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Abstract

Gaucher disease, the most common lysosomal storage disorder, is caused by 3-glucocer-
ebrosidase deficiency. Bone complications are the major cause of morbidity in patients with
type 1 Gaucher disease (GD1). Genetic components strongly influence bone remodelling.
In addition, chronic inflammation produced by Gaucher cells induces the production of sev-
eral cytokines, which leads to direct changes in the bone remodelling process and can also
affect the process indirectly through other immune cells. In this study, we analysed the as-
sociation between bone mineral density (BMD), bone marrow burden score, and relevant
genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory
cytokines in a GD1 cohort. This study included 83 patients distributed according to bone
status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow
involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes re-
lated to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7,
IL-10, IL-13, MIP-1a, MIP-13, and TNFa in plasma samples from 71 control participants and
GD1 patients. SNP genotype proportions and BMD differed significantly between ESR/
€.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associa-
tions between GD1 genotypes and bone affectation. When patients were stratified by
spleen status, we observed significant correlations between non-/splenectomized groups
and Spanish MRI (S-MRI) score. Across genotype proportions of non-/splenectomized pa-
tients and S-MRI, we observed significant differences in ESR/ ¢.453-397T>C, VDR c.-83-
25988G>A, and TNFRSF11B ¢.9C>G polymorphisms. We observed different significant
proinflammatory profiles between control participants, treatment-naive patients, and pa-
tients on enzyme replacement therapy (ERT); between non-/splenectomized patients (be-
tween untreated and ERT-treated patients) and among those with differing GBA genotypes.
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The data suggest that patients with GD1 have increased susceptibility to developing bone
disease owing to the coexistence of genetic variants, and that genetic background in GD1
is fundamental to regulate the impact of proinflammatory status on the development of
bone disease.

Introduction

Gaucher disease (GD) (OMIM#230800), the most common lysosomal disease, is an autosomal
recessive disorder caused by a deficiency of the enzyme B-glucocerebrosidase (EC 3.2.1.45).
This disease is characterized by spleen and liver enlargement, cytopenias, and bone marrow in-
filtration[1]. Bone complications are a major cause of morbidity and one of the most debilitat-
ing aspects of type 1 GD (GD1). More than 80% of GD1 patients have bone involvement [2].
The progressive storage of glucocerebroside in the bone marrow is associated with osteopenia
and osteoporosis, which may to lead fractures, avascular bone necrosis, cortical thinning, lytic
bone lesions, osteosclerosis, and (rarely) acute osteomyelitis [3].

In adults, bones are continually renewed through a process known as “bone remodeling”.
The old bone areas are removed by osteoclasts and replaced by new bone tissue formed by oste-
oblasts. Bone remodeling takes place throughout the entire skeleton, and it has been calculated
that approximately 20% of trabecular bones and 10% of compact bones are involved in this
process [4]. The most important factors that influence bone remodeling are genetic compo-
nents, which may explain between 65% and 90% of bone mass variability [5].

Today, a rather high number of candidate genes that regulate bone mineral density (BMD)
and enhance susceptibility to osteoporosis have been identified [6]. Most genes have been se-
lected based on their role in regulating calcium metabolism or the function of calcium in bone
cells. However, in many cases, the precise underlying mechanism associating these genes with
BMD is unknown. In addition, in GD1, bones may be affected by several complex pathological
mechanisms. The central hypothesis is based on Gaucher cell infiltration, which alters vascular-
ity and increases local pressure owing to extensive glucocerebroside accumulation. Gaucher
cells do not directly induce bone resorption. Chronic inflammation produced by Gaucher cells
induces the production of several cytokines, which can lead to changes in the bone remodeling
process directly, or can act on it indirectly through various other cells of the immune system
[7].

Changes in levels of cytokines such as IL-6 and TNF-o influence bone remodeling cells that
appear to be relevant to the development of osteopenia in GD1. Furthermore, the macrophage
inflammatory proteins (MIPs) MIP-1a and MIP-1f, which have been shown to increase bone
resorption by osteoclasts in multiple myeloma [8], were also elevated in GD with bone disease
[9, 10]; therefore, in combination with other cytokines, MIP-1c. and MIP-1f might also con-
tribute to pathological skeletal alterations in GD1. Besides the role of altered macrophage func-
tion on bone turnover mediated by proinflammatory interleukins, we cannot exclude a
possible role of other cells implicated in bone remodeling process such as osteoblasts as shown
by Mistry et al [11] in glucocerobrosidase gene-deficient mouse.

