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Abstract

Robustness of organisms is widely observed although difficult to precisely characterize. Performance can remain nearly
constant within some neighborhood of the normal operating regime, leading to homeostasis, but then abruptly break down
with pathological consequences beyond this neighborhood. Currently, there is no generic approach to identifying boundaries
where local performance deteriorates abruptly, and this has hampered understanding of the molecular basis of biological
robustness. Here we introduce a generic approach for characterizing boundaries between operational regimes based on the
piecewise power-law representation of the system’s components. This conceptual framework allows us to define ‘‘global
tolerance’’ as the ratio between the normal value of a parameter and the value at such a boundary. We illustrate the utility of
this concept for a class of moiety-transfer cycles, which is a widespread module in biology. Our results show a region of ‘‘best’’
local performance surrounded by ‘‘poor’’ regions; also, selection for improved local performance often pushes the operating
values away from regime boundaries, thus increasing global tolerance. These predictions agree with experimental data from
the reduced nicotinamide adenine dinucleotide phosphate (NADPH) redox cycle of human erythrocytes.
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Introduction

Robustness, the notion that biological systems must be able to

withstand a variety of perturbations is becoming a cornerstone of

research in systems biology. Indeed, several approaches have been

developed to understand this concept. These approaches tend to

focus on the levels of genotype, intermediate network architec-

tures, or phenotypic expression. None actually provides any

relation between these levels because the fundamental mappings

between levels have not been solved.

At the level of the genotype, there are approaches dealing with

neutral or near neutral mutations, which may be considered the

result of a genetic code optimized by natural selection. These

include nucleotide substitutions that leave the secondary structure of

an RNA unchanged [1], that result in a synonymous codon that

leaves the protein sequence unchanged, or that lead to the

substitution of an aminoacid with similar physical-chemical

properties [2]. The fraction of mutations that fall into these classes

provides a measure of the organism’s ‘‘mutational robustness’’.

At the level of intermediate network architectures, there are

approaches dealing with the number of redundant paths between

points in the network. The number of such redundancies provides

another measure of robustness. Perhaps the best example of such

architectures is provided by networks at the metabolic level [3].

However, these approaches at the level of genotype and network

architecture have little to say about any specific biological function.

At the level of specific phenotypic function, the concept of

robustness deals with the relationship between the physiological

behavior and the underlying parameters of mechanistic models

identified or hypothesized. Most approaches at this level have

dealt with the local behavior as characterized by small (infinites-

imal) changes. Robustness according to these approaches corre-

sponds to parameter insensitivity–linear sensitivities [4], logarith-

mic sensitivities [5,6], or second-order sensitivities [7–9]. All of

these approaches have shown what has been long known from

experimental studies, that there is a spectrum of sensitivities with

many parameters having very little influence and a smaller

number having the major impact.

There are other approaches that attempt to deal with local changes

in parameter values analytically, but only in terms of preserving

system stability. For systems with a stable steady state, parameter

variations that lead to the loss of stability will first violate one of the

last two Routh criteria. The magnitudes of these two conditions can

be considered a measure of the ‘‘distance’’ from the boundaries of

instability. This distance is often referred to as the margin of stability.

The margin in the case of the penultimate condition is the more

difficult to evaluate; it involves both kinetic order and rate constant

parameters [10–12]. The margin in the case of the last Routh

criterion is determined more simply by the determinant of the matrix

of kinetic orders for the dependent variables [10,13], alternatively by

a method based on singular value decomposition of this matrix [14].

For many systems both conditions are critical and must be evaluated.

However, these local approaches have little to say about a system’s

response to larger changes in parameter values.

One approach to deal with large changes in parameter values

involves random sampling of values to obtain an estimate for the
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volume of parameter space corresponding to physiological

behavior [15], although volume alone is not a sufficient measure.

The shape of the volume is critical, as pointed out by Morohashi et

al. [16]. Sengupta et al. [17] and Chaves et al. [18] have proposed a

measure of robustness, based on a random walk in parameter

space, that reflects the shape of the robust region. These methods

are limited by the computational expense of dense sampling and

random walks in high-dimensional parameter spaces.

All of the existing methods have advantages as well as significant

limitations. Thus, there is need of a generic approach for dealing

with robustness to large changes in parameter values and

identifying a variety of qualitatively distinct phenotypes, including

but not limited to loss of stability. In this paper, we introduce such

a method and illustrate its use in the context of a specific class of

biochemical systems, moiety-transfer cycles. In such systems, the

variables and parameters, which define its structure, must remain

within a neighborhood of their nominal values so as to produce a

physiological phenotype. When this neighborhood is exceeded the

system exhibits a pathological phenotype.

