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Abstract

Background: Patients with systemic sclerosis (SSc) may develop exercise intolerance due to musculoskeletal involvement,
restrictive lung disease, left ventricular dysfunction, or pulmonary vasculopathy (PV). The latter is particularly important
since it may lead to lethal pulmonary arterial hypertension (PAH). We hypothesized that abnormalities during
cardiopulmonary exercise testing (CPET) in patients with SSc can identify PV leading to overt PAH.

Methods: Thirty SSc patients from the Harbor-UCLA Rheumatology clinic, not clinically suspected of having significant
pulmonary vascular disease, were referred for this prospective study. Resting pulmonary function and exercise gas
exchange were assessed, including peakVO2, anaerobic threshold (AT), heart rate- VO2 relationship (O2-pulse), exercise
breathing reserve and parameters of ventilation-perfusion mismatching, as evidenced by elevated ventilatory equivalent for
CO2 (VE/VCO2) and reduced end-tidal pCO2 (PETCO2) at the AT.

Results: Gas exchange patterns were abnormal in 16 pts with specific cardiopulmonary disease physiology: Eleven patients
had findings consistent with PV, while five had findings consistent with left-ventricular dysfunction (LVD). Although both
groups had low peak VO2 and AT, a higher VE/VCO2 at AT and decreasing PETCO2 during early exercise distinguished PV
from LVD.

Conclusions: Previously undiagnosed exercise impairments due to LVD or PV were common in our SSc patients.
Cardiopulmonary exercise testing may help to differentiate and detect these disorders early in patients with SSc.
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Introduction

Dyspnea on exertion, fatigue, and reduced exercise tolerance

are common symptoms in patients with systemic sclerosis (SSc).

These symptoms can often be explained by involvement of the

musculoskeletal system, lungs, heart, chest wall, and/or pulmo-

nary vasculature, in isolation or combination. Patients with SSc

are at particular risk for developing pulmonary vasculopathy (PV)

leading to pulmonary arterial hypertension (PAH). Untreated,

PAH results in right ventricular failure, and early death [1].

PV impairs dilatation of affected pulmonary blood vessels,

impeding pulmonary blood flow during exercise. This eventually

leads to pulmonary hypertension and exercise intolerance.

Initially, the degree of exercise limitation is determined by the

ability of the right ventricle to hypertrophy and maintain adequate

blood flow through the lungs. At this stage, pulmonary

hypertension might only be visible during exercise [2,3]. Over

time, vasculopathy progresses and the right ventricular reserve fails

to meet the pulmonary blood flow required for the increased O2

demand of exercise, leading to exertional dyspnea and fatigue and

physical signs of pulmonary hypertension.

Early detection of PV may be desirable since timely therapeutic

intervention improves outcomes in experimental models [4,5].

Additionally, treatment of patients with early PAH can delay

clinical worsening [6]. Pulmonary vasculopathy develops unevenly

in the lungs. Thus, abnormal gas exchange findings characteristic

of ventilation-perfusion mismatching, is an early abnormality

during cardiopulmonary exercise testing (CPET) [7].

The gas exchange abnormalities during CPET in patients with

PV reflect hypoperfusion of well-ventilated acini. Thus, ventilation
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(VE) is high compared to relatively low CO2 output (VCO2) and

reduced end-tidal PCO2 (PETCO2), manifesting hypoperfusion of

well-ventilated lung. In this study, we performed CPET in a group

of referred SSc patients, without previously known or suspected

PV. We expected that these patients would display heterogeneous

gas exchange patterns during exercise, which cannot be explained

by resting measurements alone. We hypothesized that we would

find characteristic gas exchange patterns that would enable us to

discriminate between the different causes of exercise intolerance,

based on the exercise pathophysiology. We hypothesized that

some of the patients would show gas exchange patterns during

exercise that are characteristically found in patients with overt

pulmonary vascular pathophysiology.

Methods

Ethics statement
This study was conducted in accordance with Good Clinical

Practices and the current version of the revised Declaration of

Helsinki [8]. The local Los Angeles Biomedical Research

Institutional Review Board approved the protocol. A written

informed consent was obtained from each patient prior to

enrollment.

Study population
We prospectively screened 32 SSc patients referred from the

Rheumatology Clinic at Harbor-UCLA Medical Center for CPET

in order to determine if they had evidence of PV. Prior to referral,

all patients had chest X-rays and/or high-resolution chest CT-

scans. All patients had echocardiography with estimation of

pulmonary artery pressure (PAP) prior to referral. Patients with

estimated systolic PAP .35 mmHg, were excluded.