Before enzyme replacement therapy (ERT) became available, splenectomy was the only
method that improved disease status in patients affected with severe cytopenias, functional
hypersplenism, or local mechanical pressure caused by extensive splenomegaly. However, clini-
cal findings have demonstrated that, over time, splenectomy negatively affects the course of
bone disease in GD. Splenectomized GD patients had higher bone marrow scores indicative of
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severe bone disease than non-splenectomized patients [12]. Splenectomized GD patients also
experienced bone manifestations that were more progressive over time compared with non-
splenectomized GD patients [12].

In the study reported here, we analyzed the association between BMD, the bone marrow
burden Spanish MRI (S-MRI) score, and relevant genetic polymorphisms related to bone me-
tabolism in a cohort of GD1 patients. We also assessed the profiles of proinflammatory cyto-
kines related to the development of bone disease.

Materials and Methods
2.1-Study population

A retrospective, analytical study was performed using frozen DNA and plasma samples (stored
at -80°C) from Spanish GD1 patients diagnosed between 1995 and 2004; patients were followed
for at least 6 years, and their clinical, analytical, and image data was recorded in the Spanish
Gaucher Disease Registry (SGDR] [13]. The SGDR is authorized in accordance with the rules
of the Aragon Ethical Committee (CEICA). For this study, 83 patients were selected and dis-
tributed according GBA genotype and presence/absence of bone disease. Patients with mono-
clonal gammopathy, multiple myeloma, or another associated neoplasia were excluded. A
group of 71 healthy control subjects, without bone disease, was subjected to cytokine analysis.
To compare ethnicity-based genetic differences between our population and the European
population, we used the 1000 Genomes database (www.1000genomes.org). Written informed
consent was obtained from all patients including those from the parents on the behalf of the
minors involved in our study. The study was approved by the Ethics Committee of Aragon
(CEICA) and was conducted in accordance with the Helsinki declaration of 1975, as revised in
2000.

2.2-Anthropometric data

Body Mass Index (BMI) was computed as weight divided by squared height (kg/cm?). Patients
were classified according to BMI score as underweight (<18.5), normal (18.5-24.99), over-
weight (25-29.99), or obese (>30). Ten patients had no recorded weight or height. We used
Spanish anthropometric standards to classify patients younger than 18 years of age [14].

2.3-Bone disease assessment

Each individual underwent a full clinical, analytical, and image evaluation before therapy was
initiated. BMD was measured at the femoral neck and L 1-4 using DXA (LUNAR, GE Medical
Sytems) and at the calcaneus using broadband ultrasound attenuation (BUA; Norland, CUBA
clinical). Ultrasound was completed by the same observer and under the same conditions for
all patients. We used World Health Organisation criteria to classify patients as normal, osteo-
penic, or osteoporotic based on the normative values for young patients [15]. We used Z-score
for patients <50 years old and T-score for patients >50 years old. We considered a patient to
have osteoporosis when patients showed a significant decrease of BMD compared to popula-
tion of same sex and age. Bone marrow involvement was evaluated through serial MRI of the
spine, pelvis, and femurs. Spin echo; T1 and T2-weighted sequences were performed. S-MRI
scores were calculated according to MRI infiltration patterns [16], and patients were classified
as Low-Normal (0-5), Mild (6-10), or Severe (>10).
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2.4-DNA analysis

Genomic DNA was isolated from whole blood using standard procedures. To study patients’
genetic background, we analyzed 26 single-nucleotide polymorphisms (SNPs) located in 14
genes related to bone metabolism (Table A in S1 File).

2.5-Genotyping

We used restriction fragment length polymorphism (RFLP) analysis to assess the following poly-
morphisms: ¢.104-441G>T and ¢.-2116T>G SNPs of COLIAI; c.152T>A, c.1024+283G>A,
€.1025-49G>T, ¢.1056T>C, c.-83-23269A>G, and ¢.-83-23777G>C of VDR; ¢.453-397T>C
of ESRI; c.-208G>A and c.1073A>C of IL6R; c.1180G>A of CLCN7; c.455T>C of BMP4; and
¢.-223C>T of TNFRSF11B. The microsatellite (TA)n repeat in the promoter region of ESRI
was analysed by capillary electrophoresis and sequencing was used to type the c.-1782delT of
COL1A1I and the c.-260_-259insG of OPN. The SNaPshot method (Applied Biosystems) was
used to type the following polymorphisms: ¢.453-351A>G of ESR1, c.-83-25988G>A of VDR,
€.59-1041T>C of RUNX2, ¢.219+2528T>C of TNFSFI11, c¢.142+76A>G of TGFBI; c.9C>G of
TNFRSF11B, ¢.196G>A of BDNF, c.-48-7324A>T of HSD11BI and c.-94C>G VEGF. Further
details on the methods are provided in Text A in S1 File.