Our generic approach involves the precise characterization of

boundaries between phenotypically distinct regimes and defines

‘‘global tolerance’’ as the ratio (or its reciprocal, depending on

which is greater) between the normal value of a parameter and the

value at such a boundary where there is an abrupt change in

system performance. Thus, systems whose performance remains

nearly constant for large deviations from the normal operating

point are considered to be ‘‘globally tolerant’’. This is in contrast

to the conventional notion of ‘‘local robustness’’, defined by small

values for the system’s parameter sensitivities [5], which results in

important aspects of system performance remaining almost

constant near the normal operating point. As biochemical

parameters might be subject to considerable variation, a small

global tolerance might be disadvantageous even if system

performance is locally robust.

The notion that large global tolerances may evolve as ‘‘safety

factors’’ against fluctuations in parameter values and/or in the

loads placed by the environment has been proposed as a possible

explanation for large mismatches found between actual biological

capacities and apparent physiological needs [19–22]. For example,

the measured capacity (VMax value) of hexokinase exceeds the

physiological flux in the cardiac muscle of exercising rainbow trout

by over three orders of magnitude [21]. More recent studies

[23,24] of concrete systems suggest that large tolerances of

pathway fluxes to changes in the activity of the participating

enzymes are the side-effect of fulfilling local performance criteria.

However, we can envision a situation in which effective local

performance will not necessarily lead to large tolerances, and

therefore the possibility of performance breakdown due to normal

variation in parameter values becomes a major consideration

mediating natural selection. A similar point is highlighted by

Morohashi M, et al. [11], showing that various aspects of the

design for a biochemical oscillator can be rationalized as attending

to a requirement for both good local performance and large global

tolerance. Therefore, local robustness and global tolerance are

both important aspects for the evolutionary design of biochemical

systems.

In illustrating our generic approach, we also will address the

question: does design for robust local performance necessarily

improve global tolerance? In moiety-transfer cycles, a moiety is

transferred from a moiety-donor metabolite (D) to an acceptor

metabolite (A) by way of a charged carrier (C) (Figure 1). For our

example, and under the conditions of interest, we will assume that

the sum (S) of the charged carrier (C) and the uncharged carrier

(U ) is held constant. This form of coupling between reactions is

very prevalent in metabolism. Indeed, of all the enzyme-catalyzed

reactions in the reconstructed metabolic networks of Escherichia coli

[25] and Saccharomyces cerevisiae [26], 836 (75%) in the former

organism and 561 (67%) in the latter participate in moiety-transfer

cycles. These calculations exclude cycles involving the ubiquitous

metabolites H2O and H+, and pairs of forward-reverse reactions.

Redundant reactions catalyzed by distinct (iso)enzymes were

counted as a single reaction.

The large majority of these cycles mediate the transfer of

moieties from catabolic (i.e., nutrient-disassembling and energy-

producing) to anabolic (biosynthetic) processes. In this context,

they act as ‘‘moiety-supply’’ units, analogous to power-supply units

in electric circuits: they must reliably supply a given moiety at the

required rate (analogous to current intensity) while keeping the

concentration of the charged carrier (analogous to electric

potential) fairly constant. Here we address moiety-transfer cycles

that play this specific role. Henceforth, when we use the term

‘‘moiety-transfer cycles’’ it should be understood that we are

referring specifically to the class of moiety-transfer cycles that act

as ‘‘moiety-supply’’ units. We also compare our analytical results

to existing experimental results for the NADPH redox cycle of

human erythrocytes.

Figure 1. Schematic representation of a moiety-transfer cycle.
The symbols U and C represent the moiety-uncharged and moiety-
charged carrier, respectively, and A and D represent the moiety-
acceptor and moiety-donor metabolites, respectively. The sum
S~CzU is conserved under the conditions of interest here.
doi:10.1371/journal.pcbi.1000319.g001

Author Summary

The ability of organisms to survive under a multitude of
conditions is readily apparent. This robustness in perfor-
mance is difficult to precisely characterize and quantify. At
a biochemical level, it leads to physiological behavior
when the parameters of the system remain within some
neighborhood of their normal values. However, this
behavior can change abruptly, often becoming patholog-
ical, as the boundary of the neighborhood is crossed.
Currently, there is no generic approach to identifying and
characterizing such boundaries. In this paper, we address
the problem by introducing a method that involves
quantitative concepts for boundaries between regions
and ‘‘global tolerance’’. To illustrate the power of these
concepts, we analyzed a large class of biological modules
called moiety-transfer cycles and characterized the specific
case of the NADPH redox cycle in human erythrocytes,
which is involved in conferring resistance to malaria. Our
results show that the wild-type system operates well
within a region of ‘‘best’’ local performance that is
surrounded by ‘‘poor’’ regions.

