
 International Journal of 

Molecular Sciences

Review

Pathophysiological Responses and Roles of Astrocytes in
Traumatic Brain Injury

Shotaro Michinaga 1 and Yutaka Koyama 2,*

����������
�������

Citation: Michinaga, S.; Koyama, Y.

Pathophysiological Responses and

Roles of Astrocytes in Traumatic

Brain Injury. Int. J. Mol. Sci. 2021, 22,

6418. https://doi.org/10.3390/

ijms22126418

Academic Editor: Yukihiro Ohno

Received: 15 May 2021

Accepted: 14 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose,
Tokyo 204-8588, Japan; michisho@my-pharm.ac.jp

2 Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada,
Kobe 668-8558, Japan

* Correspondence: koyama-y@kobepharma-u.ac.jp; Tel.: +81-78-441-7572

Abstract: Traumatic brain injury (TBI) is immediate damage caused by a blow to the head result-
ing from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in
survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of
the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current ther-
apies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted
beneficial effects in TBI animal models, most of them failed to show significant effects in clinical
trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI.
Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI
patients and experimental animal models. Astrocytes have beneficial and detrimental effects on
TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and
suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive
factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus,
astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting
drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes
and expected astrocyte-targeting drugs in TBI.
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1. Introduction

Traumatic brain injury (TBI) is severe damage to the brain and is referred to as a
sudden insult caused by traffic accidents, falls, and sporting activity. TBI is a primary
cause of unexpected death or induces serious disabilities, including motor and cognitive
dysfunction, in survivors. Over 10 million young and old people experience TBI worldwide
per year. TBI elicits dysfunction in the brain environment, including neuronal circuits
and cerebral vascular functions. As treatments for TBI, decompressive craniotomy, hy-
perosmolar treatment, barbiturate, sedation, and hypothermia therapy [1] are performed
to reduce intracranial pressure (ICP) in acute TBI patients. However, these therapies are
insufficient in some cases and have significant adverse effects. Some rehabilitations are
also performed to improve motor and cognitive functions in patients with chronic TBI.
To date, many candidate therapeutic drugs have been discovered in preclinical studies
using experimental TBI animal models, and some of them have been examined in clinical
trials. Although preclinical studies have suggested that some candidates show promising
beneficial actions, clinical trials have failed to show significance in patients with TBI [2–4].
Most of the investigated candidate drugs were targeted to an individual injury factor,
neuronal cells, or cerebral vasculature. However, emerging evidence shows that the patho-
genesis of TBI is induced by multiple injury factors, and glial cells also play significant
roles in the pathogenesis of TBI.
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Astrocytes are key players in the pathogenesis of neurodegenerative disorders and
brain injury. In the damaged brain, astrocytes convert to the reactive form from the resting
form, and reactive astrocytes exert both protective and detrimental functions. Multiple stud-
ies have suggested that some preclinical drugs exert beneficial effects on neuronal damage
by promoting or attenuating astrocyte functions in experimental animal models. Addition-
ally, Qian et al. showed conversion of midbrain astrocytes to dopaminergic neurons, which
provide axons to reconstruct the nigrostriatal circuit in Parkinson’s disease model mice,
suggesting a novel approach to treating neurodegeneration by replacing lost neurons [5].
Thus, astrocytes are attractive targets for therapeutic drugs in brain disorders and injuries.

In patients with TBI, increased reactive astrocytes are observed in damaged areas [6].
A recent study found that levels of astrocyte-derived neurotoxic exosome complement
proteins that elicit damage to synapses and injuring neurons were also increased in TBI
patients [7]. Emerging evidence suggests that astrocytes elicit beneficial and detrimental
roles in the pathogenesis of TBI, including neuroinflammation, brain edema, disruption of
the blood–brain barrier (BBB), neurogenesis, and synaptogenesis [8–10]. In this review,
recent observations of the roles of astrocytes in TBI and expected candidate therapeutic
drugs targeted to astrocytes in TBI are summarized.

2. Pathologies of TBI

TBI drives multiple conditions, including axonal damage, neuronal death, gliosis, dis-
ruption of the BBB, edema, intracranial hemorrhage, hypoxemia, hypotension, and neuroin-
flammation [8,9]. On the other hand, neurogenesis and synaptogenesis are also promoted
after TBI to recover lost neuronal functions [10]. The severity of TBI ranges from mild to
severe. TBI is commonly categorized as focal or diffuse. Focal injury is caused by direct
impact and includes scalp injury, skull fracture, and surface contusions, which lead to me-
chanical focal brain damage and diffuse axonal injury by shearing, tearing, and stretching.
On the other hand, diffuse injury results from acceleration–deceleration forces, which in-
clude hypoxic–ischemic damage, meningitis, and vascular injury.