2.6-Cytokine assay

We analysed 25-pl plasma samples from patients for eight cytokines in duplicate (IL-4, IL-6,
IL-7,1L-10, IL-13, MIP-10, MIP-1B, and TNFo) using the Human Cytokine Lincoplex Kit
(MPXHCYTO-60K-23; Millipore, Linco Research Inc.). Assays were performed according to
the manufacturer’s recommendations. A standard curve covering the 3.2-10.000 pg/mL con-
centration range was generated by serially diluting reconstituted standards. Fluorescence mea-
sures were acquired using the Luminex100 platform (Luminex Corporation). Data were
collected and analysed with Luminex xPONENT software (Luminex Corporation). A five-pa-
rameter regression formula was used to calculate sample concentration from the

standard curves.

2.7-Statistical methods

Statistical analyses were performed using the Statistical Package for the Social Sciences soft-
ware, version 20.0 (IBM SPSS Inc., Chicago, IL). The chi-squared test was used to compare pro-
portions across groups; associations between individual SNPs, BMD, and spleen status; and
allele and genotype frequencies for each SNP. Effect sizes were evaluated using a likelihood
function. We tested Hardy-Weinberg Equilibrium (HWE) by comparing the observed geno-
type with the expected genotype frequency using the chi-square test. Variable distribution nor-
mality across cytokine groups was analysed using the Kolmogorov-Smirnov test, and mean or
median comparison was performed by a parametric one-way ANOVA using Bonferroni post
hoc or non-parametric Mann-Whitney U and Kruskall-Wallis tests.

Results
3.1-Cohort study

The clinical data obtained from clinical records and bone characteristics of 83 GD1 patients are
detailed in Table 1. BMD was measured in 77 patients and BUA was calculated for 44 patients.
We found significant differences in median BUA values between normal and osteopenic pa-
tients (Fig A in S1 File). We also observed significant associations between GD1 genotypes and
BMD (p = 0.004; Table 2). BMD and S-MRI score were not related to BMI or gender (data not
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Table 1. General and Clinical Cohort Details.

Sex, n (%)
Male
Female
Age, years?®
Genotype,
n (%)
Spleen Status,
n (%)
Clinical history bone impairment,
n (%)

BMI,

n (%)°
DXA, n (%)
BMD,

n (°/o)c

US, n (%)
BMD,

n (%)°¢
BUA(n),
db/Mhz?
S-MRI,

n (%)¢

a Values presented as meanSD (range)
b Adjusted for age

43 (51.8)

40 (48.2)
40.5+18 (5-79)
N370S/N370S
14 (16.8)

Non Splenectomized
62 (74.7)
Bone pain

35 (41.2)
Normal

52 (71.2)

29 (37.6)
Normal

14 (48.3)

48 (62.4)
Normal

29 (60.4)
Normal(25)
82.36+14.07
Low-Normal
57 (68.7)

N370S/L444P N370S/Others
48 (57.9) 21 (25.3)

Splenectomized

21 (25.3)

Avascular necrosis/infarcts Orthopaedic procedures
33 (38.8) 12 (14.5)
Underweight Overweight Obese
5 (6.8) 12 (16.4) 4 (5.5)
Osteopenia Osteoporosis
10 (34.5) 5(17.2)
Osteopenia Osteoporosis
15 (31.3) 4 (8.3)
Osteopenia (15) Osteoporosis(4)
55.43+11.43 38.37+8.6
Mild Severe
13 (15.7) 13 (15.7)

¢ World Health Organization criteria classification Z-score, T-score adjusted for age

d S-MRI score classification: Low-Normal (0-5), Mild (6—10), Severe (>10).

doi:10.1371/journal.pone.0126153.t001

Table 2. GD1 Genotype and BMD?.

shown). When stratified by spleen status, the patients demonstrated significant correlations be-
tween non-/splenectomized groups and S-MRI (p = 0.001) (Fig 1). To analyse the proinflam-
matory cytokine profile, we analyze GD1 plasma samples from members of this cohort
treatment-naive (n = 46/83 (55.4%), mean age 39+20 years); during ERT (n = 42/83 (50.6%),
median age 42+16, imiglucerase therapy 3-6 years, 15-60 U/kg every other week) and control
plasma samples (n = 71, mean age 53£18 years).