Design: Moiety-Transfer Cycles
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Methods

Model Formulation
We will assume that each enzyme involved in a moiety-transfer

cycle (Figure 1) has two substrates and that the reactions are

irreversible. For our particular example, we will use Eqn (1), which

is valid for a wide range of two-substrate enzymatic mechanisms

(random-order equilibrium, compulsory-order, Theorell-Chance

and ping-pong mechanisms) [27]:

Vi~
VMax,i

1z
KX ,i

X
z

KY ,i

Y
z

diKE,iKY ,i

XY

ð1Þ

where: X is the concentration of substrate X ; Y is the concentration

of substrate Y ; Vi is the rate of catalysis by enzyme i; VMax,i is the

maximum rate of catalysis by enzyme i; KX ,i is the Michaelis

constant of enzyme i with respect to substrate X ; KY ,i is the

Michaelis constant of enzyme i with respect to substrate Y ; KE,i is

the equilibrium dissociation constant for the enzyme-substrate

complex EiX ; di is 1 if the enzyme follows a random-order

equilibrium or a compulsory-order mechanism in which X binds

first and di is 0 if the enzyme follows a ping-pong mechanism.

For purposes of illustration, we will assume that the charging

enzyme follows a compulsory order mechanism in which U binds

first to the enzyme (dCharging Enzyme~1) and the uncharging enzyme

follows a ping-pong mechanism (dUncharging Enzyme~0). For sim-

plicity, and without ambiguity since we are only considering two

different enzymes, we are going to discontinue using the subscript

referring to the enzyme. Hence the terminology that we are going to

use throughout the text is as follows (see Figure 1):

N Charging enzyme:

VC~VCharging Enzyme; VMax,C~VMax,Charging Enzyme;

KD~KD,Charging Enzyme; KE~KE,Charging Enzyme;

KU~KU ,Charging Enzyme

N Uncharging enzyme:

VU~VUncharging Enzyme; VMax,U~VMax,Uncharging Enzyme;

KA~KA,Uncharging Enzyme; KC~KC,Uncharging Enzyme

Strategy for Analysis
The investigation of tolerance requires a mathematical frame-

work that is able to address the effects of large perturbations while

avoiding the mathematical complexities of unstructured nonlinear

systems. The strategy for our analysis involves (i) decomposition of

the system’s design space into unique regions with boundaries

precisely defined by the ‘‘breakpoints’’ in the piecewise power-law

representation, (ii) determination of the system behavior in each

region, (iii) evaluation of system behavior according to a set of

quantitative criteria based on the function of the system, and (iv)

determination of the global tolerance to changes in the values for the

parameters and concentrations of the system.

Piecewise Power-Law Representation
Our approach is based on the idea that performance differs when

there is a change in the dominant flux or concentration terms. For

instance (Figure 2A), for enzymes that obey the Hill function, the

characteristic concentration—typified by the KM—marks the

breakpoint between two regimes in logarithmic space. One is

characterized by most of the enzyme being in the free form (slope

equal to the Hill coefficient) and the other by most of the enzyme

being bound to the substrate (slope equal to zero). More

complicated enzyme mechanisms, will involve more than one

breakpoint. For instance, some enzymes exhibit substrate inhibition

at elevated substrate concentrations (Figure 2B). For these enzymes,

there will be three regimes separated by two breakpoints. At

substrate concentrations much below the KM , most of the enzyme is

in the free form (slope equal to one); at intermediate concentrations,

above the KM and below the KI , the enzyme is mostly bound by a

single molecule of substrate (slope equal to zero); at substrate

concentrations much above the KI , the enzyme is mostly bound in

an abortive or dead end complex between the substrate and one or

several enzyme forms (slope equal to 21).

The essential feature of a system, and that any mathematical

framework for the analysis of tolerance has to capture, is thus the

breakpoints between regimes. These ideas lead us to estimate

tolerances within the framework of the piecewise power-law

representation of enzyme kinetics, which is one of the four different

representations within the power-law formalism of Biochemical

Systems Theory [28]. This representation retains the mathematical

Figure 2. Piecewise Power-Law (dashed line) and Rational-Function (solid line) representations of reaction rate (Log V=VMax½ �) as a
function of substrate concentration (Log X=KM½ �). (A) The Hill rate law given by V~VMaxX n

�
Kn

MzX n
� �

. The color indicates the Hill coefficient:
(red) n = 1 (Michaelis-Menten); (green) n = 2; (blue) n = 4. (B) The rate law for substrate inhibition given by V~VMaxX

.
KMzX 1z X

KI

� �� �
. For our

particular example, the ratio KM=KI is 1022.
doi:10.1371/journal.pcbi.1000319.g002

Design: Moiety-Transfer Cycles

PLoS Computational Biology | www.ploscompbiol.org 3 March 2009 | Volume 5 | Issue 3 | e1000319



tractability of the local power-law representation [5], which provides

a characterization of the system in terms of logarithmic gains,

robustness (as measured by parameter sensitivities) and local stability,

while extending the range of application to global considerations.