TBI occurs in two different phases: primary and secondary injury. Primary injury
results from direct physical impact to the head and immediately causes fatal brain damage,
such as contusion and hemorrhage in the injured core area. This results in irreversible
neuronal and axonal damage and vascular damage. Following TBI, the brain region sur-
rounding the primary injury is known as a traumatic penumbra as well as stroke and
is considered to have the potential to recover [11,12]. This region undergoes secondary
injury that includes dysfunction of the BBB, brain edema, and neuroinflammation [13].
Secondary injury is mainly driven by astrocytes, microglia, and infiltrated immune cells
from peripheral tissues, and causes continuous neuronal and vascular dysfunction. Fol-
lowing the primary injury, secondary injury occurs from hours to days to months after the
initial trauma. Primary injury is inevitable, while delayed development of the secondary in-
jury provides a window of opportunity for therapeutic intervention to prevent progressive
damage and improve functional recovery after TBI. The induction of reactive astrocytes is
propagated in the brain region where the secondary damage of TBI is spreading. There-
fore, many studies have investigated the role of reactive astrocytes in the development of
TBI pathologies.

3. Conversion to Reactive Astrocytes in TBI

Reactive astrocytes are commonly characterized by structural and functional conver-
sion of astrocytes. The characterized conversions include cell hypertrophy, heightened
proliferation, secretion of inflammatory mediators and neurotrophic factors, and increased
expression of intermediate filaments such as glial fibrillary acidic protein (GFAP) and
vimentin [14,15]. Reactive astrocytes possess a high proliferative ability, referred to as
astrogliosis. As transgenic mice lacking GFAP and vimentin have markedly impaired
astrocyte reactivity in TBI, these cytoskeletal proteins are essential for the appropriate
initiation and maintenance of reactive astrogliosis [16,17].
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Many studies have suggested that astrocytes convert from the resting to reactive type
in both TBI patients and model animals. In TBI patients, increased reactive astrocytes
are predominantly observed in damaged areas [6]. Increased GFAP expression was also
observed in patients with TBI [18–20]. Additionally, S100β, a marker of reactive astrogliosis,
was elevated in the serum and cerebrospinal fluid of patients with TBI [21,22]. Similarly,
expression of GFAP and vimentin was also increased in several TBI animal models [23–27].
In a mouse controlled cortical impact (CCI), an experimental TBI model, hypertrophic
astrocytes in the lesional and peri-lesional areas were observed 3 days after TBI [28]. GFAP-
positive astrocytes were found to proliferate at 1, 3, and 7 days post-injury, with numbers of
proliferating astrocytes peaking at 3 days post-injury in a mouse CCI model [29]. We also
found that GFAP-positive reactive astrocytes were increased in TBI mice following fluid
percussion injury (FPI) [30].

Emerging studies suggest that reactive astrocytes play a dual role in TBI. Ablation of
proliferating reactive astrocytes after TBI by CCI aggravates inflammation and neuronal
death in mice [31]. On the other hand, improved axonal growth and repair following
experimental brain and spinal cord injury were demonstrated in transgenic mice deficient
in both vimentin and GFAP [16,32]. Thus, reactive astrocytes can have beneficial or detri-
mental effects following TBI. Based on these findings on the role of reactive astrocytes
in the pathology of TBI, controlling the functions of reactive astrocytes is suggested to
be a novel therapeutic strategy to improve nerve damage caused by TBI. To establish an
effective method to control reactive astrocytes, the mechanisms underlying the conversion
to reactive astrocytes and functional alterations have been studied.

4. Mechanism of Converting to Reactive Astrocytes
4.1. Factors Inducing Reactive Astrocytes

Converting to reactive astrocytes is triggered by multiple bioactive factors that are
increased in the injured area after TBI. In patients with TBI and experimental TBI mice,
expression of endothelin-1 (ET-1) was increased [30,33,34], and increased ET-1 promoted
conversion to reactive astrocytes via the ETB receptor in TBI mice by FPI [30]. Several in-
flammatory cytokines and chemokines also trigger astrogliosis. Interleukin-1 (IL-1) pro-
motes conversion to the reactive form of astrocytes [35,36], while an IL-1 receptor antag-
onist reduced hippocampal astrogliosis in a CCI-induced TBI mouse model [37]. Mono-
cyte chemoattractant protein-1 (MCP-1) promotes astrogliosis via CC chemokine receptor
(CCR) [38]. CCR5 knockdown or CCR5 antagonist reduced astrogliosis in the lesioned cor-
tex and reduced the lesion area in TBI mice [39,40]. Additionally, the expression of vascular
endothelial growth factor (VEGF) was also increased in FPI-induced TBI model mice [30],
and VEGF inhibitor decreased in reactive astrocytes after TBI in mice by suppressing the
Toll-like receptor 4/nuclear factor-kappa B (NF-κB) signaling pathway [41]. The reported
regulatory factors for reactive astrocytes are summarized in Table 1.