All patients had been diagnosed with SSc according to the

criteria of the American College of Rheumatology (ACR) [9]. One

patient refused to perform CPET and another could not perform

CPET because of joint stiffness. Thus, thirty patients performed

CPET.

Evaluations
6-minute walk test. All patients performed an unencour-

aged, standardized 6-minute walk test (6MWD), at least one hour

before or after CPET [10].

Pulmonary function testing. Total lung capacity (TLC),

forced vital capacity (FVC), forced expired volume in one second

(FEV1), diffusing capacity for carbon monoxide (DLCO) and

alveolar volume (VA) were all measured as part of CPET and are

expressed as percent predicted.

Assessment of restrictive lung disease. Restrictive lung

disease was assessed by a combination of resting pulmonary

function tests (PFTs), including diffusion capacity for carbon

monoxide (DLCO), by Chest X-ray (CXR) and by high-resolution

computed tomography (HRCT). An HRCT was performed if

there were abnormalities in PFTs or CXR. An HRCT was not

performed in patients with normal PFTs and a normal CXR, or a

definite diagnosis of ILD based on these two measurements.

The available HRCT-scans in patients with suspected ILD (20

out of 30) were analyzed for signs of pulmonary venous occlusive

disease (PVOD). Main characteristics were enlarged mediastinal

lymph nodes, alveolar hemorrhage, centrilobular ground glass

opacities and septal lines on HRCT.

Cardiopulmonary exercise testing. CPET was performed

with upright cycling on a stationary cycle ergometer. The exercise

protocol consisted of 3 minutes of rest and 3 minutes of unloaded

cycling, followed by an incremental work rate between 5 and 15

watts per minute up to the patients’ maximum tolerance, then 3

minutes of recovery. Gas exchange was measured breath-by-

breath during the test, using a MedGraphics CPX-Ultima gas

exchange system (Medical Graphics Corporation, St. Paul,

Minnesota). Equipment was calibrated as previously described

[11]. ECG and pulse oximetry were continuously monitored and

blood pressure was measured every two minutes. Minute

ventilation (VE), heart rate (HR), VO2/HR, VO2, VCO2,

VCO2 vs VO2, VE/VO2, VE/VCO2, tidal volume (VT) vs VE,

end-tidal PO2 (PETO2) and PCO2 (PETCO2) and the respiratory

exchange ratio (RER) were averaged every 10 seconds. The

anaerobic threshold (AT) was determined from gas exchange, by

the V-slope method as previously described [12], in all patients.

The AT was derived from a plot with VO2 (x-axis) and VCO2 (y-

axis) on equal axis scaling, and was recognized as the point where

VCO2 started to increase faster than VO2. AT prediction was

performed as previously described [13,14]. The other key variables

were calculated and plotted as previously described [15,16]. All

studies were independently reviewed by two authors (DD and

KW). Disagreements were adjudicated after review by a third

author (JH), and consensus agreement among all three.

Categorizing Exercise Impairment
Patients with known severe heart or lung disease limiting

exercise, or individuals with known PAH, were not referred by the

Rheumatologists. An additional two patients with uninterpretable

cardiopulmonary exercise test results were not included in the

analysis (2 of 30 patients). The first patient stopped during the

unloaded cycling phase due to joint pain. The second patient had

a very noisy and chaotic breathing pattern. For both of these

patients, peak VO2, the AT and VE/VCO2 at the AT could not be

accurately determined. Thus, 28 patients were available for

analysis. Figure 1 presents the algorithm utilized. Disagreement in

the blinded interpretation of the CPET studies occurred in 2 of 28

interpretable cases. Agreement was reached in these two cases by

review of a third author. The normal category included those with

a normal peak VO2, normal anaerobic threshold (AT) normal

ventilation-perfusion matching, and no exercise-induced hypox-

emia (6 of 28 patients). The normal category also included six

patients with a reduced peak VO2, but with normal AT, no

abnormality in ventilation-perfusion matching or exercise-induced

hypoxemia and an RER at peak exercise below 1.0, indicating

submaximal effort. These patients were categorized as not being

limited by heart or lung disease. Thus, 12 of the 28 patients were

categorized as normal.

Patients were categorized in the left ventricular dysfunction

(LVD) group if they had a reduced peak VO2, AT, peak O2-pulse

and D VO2/DWR - but without ventilation-perfusion mismatch or

exercise-induced hypoxemia or RER at peak exercise ,1.0. (5 of

28 patients were in this category).