Formulation of our piecewise power-law representation is

analogous to the classical method of Bode [29] and involves three

steps ([10], pp 335–341):

(1) expressing the kinetic rate laws for the enzymes in a factored

form (here normalized) that allows us to identify the ‘‘poles’’

(values of the dependent variable that would cause the rate

law to approach infinity) and ‘‘zeros’’ (values of the dependent

variable that would cause the rate law to approach zero):

VC~
V

App
Max,C

u
ku

u
ku

z1
ð2Þ

and

VU~
V

App
Max,U

c
kc

c
kc

z1
ð3Þ

where

u~
U

S
V

App
Max,C~

VMax,C
D

KD

1z D
KD

ku~
K

App
U

S

K
App
U ~KU

KE

KU
z D

KD

1z D
KD

c~
C

S
V

App
Max,U~

VMax,U
A

KA

1z A
KA

kc~
K

App
C

S
K

App
C ~

KC
A

KA

1z A
KA

The simple Michaelis-Menten rate law is already in this form,

but more complex rate laws will require this factoring step

([10], pp 335–341).

(2) normalization of both kinetic rate laws by the apparent VMax

of the charging reaction (V
App
Max,C )

(3) representing each normalized rate law by its asymptotes in

Log Space.

Using this method, we derive the piecewise power-law

representation:

Log vcð Þ~
Log u=kuð Þ, for uvku

Log 1ð Þ, for uwku

�
ð4Þ

and

Log vuð Þ~
Log rc=kcð Þ, for cvkc

Log rð Þ, for cwkc

�
ð5Þ

where : vc~VC

.
V

App
Max,C ; vu~VU

.
V

App
Max,C ; r~V

App
Max,U

.
V

App
Max,C

Although the asymptotes in this example are straight lines in both

Cartesian and Logarithmic coordinates, this is not the general

case. In the general case, the asymptotes are straight lines only in

the Logarithmic coordinates.

Under the condition 0v1{kcvkuv1 (Figure 3A) there are

three different regimes each with a different steady state. For very

small values of r, the steady state in Systemic Regime a is valid. In

this steady state, the charging enzyme operates within its linear

region and the uncharging enzyme operates on its plateau. As r
increases, there is a transition to the steady state in Systemic

Regime c, in which both enzymes operate within their linear

regions. Finally, as r increases even further, there is a transition to

Figure 3. Piecewise power-law representation of normalized rate vs. normalized concentration (c~1{u): (A) 0v1{kcvkuv1; (B)
0vkuv1{kcv1. Systemic regimes are colored and labeled as in Figure 4.
doi:10.1371/journal.pcbi.1000319.g003

Design: Moiety-Transfer Cycles

PLoS Computational Biology | www.ploscompbiol.org 4 March 2009 | Volume 5 | Issue 3 | e1000319



the steady state in Systemic Regime b, in which the charging

enzyme operates on its plateau and the uncharging enzyme

functions within its linear region.

Under the condition 0vkuv1{kcv1 (Figure 3B) there are

two different regimes each with a different steady state. For values

of r less than one, the steady state in Systemic Regime a is valid;

when r equals one the system experiences a discontinuity and

transitions to the steady state in Systemic Regime b for values of r
greater than one.

Through the analysis of these cases, and of the remaining ones

(see Text S1), we are able to determine the design space available

to the moiety-transfer cycle (see Figure 4).

Each systemic regime is given by a specific and readily solvable

steady-state equation for the dependent variable, and applies only

to a particular region of the design space (Table 1). Given this

partitioning of the design space into distinct regions, one can

define global tolerance as the ratio between the value of a

parameter at the operating point (white point in Figure 4A) and

the value of that same parameter at the boundary to the next

neighboring region (black double headed arrows in Figure 4A).

Determination of System Behavior within Each Regime
The system representation within each regime is a simple but

nonlinear S-system for which determination of local behavior,

after appropriate transformation, reduces to conventional linear

analysis [10]. Thus, the local behavior is completely determined

and readily characterized by the evaluation of the following

quantitative indices.