Table 1. Summary of the endogenous bioactive regulators for astrogliosis.

Factors Related Receptors Effects References

ET-1 ETB receptor ETB receptor antagonist reduced conversion to reactive astrocytes
in TBI mice. [30]

IL-1 IL-1 receptor IL-1 promoted conversion to reactive astrocytes.
IL-1 receptor antagonist reduced astrogliosis in TBI mice. [36,37]

MCP-1 CCR5 The CCR5 knockdown reduced astrogliosis in TBI in mice.
Pharmacological CCR5 antagonist reduced astrogliosis in TBI mice. [38–40]

VEGF VEGF receptor VEGF inhibitor reduced reactive astrocytes after TBI in mice. [41]
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4.2. Intracellular Signals Underlying the Conversion to Reactive Astrocytes

Multiple intracellular signaling pathways control the conversion to reactive astrocytes,
and the expected signal mechanisms are summarized in Figure 1. Signal transducer and
activator of transcription 3 (STAT3) is closely related to astrogliosis. In FPI-induced TBI
rats, confocal microscopy revealed that STAT3 was localized primarily within astrocytic nu-
clei [42]. We suggest that STAT3-mediated regulation of cell proliferation-related proteins,
such as cyclin D1 and S-phase kinase-associated protein 2, underlies ET-induced astrocytic
proliferation [43]. Additionally, ET-induced astrocytic proliferation was triggered by the
phosphorylation of specificity protein-1, a transcriptional factor involved in the activation
of mitogen-activated protein kinase (MAPK) in cultured astrocytes [44].

Figure 1. Expected mechanisms on astrogliosis in TBI. TBI promotes the expression of multiple
bioactive factors such as endothelin-1 (ET-1) and interleukine-1 (IL-1). ET-1 and IL-1 bind to the
ETB receptor and IL-1 receptor in astrocytes, respectively. Stimuli of these receptors activate the
mitogen-activated protein kinase (MAPK) and Ca2+-calmodulin (CaM) pathways that promote
the expression of glial fibrillary acidic protein (GFAP), cyclin D1, and S-phase kinase-associated
protein 2 (Skp2) via activation of transcriptional factors including signal transducer and activator
of transcription 3 (STAT3), specificity protein-1 (Sp-1), and nuclear factor-κB (NF-κB) in astrocytes,
resulting in astrogliosis.

NF-κB is also involved in astrocyte reactivity. Activated NF-κB is primarily localized
within astrocytes in brain regions exhibiting reactive gliosis, inflammatory activation,
and cellular atrophy following TBI in rats [45,46]. In CCI-induced TBI rats, activation of
NF-κB was promoted [47], and transgenic inhibition of astrocytic NF-kB signaling reduced
astrogliosis in a mouse model of vascular dementia [48]. Activation of NF-κB also promotes
swelling in cultured astrocytes after FPI-induced TBI [49]. Increased GFAP expression by
IL-1 is mediated by NF-kB and phosphorylation of extracellular signal-regulated kinase
(ERK)1/2, and the NF-kB/Ca2+-calmodulin (CaM)/ERK signaling pathway has been
suggested as a key regulator of IL-1-induced astrogliosis [50]. Thus, these intracellular
signaling pathways control astrogliosis in TBI, although other pathways for astrogliosis
may be found in the future.

4.3. Role of Chaperone Proteins for Converting Reactive Astrocytes

Chaperones play a key role for the protection of cells from stress, such as an in-
flammatory response. Recent studies imply that chaperone proteins control astrogliosis.
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Sigma-1 receptor (Sig-1R) functions as a chaperone and increased GFAP expression was
observed in mixed neuronal–glial cultures derived from Sig-1R KO mice [51]. OZP002,
a Sig-1R positive modulator, prevented amyloid β25-35-induced reactive astrogliosis in
the hippocampus [52]. Heat shock protein 72 (Hsp72) is a chaperone protein and protects
from brain injury. Overexpression of Hsp72 reduced the density of GFAP- and vimentin-
expressing cells, and decreased astrocyte morphological complexity following stroke in
mice [53]. Protein disulfide isomerases (PDIs) are redox chaperones that catalyze the for-
mation or isomerization of disulfide bonds in proteins. In TBI model mice, TBI-induced
increased GFAP protein expression was attenuated in PDI3−/− mice [54]. These results
suggest that chaperone proteins control TBI-induced conversion of reactive astrocytes
through regulation of GFAP expression.