Patients were categorized in the PV group if they had a reduced

peak VO2 and AT, reduced peak O2-pulse and DVO2/DWR, and

ventilation-perfusion mismatch (elevated VE/VCO2 at the AT or

at the ventilatory compensation point (VCP) following AT). In

addition, based on prior research [17,18], suspected PV was

separated from LVD by a decreasing PETCO2 from the start of

exercise to AT (9 of 28 patients were in this category), in contrast to

an increasing PETCO2 in LVD and normal subjects. Two other

patients showed rising PETCO2 during exercise but were classified

as suspected PV secondary to their restrictive lung disease with

parallel loss of pulmonary capillary volume (low TLC and DLCO

with normal FEV1/FVC), however breathing reserve was thought

to be adequate without mechanical ventilatory limitation at peak

exercise. This is based on a prior study [19] showing that lung

Gas Exchange in Scleroderma
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restriction from pulmonary fibrosis, before functional lung

restriction, is accompanied by exercise limiting PV.

Statistical analysis
A total of 28 of the SSc patients referred, with interpretable

CPET studies, were analyzed; they were divided into 3 major

categories: normal, LVD and PV, as described above. Continuous

variables are expressed as mean 6 SD. The three groups were

individually compared to each other. Differences were analyzed

using one way ANOVA, followed by Holm-Sidak testing for

multiple comparisons. Nominal data were analyzed by Chi-square

test for multiple groups. In all cases, a p value ,0.05 was

considered statistically significant.

Results

Table 1 shows the demographics according to diagnostic category.

All patients tolerated CPET well, and there were no adverse events.

Gas Exchange Patterns
Figure 2 shows how the 15 variables taken from the CPET 9-

panel plots of two representative SSc patients were analyzed.

Figure 2a shows an SSc patient with a normal CPET response;

Figure 2b shows another SSc patient with PV. The 4 arrows in

Figures 2a and 2b correspond to the 4 branch-point parameters

shown in Figure 1. The legend for figure 2 provides further detail.

Table 2 shows the 6 minute walk distance, key pulmonary

function measurements, the presence of restrictive lung disease,

pulse oximetry, and seven CPET parameters by diagnostic

categories. Six patients achieved their predicted peak VO2, and

another six stopped exercise prematurely without evidence of

cardiovascular or pulmonary limitation. All 12 had linear increases

in HR vs VO2 relationship towards their predicted value, normal

AT, O2-pulse, and VE/VCO2 @ AT, as exemplified in figure 2a.

We classified all 12 as normal. The other 16 patients achieved a

symptom-limited test below their predicted peak VO2, and also

had additional abnormalities. Of these 16, 5 were classified as

LVD and 11 were classified as PV. Two of the latter also had

significant restrictive lung disease with reduced FVC, TLC and

DLCO. No patients were limited by obstructive lung disease, all

had an adequate breathing reserve at peak exercise. In the patients

who underwent HRCT due to clinical suspicion of interstitial lung

disease (ILD), presence of ILD was found among all groups, with a

trend to higher occurrence in the PV group. However, this

difference did not reach statistical significance (p = 0.07).

None of these patients showed signs of PVOD.

Figure 1. Categorizing referred SSc patients with normal and reduced exercise capacity, using cardiopulmonary exercise testing.
Exercise intolerance was attributed to left ventricular dysfunction or pulmonary vascular disease. Normal is defined as either: a) normal in all
cardiovascular and ventilatory aspects of exercise gas exchange, including normal ventilation-perfusion matching and normal peak VO2, or b)
reduced peak VO2 with normal AT and no gas exchange abnormalities suggestive of heart, lung or pulmonary vascular disease. Diamonds (branch-
points) address specific data: Branch-point 1: Right branch: If the peak VO2 is $75% of predicted with normal VE/VCO2 and PETCO2 @ AT and non-
ventilatory limitation, the patient is considered to have normal heart and lung function. Left branch includes all with peak VO2 ,75%. Branch-point 2:
If the AT is normal and ventilation-perfusion matching and lung mechanics are normal (right branch), the patient is considered to be limited by poor
effort and not limited by heart or lung disease. If the AT is reduced (left branch), the patient is likely to have left ventricular dysfunction or pulmonary
vasculopathy. Branch-point 3: The VE/VCO2 @AT was used to assess matching of ventilation to perfusion. All patients with pulmonary vasculopathy
would have ventilation/perfusion mismatching and an elevated VE/VCO2. A cut-off value of $34 was selected. If not elevated, they were considered
to have left ventricular dysfunction. Branch point 4: PETCO2 usually increases from the beginning of exercise to the AT in patients with normal
cardiopulmonary function and patients with left ventricular dysfunction (right branch). However, it usually decreases in patients with pulmonary
arterial hypertension (left branch). Nine of the 11 patients classified as pulmonary vasculopathy had a decreasing PETCO2. Two had either no change
or increasing PETCO2 from the start of exercise to the AT, possibly due to lung restriction. However, they hyperventilated above their AT. If the patient
had moderate to severe restriction and marked decrease in DLCO, this signified interstitial lung disease with pulmonary vasculopathy.
doi:10.1371/journal.pone.0014293.g001

Gas Exchange in Scleroderma
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Table 1. Demographics for each exercise diagnosis in 30 scleroderma patients.