Logarithmic gains in concentration (e.g., the charged moiety C) or

flux (e.g., the rate of charged-moiety supply VC ) in response to

change in value for an independent variable (e.g., the concentration

of the moiety-acceptor A) are defined by the relative derivative of

the explicit steady-state solution. For example,

L C,Að Þ~ LLogC

LLogA
~

LC

LA

A

C
L VC ,Að Þ~ LLogVC

LLogA
~

LVC

LA

A

VC

ð6Þ

Parameter sensitivities of such state variables in response to change

in the value for one of the parameters that define the structure of

the system (e.g., Michaelis constants or maximal velocities) are

defined by the relative derivative of the explicit steady-state

solution. For example,

S C,KAð Þ~ LLogC

LLogKA

~
LC

LKA

KA

C

S VC ,VMax,Uð Þ~ LLogVC

LLogVMax,U
~

LVC

LVMax,U

VMax,U

VC

ð7Þ

Response time is given by the inverse of the eigenvalue, which is

determined by analytical integration of the differential equation

that applies for each systemic regime.

Criteria for the Proper Operation of a Moiety-Transfer
Cycle

What criteria must a moiety-transfer cycle fulfill in order to be

considered a good one? This is a question that only now is being

posed by biologists. However, this question is analogous to one

that engineers have long had to deal with, and the lessons they

have learned can now be used to further our understanding of how

biological systems are designed through natural selection.

The performance of the moiety-transfer cycle, which is

analogous to that of the power supply in an electrical circuit,

can be evaluated in each systemic regime according to the

following quantitative criteria:

The concentration of charged carrier C (analogous to the

voltage of the power supply) should be well buffered against:

Criterion 1: fluctuations in the values of the kinetic parameters

of the enzymes and of the independent variable S (A power

supply should not be sensitive to, for instance, changes in the

Figure 4. Design space of the moiety-transfer cycle. Three distinct operating regimes labeled a, b and c are depicted for the model in Figure 1:
(A) kcv1 and (B) kcw1. See text for discussion.
doi:10.1371/journal.pcbi.1000319.g004

Table 1. Steady-state solution in each of the systemic
regimes.

Regime Steady-State Concentration C

a S{ KDKEzKU Dð ÞAVMax,U= AzKAð ÞDVMax,C½ �

b KC VMax,C D= VMax,U KDzDð Þ½ �
c VMax,C KC DS= VMax,U KDKEzKU Dð ÞzVMax,C KC D½ �

doi:10.1371/journal.pcbi.1000319.t001

Design: Moiety-Transfer Cycles
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properties of its internal components due to temperature

variations);

Criterion 2: changes in the concentration of moiety-acceptor

A (The voltage of a good power supply should not drop

significantly when there is an increase in demand for more

current);

Criterion 3: changes in the concentration of moiety-donor D

(The voltage of a power supply should not drop significantly

when there is a decrease in the line voltage).

The supply of charged carrier VC (analogous to the electrical

current) should

Criterion 4: be responsive to changes in the concentration of

moiety-acceptor A (A good power supply should be able to

supply more current when it is needed).

The sensitivity of the supply of charged carrier VC to changes in

the concentration of moiety-acceptor A should

Criterion 5: be well buffered against fluctuations in the values

of the kinetic parameters of the enzymes and independent

variables (When you are demanding more current from the

power supply, you do not expect the output to depend on, for

instance, temperature)

The response time should

Criterion 6: be fast (when demanding more current from the

power supply, you do not expect a prolonged delay in the

response), and

Criterion 7: well buffered against fluctuation in the values of

the kinetic parameters and independent variables (The response

time of the power supply should be reproducible in spite of such

fluctuations).

Results

The local performance in the three systemic regimes is

determined by the above methods and evaluated according to

the criteria defined in the previous section. Our aim is to ascertain

which of the systemic regimes is better suited for effective

performance of the moiety-transfer cycle as a moiety-supply unit.

Note that if this same cycle were to fulfill a different role in the cell,

then we would have to define different criteria and, hence, the

results could be different. For instance, Golbdeter and Koshland

[30] have studied a different type of moiety-conserved cycle that

exhibits ultra-sensitivity and switch-like behavior.

Optimum local performance of systems with respect to each

criterion and within each regime corresponds to the minimum

value possible for the criterion (Optimum Value).