5. Roles of Astrocytes in the Pathogenesis of TBI

Astrocytes can elicit both protective and deleterious actions that influence the repair
or aggravation of TBI. TBI-induced secondary injury includes disruption of the BBB,
brain edema, and neuroinflammation. On the other hand, neurogenesis, synaptogenesis,
and angiogenesis are also promoted to support functions lost in TBI. In this section, the roles
of astrocytes in several secondary injuries and neuronal repair are summarized in Table 2.

Table 2. Summary for roles of the reactive astrocytes in TBI.

TBI Pathogenesis Promoting Effects Suppressing Effects

Neurogenesis
Synaptogenesis

Astrocyte-derived factors promoted neurogenesis in
TBI animals [55,56].

Astrocyte-derived neurotrophic factors promoted
synaptic remodeling in TBI animals [57,58].

Mice lacking GFAP and vimentin showed
increased hippocampal neurogenesis and
axonal regeneration in TBI animals [16].

Astrocyte-specific elimination of
d-serine-synthesizing enzyme improved

synaptic plasticity in TBI animals [59].

BBB disruption Astrocyte-derived ET-1, VEGF, and MMP-9
promoted BBB disruption [30,34,41,60].

Astrocyte-derived neurotrophic factors,
fatty acid-binding protein 7, Ang-1, and
Shh suppressed BBB disruption in TBI

mice [60–62].

Cytotoxic edema

FPI-induced increase in AQP-4 expression promoted
swelling in cultured astrocytes [63].

AQP-4 siRNA alleviated cytotoxic edema in TBI
animals [64].

Depletion of Foxo3a rescued cytotoxic edema by
preventing induction of AQP-4 in TBI animals [65].

NKCC1 siRNA reduced trauma-induced cell
swelling in cultured astrocytes [49,66].

Blockade of Sur1-Trpm4 reduced edema formation
in TBI animals [67].

Neuroinflammation

Reactive astrocytes contributed to
neuroinflammation by secreting cytokines,

chemokines, nitric oxide, danger-associated
molecular patterns, and MMP-9 [68–70].

Astrocyte-derived IL-33 promoted recruitment of
microglia/macrophages in TBI animals [71].
S100β knockout mice or administration of

neutralizing S100β antibody significantly reduced
microglial activation in TBI animals [72].

MiR155 promoted brain inflammation via astrocyte
activation after TBI [70].

Ablation of reactive astrocytes caused
more severe inflammation in

TBI animals [31].
Astrocyte-derived exosomes enriched

with miR-873a-5p inhibited
neuroinflammation [73].
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5.1. Neurogenesis and Synaptogenesis

Neurogenesis is promoted in TBI models to replace neurons lost by injury [74]. As-
trocytes provide structural and functional support for the proliferation, differentiation,
and maturation of neural stem cells [75]. Some potential mechanisms of astrocyte-induced
neurogenesis have been proposed in the TBI model. Astrocytes produce the neurotrophic
and mitogenic protein S100β. S100β enhances neurogenesis within the hippocampus and
improves cognitive function recovery following TBI, and these improvements are mediated
by the facilitation of neuronal differentiation, proliferation, and survival of hippocampal
progenitor cells [55]. Additionally, adenylate cyclase-activating peptide expressed in astro-
cytes supports and maintains new neurons after TBI [56]. These observations suggest a role
in promoting neurogenesis in astrocytes. However, a contradictory study has been reported.
Mice lacking GFAP and vimentin showed increased hippocampal neurogenesis and axonal
regeneration post-TBI, suggesting their role in suppressing neurogenesis by astrocytes [16].

Astrocytes also play a crucial role in synaptogenesis after TBI [10]. In the chronic
phase after TBI, promoting astrocyte proliferation and increasing the release of astrocyte-
derived neurotrophic factors promoted synaptic remodeling in CCI-induced TBI model
rats [57]. Astrocytic ephrin-B1, a regulating factor of synapse development in neurons,
also induces synapse remodeling through the activation of STAT3-mediated signaling [58].
In contrast, astrocyte-specific elimination of the d-serine-synthesizing enzyme improved
synaptic plasticity, brain oscillations, and learning behavior after CCI in mice [59]. The roles
of astrocytes that promote or attenuate neurogenesis and synaptogenesis may depend on
the brain area or stage of injury, and more detailed roles of astrocytes in neurogenesis and
synaptogenesis in TBI need to be elucidated.

5.2. BBB Disruption and Angiogenesis

Astrocytes control BBB function by astrocytic end-feet around endothelial cells and
astrocyte-derived bioactive factors. BBB dysfunction is commonly observed in both TBI
patients and animal models [30,76–79]. BBB disruption causes vasogenic edema, which re-
sults in ICP elevation. Reactive astrocytes secrete multiple bioactive factors that promote
BBB disruption and recovery. In TBI model mice, expression of VEGF-A and matrix
metalloproteinase-9 (MMP-9), which promote BBB permeability, was increased in reactive
astrocytes, and these inhibitions alleviated BBB disruption after TBI [30,41]. Astrocyte-
derived ET-1 aggravated BBB disruption, and ET receptor antagonists such as bosentan
and BQ788 alleviated BBB disruption in FPI-induced TBI model mice [30,34,60].