GD1 Genotype Bone Affectation p = 0.004
Normal, n (%) Affected, n (%)° n

N370S/N370S 9 (75) 3 (25) 12

N370S/L444P 28 (66.6) 14 (33.3) 42

N370S/others 7 (30.4) 16 (69.5) 23

a Measured by DXA and US

b Osteopenic and osteoporotic patients

doi:10.1371/journal.pone.0126153.t002
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Fig 1. S-MRI scores among non-splenectomized versus splenectomized GD1 patients (p = 0.0001). Low-normal (0-5), Mild (6—10), Severe (>10).

doi:10.1371/journal.pone.0126153.g001

3.2-Genetic screening

The allele frequencies of polymorphisms are described in Table A in S1 File. All of the genotype
distributions were in Hardy-Weinberg equilibrium (p<0.05) except for the following SNPs:
RUNX2 ¢.59-1041T>C, BDNF ¢.196G>A, VDR c.-83-23269A>G, and COLIAI c.-2116T>G
(Table A in S1 File). A significant difference in allelic frequencies between this group of Spanish
GD patients and the European population reported in the 1000 Genomes database were ob-
served in: HSD11BI c.-48-7324A>T; ESRI ¢.453-397T>C and c.453-351A>G; TNFSF11 c.219
+2528T>C; BDNF ¢.196G>A; VDR ¢.1025-49G>T; COL1AI ¢.-2116T>G; IL6R c.-208G>A;
and BMP4 c.455T>C (Table A in S1 File). Moreover, we observed significant associations
among GD1 genotypes and the following SNPs: VDR c.-83-23269A>G (p = 0.027) and c.-83-
23777G>C (p = 0.007); BMP4 c¢.455T>C (p = 0.014); RUNX2 ¢.59-1041T>C (p = 0.01); and
TGFpPI c.142+76 A>G (p = 0.038). We also observed significant differences between SNP geno-
type proportions and BMD in ESRI ¢.453-397T>C (p = 0.038) and VDR c.1024+283G>A vari-
ants (p = 0.039) (Table B in S1 File). We found significant differences across genotype
proportions of splenectomized patients and S-MRI in ESRI ¢.453-397T>C (p = 0.047) and
VDR c.-83-25988G>A (p = 0.045) polymorphisms, as well as for non-splenectomized patients
and S-MRI in TNFRSF11B c.9C>G (p = 0.040) (Table Cin S1 File).

3.3-Cytokine screening

When we stratified the series by sex, we found a significant profile among control group, treat-
ment-naive, and ERT-treated patients. Among males, the untreated patients presented altered
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levels of IL-10, IL-13, MIP-1B, and TNFo compared with the male control group. The male pa-
tients on ERT presented altered levels of IL-13, and TNFa compared with the male control
group. Finally, we observed significant differences in MIP-1f levels between the untreated male
patients and the ERT-treated male group (Fig 2).

Treatment-naive female patients presented altered levels of IL-4, MIP-1a, and TNFa com-
pared with females of the control group. The female patients on ERT presented altered levels of
TNFo compared with the female control group. We also observed significant differences in
MIP-10 and MIP-18 levels between untreated female patients and ERT-treated females (Fig 3).

Surprisingly, we did not observe significantly different cytokine profiles according to BMD
or S-MRI score. We observed a non-significant profile difference between non-/splenecto-
mized patients, in both untreated and ERT-treated patient groups (Fig B in S1 File). In non-
splenectomized patients, levels of MIP-1c, MIP-1B, and TNFa differed significantly between
GD1 untreated and GD1 ERT-treated patients. These differences are not evident in the sple-
nectomized group and GD1 ERT-treated (Fig 4).

3.4-Relationship between genetics and plasma proinflammatory profiles

In plasma samples from untreated patients, levels of IL-10, MIP-10, and TNFo differed signifi-
cantly with respect to GD1 genotype (Fig 5). However, we observed significant differences
among SNP genotypes and different plasma cytokine concentrations (Table D in S1 File). Pa-
tients’ BUA (db/MHz) revealed significant differences between genotypes of SNP VDR c.-83-
23269A>G (A/A = 79; G/A = 64; G/G = 82, (p = 0.036)).