Analysis of Local Performance
In Table 2, we summarize the results from the analysis of local

performance in Systemic Regime a. (Details of these results are

presented in Text S2) It is apparent from these results that the

performance in Systemic Regime a fulfills all of the criteria defined

above. Furthermore, if Condition 1, KA=Að Þ2w1{ KEKD=Dð
zKU ÞVMax,C

.
VMax,U Sð Þ, is valid, the optimization of criteria 1

through 6 follows the same strategy: A,KD,KE ,KU and VMax,U

should decrease while, D,S,KA and VMax,C should increase. Note

that there is one apparent conflict between optimizing Criterion 7

along with the previous criteria. In order to optimize criteria 1, 2 and

6, KU should tend to low values, whereas to optimize performance

according to Criterion 7, KU should tend to high values. This

apparent conflict can be readily resolved with appropriate values for

D, KD or KE (for which there are no trade-offs).

Contrary to the results for Systemic Regime a, the performance

in Systemic Regimes b and c cannot fulfill criteria 4 and 5 because

there is no response to changes in moiety-acceptor A (detailed

results in Text S2). In addition, even though the performance in

Systemic Regimes b and c can have a fast response time (Criterion

6), it will not be with respect to changes in A. Therefore, the

importance of this responsiveness becomes questionable. Finally,

the optimum value of Criterion 1 in Systemic Regime c is 1,

whereas that in Systemic Regime b is 3. Since Systemic Regimes b
and c share the same optimum values for the remaining criteria,

we conclude that overall local performance in Systemic Regime c
is better than that in Systemic Regime b.

Identifying the Region of Best Local Performance
From the analysis of local performance, it is clear that the only

systems that can fulfill all criteria and do it efficiently operate in

Systemic Regime a. Although systems that operate in systemic

regimes b and c can fulfill some of the performance criteria, they

fail in that their supply of charged carrier, VC , does not respond to

changes in the concentration of moiety-acceptor A. In analogy to

electrical circuits, they resemble a power supply that will not

provide additional current when there is an increased demand by

Table 2. Evaluation of the Local Performance in Systemic Regime a.

Criterion Optimum Value Parameters/Variables that Correlate Negatively Parameters/Variables that Correlate Positively

1 1 A,KD,KE ,KU ,VMax,U D,S,KA,VMax,C

2 0 KD,KE ,KU ,VMax,U ,A�,K{
A

D,VMax,C ,A{,K�A

3 0 A,KD,KE ,KU ,VMax,U D,S,KA,VMax,C

4 1 A KA

5 0 A KA

6 0 KD,KE ,KU D,VMax,C

7 2 KD,KE D,KU

* Condition 1(see text) true.
{ Condition 1 false.
doi:10.1371/journal.pcbi.1000319.t002

Design: Moiety-Transfer Cycles
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the rest of the circuit. Hence, this is a poor design for a power

supply unit.

If there had been no regime capable of simultaneously fulfilling

all the performance criteria then one would have to evaluate the

relative impact on fitness of the failure to satisfy a specific criterion.

Regimes that violate performance criteria with a weak effect on

fitness would clearly be preferable to those that violate more

important performance criteria. If the results showed that all

regimes violated important performance criteria, then one may

attribute this to an inappropriate model or to incomplete/

inaccurate knowledge about the function of the system under

analysis.

In summary, we predict that in nature, under basal conditions, a

moiety-transfer cycle should operate in Systemic Regime a.

Moreover, natural selection should maintain the operating point

far from the boundaries to the other regimes for the following two

reasons. First, the circuit’s local performance improves as the

operating point moves away from the boundaries. Second, even

where the intra-regime gradient in local performance is modest,

excursions into neighboring regimes of poor performance are less

likely when the operating point is farthest from the boundaries.

Analysis of Global Tolerance
Systemic Regime a holds in the region of design space (Figure 4)

defined by the following inequalities:

1{kcw0 and rv1 and kuv 1{kcð Þ=r

Systems represented within these boundaries exhibit the best local

performance and thus these boundaries provide the basis for a

natural definition of global tolerance. Namely,

Global tolerance is given by the ratio (or its reciprocal, depending on which

is greater) of the value for each parameter or independent variable at the

normal operating point relative to its value at the boundary of the region.

By the use of this definition it is possible to determine analytically

the global tolerance to change for each kinetic parameter and

independent variable of the system operating in Systemic Regime a.

In general, each parameter or independent variable can have a

global tolerance with respect to its lower value as well as its upper

value. These tolerance values will be denoted ‘‘[Tlow,Thigh]’’; since

one of these is often infinite, we also will use the notation ‘‘[Tlow’’ or

‘‘Thigh]’’ with the other infinite tolerance implied.