In contrast, some astrocyte-derived factors promote angiogenesis and BBB repair.
Astrocyte-derived neurotrophic factors alleviate BBB disruption in mice with TBI [61].
Astrocyte-derived fatty acid-binding protein 7 also protected BBB integrity through a
caveolin-1/MMP signaling pathway following TBI [62]. Additionally, we found that
expression of angiopoietin-1 (Ang-1), which promotes angiogenesis, was increased in
astrocytes after TBI in mice, and recombinant Ang-1 administration alleviated TBI-induced
BBB disruption [78]. Sonic hedgehog (Shh) is an essential factor in several processes
during the development of the vertebrate central nervous system and promotes angio-
genesis. Our recent study suggested that expression of Shh was increased in astrocytes
after TBI, and administration of exogenous Shh alleviated TBI-induced BBB disruption,
whereas Jervine, a Shh inhibitor, aggravated BBB disruption in TBI mice [60]. Salman et al.
showed that the Shh pathway was also upregulated in primary human astrocytes following
hypoxia while hypothermia inhibited the hypoxia-induced pathway [80]. This may explain
why hypothermia has failed in treating stroke since it may inhibit this essential pathway.

Apolipoprotein-E (APOE) is a protein produced primarily by astrocytes and serves
as a major lipid transport molecule in the central nervous system [81]. The E4 variant of
APOE (APOE4) is known as a main susceptibility gene for Alzheimer’s disease and leads to
accelerated breakdown of the BBB [82]. APOE4 mice displayed prolonged BBB dysfunction
compared to APOE3 mice following TBI [81]. Thus, APOE4 is a risk factor for TBI-induced
BBB disruption.
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Recent studies suggest several novel methods for evaluating BBB function. Wevers et al.
demonstrated successful integration of a human BBB microfluidic model in a high-throughput
plate-based format [83]. Additionally, Salman et al. described the design and implemen-
tation of an in vitro microvascular open model system using human brain microvascular
endothelial cells [84]. The use of humanized self-organized models, organoids, 3D cultures,
and human microvessel-on-a-chip platforms must help the development of research on
BBB function after TBI.

5.3. Cytotoxic Edema

Cytotoxic edema is characterized by cell swelling due to excessive water retention in
brain cells, such as astrocytes, and is observed in the injured brain after TBI. Excessive water
accumulation as cytotoxic edema causes an increase in brain water content and elevation
of the ICP, leading to irreversible brain injury or death by hernia. Aquaporin-4 (AQP-4)
controls the brain water content and is predominantly expressed in astrocytes. AQP-4
is responsible for the formation of cytotoxic edema resulting from excessive astrocyte
swelling in TBI. In vitro, FPI increased AQP-4 expression and induced swelling in cultured
astrocytes [63]. AQP-4 siRNA alleviated cytotoxic edema in TBI rats, demonstrating the
beneficial effects of reduced AQP-4 expression during cytotoxic edema induced by TBI [64].
TBI stimulated nuclear translocation of Foxo3a in astrocytes and upregulated expression of
AQP-4, and depletion of Foxo3a rescued cytotoxic edema by preventing the induction of
AQP-4 after TBI in mice [65]. Kitchen et al. showed that swelling of the brain or spinal cord
is associated with not only total AQP-4 expression but also AQP-4 subcellular translocation
to the blood–spinal cord barrier (BSCB) [85]. Calmodulin directly binds the AQP-4 carboxyl
terminus, driving AQP-4 cell-surface localization, and inhibition of calmodulin in a rat
spinal cord injury model with trifluoperazine, a phenothiazine antipsychotic medicine,
inhibited AQP-4 localization to the BSCB, reduced edema, and led to accelerated functional
recovery compared with untreated animals [85]. As AQP-4 cell surface expression is
controlled by calcium/protein kinase A/calmodulin in astrocytes [85,86], targeting these
pathways may also be new therapeutic approaches to treating cytotoxic edema.

Beyond AQP-4, some functional molecules in astrocytes are also considered as initia-
tors of cytotoxic edema formation. Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) controls
the ion gradient by transporting sodium, potassium, and chloride into cells, and is also
involved in TBI-induced astrocyte swelling. Cultured astrocytes exposed to trauma by
FPI caused a significant increase in NKCC1 activity, and silencing NKCC1 with siRNA led
to a reduction in trauma-induced cell swelling [49,66]. Sulfonylurea receptor 1–transient
receptor potential melastatin 4 (Sur1-Trpm4) is a cation channel that is upregulated in
astrocytes following TBI [19,67]. Blockade of Sur1-Trpm4 reduced CCI-induced edema
formation in rats [67]. Therefore, these functional molecules in astrocytes target therapeutic
drugs for cytotoxic edema in TBI.