Discussion

Several studies suggest that bone turnover biomarkers may be disturbed in GD [17]. BMD is an
important clinical predictor of fracture risk [18] but a clear relationship between a low bone
mass and risk of fractures is not yet well established. The absolute risk of osteoporotic fractures
increases significantly with age at the same level of bone mass. Both age and prior fracture are
strong predictors of future fractures [19]. We evaluated BMD using DXA in 37.6% of cases and
calcaneus ultrasound in 62.4% of cases. Several studies have shown that BUA and DXA have
the same predictive value [20, 21]. The hypothesis that gene variability may be a predictive
value of osteoporosis risk is supported by the importance of genetic background in the regula-
tion of bone metabolism. To study the genetic background of the study participants, we ana-
lyzed 26 SNPs located in 14 genes related to bone metabolism that had been associated with
BMD loss in previous studies [5, 22-25]. Genotypic frequencies were in Hardy-Weinberg equi-
librium, except for RUNX2 ¢.59-1041T>C, BDNF ¢.196G>A, VDR c.-83-23269A>G, and
COLIAI c.-2116T>G. A small but significant difference was observed, which suggests that in
these four polymorphisms our population not was in genetic equilibrium owing to a small sam-
ple size effect.

Some ethnic differences have been demonstrated in relation to other populations. Results of
our comparison with the 1000 Genomes database demonstrated that allele and genotype fre-
quencies in this GD cohort were similar to those of the European population. We found signifi-
cant differences between our cohort and the 1000 Genomes database in 8 of 26 SNPs (Table A
in S1 File). We also found a significant genetic protective profile against BMD loss and bone in-
filtration or bone lesions. In this sense, the genotypes ESRI c¢.453-397 T/T and VDR ¢.1024
+283G A/A each demonstrated a significant association with protective BMD loss (Table B in
File S1). These results are consistent with other previously published results. VDR SNP ¢.1024
+283G>A (known as BsmlI) has been correlated with BMD, particularly with respect to Z-
score and skeletal involvement in GD [26], and ¢.1024+283GG + ¢.1024+283 GA genotypes
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Fig 2. Distribution of IL-10, IL-13, MIP-1B, and TNFa concentrations among male controls (n = 25); male treatment-naive GD1 patients (GD U;
n =21), and male ERT-treated GD1 patients (GD1ERT; n = 18). ERT: Imiglucerase, 15-60 U/kg every other week for 3—-6 years.

doi:10.1371/journal.pone.0126153.9g002

are more frequent in patients with osteoporotic fractures [24]. The ¢.1024+283G>A SNP is lo-
cated in the 3’ untranslated region of the vitamin D receptor gene (VDR). It is a steroid receptor
that acts as a transcription factor in response to the active form of vitamin D hormone. This
hormone plays an important role in skeletal metabolism, including intestinal calcium
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doi:10.1371/journal.pone.0126153.9g003

absorption and the regulation of osteoblast differentiation [27]. SNP VDR c.-83-23269A>G
differed significantly with respect to mean BUA (db/MHz) value and genotype. Mean BUA val-
ues are significantly lower among osteopenic patients than among normal GD1 patients
(Figure A in S1 File). A genome-wide association study (GWAS) reported that five SNPs in the
ESRI gene exhibited an association with BMD of both the hip and spine, suggesting a possible
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Fig 4. Comparison of the distribution of MIP-1a, MIP-1B8, and TNFa concentrations: treatment-naive (GD1U; n = 40) versus ERT-treated (GD1ERT;
n = 27) non-splenectomized patients, and treatment-naive (GD1U; n = 6) versus ERT-treated (GD1ERT; n = 15) splenectomized patients.
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role for the ESRI gene in the pathogenesis of osteoporosis [22]. A more recent GWAS further
confirmed the association between the ESRI gene and osteoporotic fractures [28]. The most
studied variants of the ESRI gene are the ¢.453-397T>C and c.453-351A>G (known as Xbal)
polymorphisms, which have been linked to reduced estrogen sensitivity [29]. The estrogen
ESRI complex is primarily responsible for regulating cellular signaling pathways in vivo, as
well as bone mass in skeletal systems [30]. Serum estradiol level may be a predictor of subse-
quent BMD [31] and risk for osteoporotic fractures [32]. Although GBA1 genotype is not a
critical factor for low BMD [33], patients with hetero-allelic N370S tend to have more hemato-
logical and visceral manifestations in GD1 [34]. We found associations between GBAI geno-
types, different genetic bone metabolism SNPs, and bone affectation; 69.5% of the N370S/
others had low BMD (Table 2). These results are in concordance with the correlation between
GBA1 genotypes and S-MRI score published elsewhere [16].