There are two different boundaries for Systemic Regime a,

ku~ 1{kcð Þ=r and r~1, so we present the tolerance expressions

with respect to each in Text S3. When considering each kinetic

parameter and independent variable individually, its critical tolerance

will be given by the lowest of its tolerance values given in Text S3.

Numerical values for these tolerances are given for a specific

system in the following section.

NADPH Redox Cycle in Human Erythrocytes
We have selected this moiety-transfer cycle to provide a

numerical illustration of our results because the kinetic parameters

of the enzymes and concentrations of the metabolites for this system

have been well characterized experimentally [31–34] in view of this

cycle’s importance in malaria [35]. These values, which are in Text

S4, lead to the design space in Figure 5 depicting the steady-state

concentration in the z-direction with a heat map. The physiological

operating point for this system is found in Systemic Region a, as

expected. The design space depicting the steady-state flux has a

similar appearance (data not shown).

The local behavior of this system can be evaluated according to

the seven criteria described earlier. In this case we have the

numerical values for the various parameters and, thus, we can

calculate the numerical values for the criteria and compare their

values to the optimum values. As can be seen from the resulting data

summarized in Table 3, natural selection results in a design that has

nearly optimal local performance according to the seven criteria.

Given the numerical values that characterize the operating point

for this system, and the boundaries surrounding Systemic Region a,

Figure 5. Design space depicting the steady-state solution of the NADPH redox cycle in human erythrocytes: (A) piecewise power-
law representation and (B) Michaelis-Menten representation. The color indicates the logarithm of the normalized steady-state concentration
of moiety-charged carrier, Log c½ �: (green) High to (red) Low. The white point in the figure represents the normal operating point of the cycle. The
three Systemic Regions are denoted a, b, and c. The boundaries between regions are determined for the piecewise power-law representation and
then superimposed on both panels. The Log-Log coordinates provide a more convenient representation of the design space that was shown with
Cartesian coordinates in Figure 4A.
doi:10.1371/journal.pcbi.1000319.g005
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we are able to determine the numerical value of global tolerance for

each of the kinetic parameters and independent concentration

variables. The values, summarized in Table 4, are tolerances

involving movement from Systemic Region a into Systemic Region

c. They range from the smallest tolerance of 59 fold to the largest of

362 fold. The smallest values are associated with S, A, and KA,

whereas the largest are associated with D, KD, and KE .

It should be emphasized that no change in the value of any single

parameter or concentration is capable of moving the operating

point of the system from Systemic Region a into Systemic Region

b. In this sense, the largest tolerances (essentially infinite) are

associated with the boundary between systemic regions a and b.

Discussion

The organization of biochemical systems has traditionally been

viewed as adhering to few general rules. Should it be real, this

perceived lack of generally applicable organizing principles would

reduce molecular biology to an accumulation of disparate facts

with limited predictive value. However, research in molecular

systems biology is revealing a number of design principles that

associate function with design. For example, such design principles

have been found in metabolic pathways [36–40], signal transduc-

tion cascades [41–45], mode of gene control [28,46–49] and

coupling of gene circuits [50–54]. This research provides an

understanding of why some designs are highly prevalent in

biochemical systems while other feasible designs are rare. It also

prompts predictive inferences of (i) what interactions among

biochemical components should occur given the function of a

network, or (ii) what is the likely function of a network given its

component interactions.

A high priority in the research program of biochemical systems

theory is the characterization of design principles for the most

common constituents of biochemical systems such as elementary

gene circuits and simple metabolic networks. As noted in the

Introduction, moiety-transfer cycles are among the most common

functional units in metabolic networks. Hence, the material

presented in this paper serves not only to introduce an important

analytical framework within which to quantitatively characterize

the design of biochemical systems, but also to provide insight

regarding the design principles that govern one of the most

common functional units in metabolic networks.

It must be emphasized that the piecewise power-law represen-

tation described in this paper is not an arbitrary fit to the kinetic

rate laws. It is not simply a convenient curve-fitting exercise that

attempts to minimize the error in the representation by using a

sufficiently large number of arbitrary pieces. The number of

pieces, their slopes and the location of the breakpoints are all

uniquely determined by the rational function in conventional

Bode-type analysis ([10], pp 335–341). Moreover, this represen-

tation is rigorously justified for the rational functions known to

characterize the traditional rate laws of biochemical kinetics [55].

Thus, the method is highly constrained by the model and it

produces a unique representation. The class of models can be

quite general; for example, it includes generalized mass action

models of chemical kinetics and rational function models of

biochemical kinetics. Regardless of how one obtains a given model

(detailed kinetic analysis, an empirical fit to a model using limited

data or a hypothetical model based on general considerations), as

long as it falls within this very general class of functions then our

approach can be applied.