5.4. Neuroinflammation

Neuroinflammation is an innate physiological protective response to infection and
injury. However, excessive and chronic inflammation drives neuronal and vascular dys-
function. In both TBI patients and animal models, neuroinflammation is commonly ob-
served [77,87–89]. Reactive astrocytes contribute to the inflammatory response of TBI
by secreting cytokines, chemokines, nitric oxide, danger-associated molecular patterns,
and MMP-9 [68–70]. Additionally, astrocytes promote the activation of microglia and
immune cells, which induce persistent neuroinflammation. Astrocytes are one of the main
producers of IL-33, and IL-33 promotes the recruitment of microglia/macrophages in
TBI mice [71]. Astrocyte-derived S100β is also related to neuroinflammation, and S100β
knockout mice or administration of the neutralizing S100β antibody significantly reduced
TBI-induced microglial activation [72]. Additionally, recent studies have suggested that
some microRNAs (miRNAs) regulate neuroinflammation. In the human perilesional cor-
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tex, miR155 is most prominently expressed in activated astrocytes, and miR155 promotes
inflammation via astrocyte activation after TBI [70].

Contrary observations regarding the roles of astrocytes in neuroinflammation have
also been suggested. Ablation of reactive astrocytes after moderate CCI in transgenic
mice causes more severe inflammation [31]. Additionally, astrocyte-derived exosomes
enriched with miR-873a-5p inhibited excessive neuroinflammation by promoting con-
version to protective M2 microglia by inhibiting the NF-κB signaling pathway in TBI
mice [73]. These results indicate the role of astrocytes in suppressing neuroinflammation.
Thus, astrocytes are key players and play dual roles in neuroinflammation.

6. Candidate Drugs for Controlling Reactive Astrocytes in TBI

Many candidate drugs have been examined and exert protective actions in TBI model
animals. Some of these have also been examined in clinical trials. The candidate drugs
are summarized in Table 3. In TBI models, statins, including atorvastatin, lovastatin,
and simvastatin, which are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase
and therapeutic drugs for hyperlipidemia, reduced proinflammatory cytokine production
and cerebral edema formation [90,91]. A clinical trial in TBI patients demonstrated an
improved functional outcome without reducing contusion [92]. Erythropoietin (EPO),
a secreted glycoprotein, has also been investigated as a potential therapeutic intervention
for TBI, and EPO demonstrated neuroprotective actions in preclinical animal models of
TBI [93,94]. However, double-blind randomized patients with TBI showed no evidence of
EPO efficiency for neurological outcome at 6 months [95,96]. Mesenchymal stromal/stem
cell (MSC) implantation may be a promising strategy for the treatment of TBI. Implantation
of SB623, an allogeneic modified bone marrow-derived MSC, appeared to be safe, and TBI
patients implanted with SB623 experienced a significant improvement in motor status at
6 months compared to controls [97].

Table 3. Summary of the candidate drugs for TBI.

Candidate Drugs Preclinical Effects Clinical Trials References

Statins
(atorvastatin, lovastatin,

simvastatin)

Statins reduced proinflammatory
cytokine production and cerebral
edema formation in TBI animals.

Clinical trial demonstrated an
improved functional outcome,

but without
reducing contusion.

[90–92]

Erythropoietin
Erythropoietin demonstrated

neuroprotective efficacy in
TBI animals.

Clinical trials showed no
evidence of EPO efficiency for

neurological outcome.
[93–96]

SB623
(allogeneic modified bone

marrow-derived MSCs)

Implantation of SB623 showed
significant improvement of

motor status.
[97]

Bumetanide
(NKCC1 inhibitor)

Bumetanide reduced astrocytic
swelling in vitro after FPI.

Bumetanide reduced cellular swelling
and BBB disruption in TBI animals.

Not performed. [66,98,99]

Glibenclamide
(Sur1-Trpm4

channel inhibitor)

Glibenclamide reduced edema, ICP,
hemorrhage, BBB disruption, and

improved neurologic dysfunction in
TBI models.

Glibenclamide improved
outcomes after

moderate-to-severe diffuse
axonal injury while the effect
on edema was not evaluated.

Glibenclamide reduced
contusion expansion but did

not influence clinical outcome
in moderate-to-severe TBI.

[67,100–103]
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Table 3. Cont.

Candidate Drugs Preclinical Effects Clinical Trials References

Estrogens
(17β-estradiol, progesterone)

17β-estradiol inhibited excessive
astrocyte activation and alleviated

neurological deficits,
neuronal injuries, and edema in

rodent TBI models.
Progesterone decreased lesions,
neuronal loss, and edema and

improved cognitive function in
TBI animals.

