs in both 
steps. In the first stage, the training was saturated at about 150 epochs, due to the small number (N = 20) of data-
sets. The second and third stages required 300 epochs due to increased numbers (N = 40, and 50) of datasets. In 
addition, Adam optimizer with learning rate of 10−5, weight decay of 0.0005, a momentum of 0.9, the training 
loss as average dice coefficient loss, batch size of 1 was used. For testing the overfitting of the model, the difference 
of overall DSC accuracies between validation and test datasets of the final model were 6.17 which demonstrated 
that this model is not overfit.

Evaluation and statistical analysis.  To observe whether the performance of the network improves or not 
through active learning, we investigated the DSC in each stage and compared them using the paired t-test between 
stages 1 and 3, and stages 2 and 3, using SPSS software (version 25.00; IBM). In addition, to evaluate the effect of the 

Figure 3.  Data numbers in each stage of active learning.

Figure 4.  3D U-Net architecture.
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proposed method, we compared it with more recent network, no-new-U-Net (nnU-Net) introduced by Isensee et al.21. 
This network won the first place in Kidney Tumor Segmentation Challenge (KiTS19) on Medical Image Computing 
and Computer Assisted Intervention Society (MICCAI) 2019. We also validated the CNN-corrected segmentation 
based on accuracy and consumption time for evaluating the labeling efficiency. We converted the results of manual, 
CNN, and CNN-corrected segmentation to 3D models to compare the accuracy. The comparison was performed 
based on points in the surface, using quantitative root-mean-square (RMS) values in the 3-matic software (3-matic; 
Materialise, Leuven, Belgium). 17,650 points were used for comparing 3D models among manual and CNN segmen-
tations, and manual and CNN-corrected segmentations. For comparison of CNN segmentation with CNN-corrected 
segmentation, 26,471 points were calculated. The calculation for RMS is the same as that of Eq. (3), where x is a differ-
ence between corresponding points in the two models, and n is the total number of points.

n
x x x x

n
xRMS 1 ( ) 1
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2
2
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