Differences between the steady-state solutions of the rational

function and piecewise representations are greatest around the

breakpoints, as is evident from Figure 5. The lack of accuracy at

these points may be considered a disadvantage of the piecewise

power-law representation. Nevertheless, the piecewise power-law

representation suggests the formulation of the design space,

provides precise boundaries between regions, and gives a method

for defining global tolerances in a quantitative manner. These are

all major advantages that would be hard to derive directly from

the rational-function representation. Thus, it must be emphasized

that in our example the formulation of the design space and the

boundaries were first derived from the piecewise representation

(depicted in Figure 5A) and then used to display the results from

the rational-function representation (depicted in Figure 5B).

The system design space that is defined by our approach

provides an important framework to characterize the behavior of

the system. Within each region, system behavior is readily solved,

often analytically, as for the cases analyzed in this paper. The

results presented in this paper can be generalized to other moiety-

transfer cycles, as will be documented in a subsequent publication

(Coelho et al., manuscript in preparation).

The system design space also provides an important framework

to represent and compare wild-type and mutant variants of these

systems. The kinetic parameters of the systems can be measured

Table 3. Evaluation of local performance for the NADPH
redox cycle in human erythrocytes.

Criterion
Quantitative Value for the
Normal Operating Point Optimum Value

1 1.048 1

2 0.009 0

3 0.003 0

4 1.002 1

5 0.002 0

6 0.198 0

7 2.606 2

doi:10.1371/journal.pcbi.1000319.t003

Table 4. Values for tolerances of the NADPH redox cycle in
human erythrocytes.

Variable or Parameter Tolerance

[G6P] * (D) [362

KM,G6P,G6PDH
{

(KD) 362]

KD,NADP,G6PDH
{

(KE ) 362]

KM,NADP,G6PDH (KU ) 158]

KM,NADPH ,GSR
1

(KC ) 126]

VG6PDH (VMax,C) [110

VGSR (VMax,U ) 110]

KM,GSSG,GSR
"

(KA) [69

[GSSG] (A) 69]

[NADP+NADPH] (S) [59

*G6P: Glucose 6-phosphate.
{G6PDH: Glucose-6-phosphate dehydrogenase.
{NADP: Oxidized nicotinamide adenine dinucleotide phosphate.
1GSR: Glutathione reductase.
"GSSG: Oxidized glutathione.
doi:10.1371/journal.pcbi.1000319.t004
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and the resulting values plotted within the common design space.

An example is provided in Figure 5 by making use of the data for

the wild-type NADPH redox cycle in human erythrocytes [31–34].

The location of the operating point for mutants (where such

mutants and their kinetic data are available), in relation to that for

the wild type and in relation to the boundaries between good and

poor regions, will provide a method to quantitatively characterize

the physiological significance of mutant phenotypes.

There is a general theorem indicating that the robustness of

feedback control systems is a conserved quantity, and thus

increasing the robustness in one operating regime must cause it

to decrease in another [56]. This suggests that trade-offs are

inevitable in the design of a system. It is not yet clear how our

results might be governed by this theorem. The differences may

reside in the global dynamics of the system, since our analysis

focuses on the steady-state behavior and only considers dynamics

in the local sense.

As we have seen, an important consideration affecting the

location of the operating point for the wild type relative to regime

boundaries is the interplay between global tolerance and local

performance. Selection for improved local performance often

pushes the operating point away from regime boundaries, thus

increasing global tolerance. But in some cases modifying the value

of a parameter in the direction that improves local performance

may bring the operating point closer to regime boundaries, thus

decreasing global tolerance.

Our analysis identified two cases of potential trade-offs between

specific criteria for local performance and global tolerance.

Namely, increasing KU improves the buffering of the response

time against fluctuations in the values of parameters and

independent variables, but decreases global tolerances with respect

to changes in the values of most parameters. Likewise, decreasing

KA can in some conditions improve buffering against changes in

the concentration of moiety-acceptor A, but it can decrease global

tolerances with respect to changes in the values of most

parameters.

However, because these same changes in KU or KA would also

worsen several other important aspects of local performance they

do not entail a real trade-off between overall local performance

and global tolerances. Furthermore, none of the trade-offs

mentioned above prevent the simultaneous improvement of both

local performance and global tolerance by suitably changing the

value of a second parameter. Therefore, the simple design of

moiety-transfer cycles that we addressed here does not have any

irresolvable trade-offs between global tolerance and local perfor-

mance for the set of performance criteria we considered. This is a

desirable property that facilitates the evolutionary adaptation of

the cycle to changing environmental demands.
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