Estrogens did not show
beneficial effects for TBI in
Phase I to III clinical trials.

[104–109]

AER-271
(selective AQP-4 antagonist)

AER-271 showed a decreased ICP in a
combined model of CCI and

hemorrhagic shock.
Not performed. [110]

Trifluoperazine
(phenothiazine antipsychotic

medicine)

Trifluoperazine inhibited AQP-4
localization to the BSCB, reduced

edema, and led to accelerated
functional recovery.

[86,111]

Fenofibrate
(PPARα agonist)

Pioglitazone, rosiglitazone
(PPARγ agonist)

Fenofibrate reduced
neuroinflammation, oxidative stress,
and cerebral edema, and improved
neurological function in TBI models.

Pioglitazone and rosiglitazone
improved functional and histological

outcomes in TBI animals.

Not performed. [112–116]

SB-3CT
(selective MMP-2 and -9

inhibitor)

SB-3CT reduced lesion volume,
microglial activation, and astrogliosis

after TBI animals.
Not performed. [117,118]

BQ788
(selective ETB

receptor antagonist)
Bosentan

(non-selective ET
receptor antagonist)

BQ788 decreased in excessive reactive
astrocytes, alleviated the BBB

disruption and brain edema in
TBI animals.

Bosentan ameliorated BBB disruption
and brain edema in TBI animals.

Not performed. [30,34,60,78]

Several candidate drugs may target astrocytes. Bumetanide inhibits NKCC1 and
reduces astrocytic swelling in vitro after FPI [49]. In an in vivo TBI model, bumetanide
reduced astrocytic swelling and BBB disruption [98,99]. Glibenclamide blocks the Sur1-
Trpm4 channel that is expressed in astrocytes and reduces regional edema, ICP, hemorrhage,
and BBB disruption and improves neurologic dysfunction in TBI models [67,100,101]. In a
clinical TBI trial, glibenclamide improved outcomes after moderate-to-severe diffuse axonal
injury, but its effect on edema was not evaluated [102]. Another clinical trial demonstrated
that glibenclamide reduced contusion expansion but did not influence clinical outcomes
in moderate-to-severe TBI [103]. Estrogens such as 17β-estradiol (E2) and progesterone
are known as neuroprotective hormones, and estrogen receptors are also highly expressed
in astrocytes [119,120]. E2 treatment significantly inhibited excessive astrocyte activa-
tion and alleviated neurological deficits, neuronal injuries, and brain edema in rodent
TBI models [104,105]. Progesterone administration also decreased lesions, neuronal loss,
edema, and improved cognitive function in TBI animals [106]. Protective actions of estro-
gens include attenuation of neuronal apoptosis, glutamate excitotoxicity, oxidative stress,
enhanced release of neurotrophic factors, and suppressing the release of inflammatory
cytokines [121–123]. However, estrogen administration did not show beneficial effects for
TBI in Phase I to III clinical trials [107–109].

As astrocytes play multiple roles in TBI pathogenesis, astrocyte-targeting drugs are
expected to be novel therapeutic drugs for TBI (Figure 2). Recent studies suggest that
several novel candidates exert beneficial effects in experimental TBI models. AER-271,
a selective AQP-4 antagonist, showed decreased ICP in a combined model of CCI and
hemorrhagic shock [110]. On the other hand, it cannot be denied that AER-271 may
have AQP-4-independent effects on brain water transport. Thus, many studies should
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be performed to validate the AQP-4-dependent effects of AER-271 in future. As AQP-4
is predominantly expressed in astrocytes, selective AQP-4 antagonists may be astrocyte-
targeting drugs. Additionally, trifluoperazine, a licensed phenothiazine antipsychotic
medicine, inhibited AQP-4 localization to the BSCB, reduced edema, and led to accelerated
functional recovery, suggesting a novel candidate drug for cytotoxic edema [85]. Syl-
vain et al. also suggested that trifluoperazine effectively reduced cerebral edema during the
early acute phase in post-stroke mice using a photothrombotic stroke model [111]. Peroxi-
some proliferator-activated receptors (PPARs) play a critical physiological role in immune
responses, and activation of PPARs exerts anti-inflammatory effects, including attenuation
of pro-inflammatory mediators. The PPARα receptor agonist fenofibrate reduces post-
traumatic neuroinflammation, oxidative stress, cerebral edema, and improved neurological
function in TBI models [112,113]. Similarly, the PPARγ receptor agonists pioglitazone
and rosiglitazone also improved functional and histological outcomes after TBI [114–116].
As astrocytes highly express PPARγ [124,125], the beneficial actions of PPARγ agonists
may be through controlling reactive astrocytes. SB-3CT is a highly selective inhibitor of
MMP-2 and MMP-9, and SB-3CT showed promising results in preclinical models of TBI by
FPI and CCI. SB-3CT reduced lesion volume, microglial activation, and astrogliosis after
TBI [117,118]. However, the time and degree of MMP inhibition must be cautious because
MMPs also contribute to neurovascular remodeling and repair [126,127]. Additionally,
we suggest that endothelin ETB receptors are predominantly expressed in reactive astro-
cytes after TBI in mouse cerebrum, and administration of BQ788, a selective ETB receptor
antagonist, reduced the increase in reactive astrocytes [30]. Additionally, BQ788 alleviated
BBB disruption and brain edema by decreasing astrocytic MMP-9 and VEGF-A expression,
and increased astrocytic ANG-1 and SHH expression in TBI mice [30,60,78]. Bosentan,
a non-selective ET receptor antagonist that is used to treat pulmonary arterial hypertension
in the clinical state, also ameliorated TBI-induced BBB disruption and brain edema in
mice [34]. Although these drugs have not been examined in clinical trials for TBI patients,
they may be novel candidates for therapeutic drugs for TBI by controlling the functions of
reactive astrocytes.