Significantly different proinflammatory profiles were observed in relation to GD genotype
(Fig 5). N370S homozygous showed significantly high levels of MIP-1a and anti-inflammatory
IL-10. Before ERT became available, splenectomy was frequently performed to control the ad-
verse effects of an enlarged spleen in most affected patients. However, over time, an association
between splenectomy and the exacerbation of GD-related bone disease has emerged [12]. For
this reason, we decided to stratify the groups according to spleen status. We observed
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Fig 5. Distribution of IL-10, MIP-1a, and TNFa concentrations among GD1 genotypes N370S homozygous (n = 9); N370S/L444P (n = 31), N370S/
others (n = 6).

doi:10.1371/journal.pone.0126153.g005
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significant differences between splenectomized and non-splenectomized patients with regard
to S-MRI scores. Eighty percent of non-splenectomized patients had a low normal score (Fig
1), which supported the clinical findings [12].

Genetic screening with respect to spleen status revealed three SNPs significantly associated
with infiltration and bone lesions. In splenectomized patients, the polymorphism found in this
study related with BMD protective effect ESRI ¢.453-397 T/T and VDR c.-83-25988 G/A het-
erozygous had a low-normal S-MRI score. Yamamoto et al.[35] described the VDR c.-83-
25988 polymorphism as a functional binding site for the intestine-specific transcription factor
Cdx-2 in the promoter region of the VDR gene. Subsequently, Arai et al.[36] described a G-to-
A substitution at this Cdx-2 site that was found to modulate the intestine-specific transcription
of the VDR gene. In addition, 100% of non-splenectomized patients with the TNFRSFI1B c.9
C/C polymorphism exhibited low-normal S-MRI scores.

The TNFRSF11B gene encodes osteoprotegerin (OPG), a new member of the tumor necrosis
factor receptor superfamily and a key regulator of bone remodeling [37]. OPG protects bone
from excessive resorption by inhibiting the terminal stages of osteoclastogenesis [37], thereby
suppressing mature osteoclast activation [38] and inducing osteoclast apoptosis [39]. This nu-
cleotide substitution causes a change in the third amino acid in the signal peptide of OPG,
from lysine to asparagine (p. K3N) [23]. The change of a basic lysine to asparagine (an un-
charged polar amino acid) might influence the intracellular trafficking or export efficiency of
the protein [40].

GD is associated with the release of several proinflammatory cytokines [10, 41]. We have
observed high levels of IL-4, MIP-1¢, MIP-18, and TNFo, and lower levels of anti-inflammato-
ry IL-10 and IL-13 in GD male and female patients compared with healthy control participants.
The main chemotactic factors involved in the recruitment of mononuclear cells are monocyte
chemotactic protein-1 (MCP-1) and macrophage inflammatory proteins MIP-1o and MIP-18,
which have been shown to increase bone resorption by osteoclasts in multiple myeloma [8].
Macrophage inflammatory proteins are also elevated in GD patients with bone disease [9, 10].
The IL-4, IL-13, and TNFa profiles have been reproduced in an in vitro GD model induced by
Conduritol B epoxide (CBE) in peripheral blood mononuclear cells (PBMCs) [42]. The addi-
tion of CBE plus lipopolysaccharides increased TNFa. secretion, and a tendency toward a re-
duction in the secretion of the T-cell derived cytokines IL-10 and IL-13 was observed.
However, the exposure of PBMCs to CBE induced increased production of IL-4, which might
reflect the differentiation of macrophages into alternative phenotypes [42]. Kacher et al.[43]
showed that macrophages from a mouse model of GD, the L444P mouse, release significantly
less IL-10 than their untreated counterparts. The reduced IL-10 secretion observed in GD
mouse macrophages may be relevant to explain the increase in inflammation that is often ob-
served in GD [43]. Surprisingly, we did not find significantly different plasma cytokine profiles
according to BMD or S-MRI score, probably due to high inter-individual variability. ERT re-
sulted in low cytokine profiles in plasma samples (Figs 2 and 3). ERT has been shown to pro-
duce short-term improvements in visceral and haematological complications and biomarkers
in GD1 [44]. This improvement, due to glucosylceramide reduction, is reflected in the reduc-
tion of proinflammatory cytokines. The response of bone disease to ERT is much slower in
adult patients with GD [45]; it is possible that early action of ERT on the Gaucher cells, avoid-
ing the alteration of the immune system, achieves better results in the treatment of bone dis-
ease. BMD has been assessed before starting ERT. However, it may be important to analyze the
degree of bone involvement in relationship with the timing of ERT initiation. It could be possi-
ble that patients with more severe bone disease are those who initiated ERT later; therefore
they would have longer severe manifestations of GD. We analyzed the impact of splenectomy
on proinflammatory profiles, and found that the median concentrations of all cytokines in