Figure 2. Responses of astrocytes in TBI and expected actions of the astrocyte-targeting drugs. Resting type of astrocyte
converts to reactive type in TBI, resulting in induction of astrogliosis. Reactive astrocytes secrete multiple bioactive factors
that exert protective and deleterious actions in central nervous tissue in TBI. In addition, expression of aquaporin-4 (AQP-4)
is increased in reactive astrocytes, resulting in the promotion of cytotoxic edema formation. Astrocyte-targeting drugs
may attenuate excessive astrogliosis, increase protective factors, decrease deleterious factors, and inhibit excessive AQP-4
function.
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7. Conclusions

Emerging studies suggest that the responses and roles of astrocytes in TBI are ex-
tremely complicated and controlled by multiple bioactive factors and intracellular signaling
mechanisms. Although reactive astrocytes exert different actions in TBI, these actions may
depend on the severity, stage, and brain area. As shown in Table 2, reactive astrocytes have
multiple functions in TBI, including promotion and restriction of neurogenesis and synap-
togenesis, acceleration and suppression of neuroinflammation, disruption and repair of the
BBB, and regulation of brain edema formation. These facts imply that astrocytes are widely
involved in TBI pathogenesis and are key players for therapy of TBI. Thus, selective stimu-
lation of astrocytic beneficial functions and attenuation of astrocytic deleterious functions
are promising astrocyte-targeting therapeutic strategies. Increased astrocyte-derived neu-
rotrophic factors and vascular protective factors promote recovery of neuronal function and
BBB while decreased astrocyte-derived inflammatory factors suppress neuroinflammation
in TBI.

Astrocytic AQP-4 is an attractive target for TBI-induced cytotoxic edema. Upregula-
tion of AQP-4 occurs at the site of TBI while downregulation of AQP-4 occurs adjacent to
the site of injury [128]. Inhibition of astrocytic AQP-4 reduces the TBI-induced cytotoxic
edema described in Section 5.3. During edema formation, astrocytic AQP-4 has been shown
to facilitate cytotoxic edema by astrocyte swelling while AQP-4 has also been seen to be
responsible for the reabsorption of extracellular edema fluid, resulting in reduction of
vasogenic edema [129]. Therefore, the timing of AQP-4 inhibition is important for therapy
for brain edema in TBI. Previous studies showed an increased AQP-4 membrane localiza-
tion in astrocytes which was not accompanied by a change in AQP-4 protein expression
levels [130]. As Ciappelloni et al. suggest that trafficking AQP-4 to membrane surface
controls astrocytic function [131], understanding in detail the mechanisms of trafficking
astrocytic AQP-4 to the cell surface may help in the development of new treatments for
TBI-induced cytotoxic edema.

A large number of animal experiments have been performed to develop novel ther-
apeutic drugs for TBI. However, most of them have failed to show beneficial effects in
patients with TBI in clinical trials. These candidate drugs mainly target neuronal cells or
cerebrovascular diseases. Because astrocytes also play a key role in the pathogenesis of
TBI, astrocyte-derived bioactive factors and astrocytic functional molecules are attractive
targets. Several candidate drugs described in this review may target astrocytes and con-
trol the function of reactive astrocytes. Recently, the use of high-throughput screening
and computer-aided drug design were reviewed by Aldewachi et al. [132] and Salman
et al. [133]. These methods must support the discovery of novel drugs. Although we should
elucidate the specific roles of astrocytes and the mechanisms regulating TBI pathophysiol-
ogy by astrocytes, additional potential therapeutic targets for astrocytes must emerge in
the future.
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