PLOS ONE | DOI:10.1371/journal.pone.0126153 May 15,2015 11/15



@’PLOS ‘ ONE

Role of Genetics and Proinflammatory Status on Gaucher's Bone Disease

untreated GD1 plasma samples are higher among non-splenectomized than splenectomized
patients. These results are consistent with other published results that correlate spleen volume
with disease plasma markers such as chitotriosidase or chemokine PARC/CCL18 [46]. Splenec-
tomized GD patients had higher S-MRI scores, indicative of more severe bone disease, than
non-splenectomized patients (Fig 1); this information supports clinical findings [12]. Splenec-
tomy increases the number of Gaucher cells infiltrated into bone marrow, boosting the immu-
nological alteration in the bone microenviroment caused partially by Gaucher mesenchymal
stromal cells (MSCs].Campeau et al [47] find that Gaucher MSCs display an altered cytokine
secretome that may be important in the bone and immune alterations. Concerning ERT thera-
py and splenectomy, we observed that cytokine levels were more sensitive to therapy in non-
splenectomized patients. Among non-splenectomized patients, we observed significantly lower
levels of MIP-1a, MIP-1p, and TNFa in ERT-treated versus untreated GD1 patients (Fig 4).
The lack of difference in these cytokines between ERT-treated and untreated groups of splenec-
tomized patients suggests that the immunological burden is lower in circulating blood and
therefore greater in the bone microenviroment than non-splenectomized patients. It is unlikely
that splenectomized patients have different susceptibility for bone involvement than those not
spelenectomized and probably the fact that splenectomized patients have greater chronic in-
flammatory burden is independent of genetic predisposition. In this case the genetic back-
ground could be acting as an inmunomodulatory modifier, minimizing infiltration and bone
lesions.

We observed significant differences between some cytokine concentrations and different
SNP genotypes located at the ESRI, VDR, BDNF, RUNX, and OPN genes (Table D in S1 File).
Therefore, genetic background not only directly influences bone metabolism, but can also act
as a genetic modifier of inflammation. The retrospective analysis of proinflammatory cytokines
in patients’ plasma samples is a limitation of this study. More basic research studies in cell or
animal models will be required to better understand bone disease and develop new therapies
against the immunomodulation of Gaucher cells.

Conclusion

Our data suggest that in patients with GD, genetic background is fundamental to regulate the
proinflammatory effect on bone disease development. Patients with GD1 are more susceptible
to developing bone disease owing to the coexistence of genetic variants that increase the risk of
bone involvement, including GBA genotypes. The proinflammatory cytokine profile changes
according to the degree of response to ERT. Early treatment likely avoids disruption of the im-
mune system, and consequently the development of BD, by reducing chronic inflammation
produced by Gaucher cells in the bone marrow. This study supports the hypothesis that in
Gaucher disease it is important to reverse the chronic alteration of the immune system by an
early and personalized treatment avoiding the splenectomy in order to avert the cascade of the
subsequent cytokines, reducing the number and intensity of bone complications.

Supporting Information
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tients. Fig B, Comparison of plasma cytokine profiles in non-splenectomized versus splenecto-
mized patients. A) Treatment-naive GD1 patients; B) ERT-treated GD1 patients. Table A,
GD1 Minor Allele Frequency (MAF), 1000 Genomes European Population MAF and Hardy-
Weinberg Equilibrium (HWE). Table B, SNPs, Genotype, and BMD Association. Table C,
SNPs, Genotype, and S-MRI Association Stratified by Spleen Status. Table D, Significant Dif-
ferences in Cytokine Levels (pg/ml) Among SNP Genotypes. Table E, Primers and Probes.
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