Not interpretable
exercise test results
(n = 2)

Normal exercise
capacity (NL)
(n = 12)

Left Ventricular
Dysfunction
(LVD)
(n = 5)

Pulmonary
vasculopathy
(PV)
(n = 11) NL vs. LVD

p-value
NL vs. PV LVD vs. PV

M/F 0/2 2/10 2/3 1/10

Limited/diffuse SSc 2/0 9/3 3/2 9/2

NYHA Class I 1/2 6/12 4/5 2/11

NYHA Class II 1/2 6/12 1/5 8/11

NYHA Class III 0/2 0/12 0/5 1/11

Age (years) 5161 5267 41611 49614 n/s (p = 0.31)

BMI (kg/m2) 28.267.2 28.567.7 27.063.9 26.465.7 n/s (p = 0.73)

ACA positive 1/2 5/12 2/5 2/11 n/s (p = 0.44)

Scl-70 positive 1/2 3/12 0/5 3/11 n/s (p = 0.30)

ACA = anti-centromer antibodies.
Scl-70 = DNA-topoisomerase I antibodies.
doi:10.1371/journal.pone.0014293.t001

Figure 2. Gas exchange response to exercise in two SSc patients. Nine panel plots of a patient with normal exercise performance (Fig. 2a)
and one with pulmonary vasculopathy (Fig. 2b). The protocol consisted of a 3-minute resting period, followed by 3 minutes of very-low-level cycle
exercise, and then increasing cycle workload to the patient’s maximum tolerance. Points are 20-second averages. Panel 1 is plot of ventilation against
time. Panel 2 is plot of heart rate and O2-pulse against time. Panel 3 is plot of O2 uptake (VO2), CO2 output (VCO2) and work rate against time. Panel 4
is plot of minute ventilation (VE) against VCO2. Panel 5 is plot of VCO2 and HR against VO2. Panel 6 is plot of ventilatory equivalent for VO2 (VE/VO2)
and VCO2 (VE/VCO2) against time. Panel 7 is plot of tidal volume against minute ventilation, with resting maximum voluntary ventilation on the X-axis
and inspiratory capacity and vital capacity, measured at rest, on the Y-axis. Panel 8 is plot of gas exchange ratio (RER) against time. Panel 9 is plot of
end tidal pO2 (PETO2), end tidal pCO2 (PETCO2) and pulse oximeter arterial oxyhemoglobin saturation against time. The normal subject (figure 2a) is a
59 year old female with scleroderma. Peak VO2 and AT are normal (panels 3 and 5) There are no signs of impaired oxygen flow, or ventilation/
perfusion mismatching during exercise. Peripheral oxyhemoglobin saturation does not decrease during exercise. There is adequate breathing reserve.
The subject with suspected pulmonary vasculopathy (figure 2b) is a 37 year old female with scleroderma. Peak VO2 and AT are reduced (panel 3,
panel 5). Ventilatory equivalents are elevated and decrease only slightly during exercise (panel 6). End-tidal pCO2 is low and decreases during exercise
(panel 9), consistent with reduced gas exchange efficiency rather than voluntary hyperventilation (RER is normal, panel 8). The patient stopped
exercise because of leg pain. Four arrows are placed on each of Figures 2a and 2b that correspond to the branch-points described in Figure 1, Arrow
1 points to the peak VO2 in panel 3 (branch-point 1). Arrow 2 points to the AT in panel 5 (branch-point 2). Arrow 3 points to the VE/VCO2 at the AT in
panel 6 (branch-point 3). Arrow 4 points to the changing PETCO2 from start of exercise to AT in panel 9.
doi:10.1371/journal.pone.0014293.g002
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Exercise Capacity
The cause of exercise limitation discerned from all 28

interpretable cardiopulmonary exercise tests was determined using

the algorithm shown in Figure 1. Its branch-points systematically

examined each of the key parameters from the 9-panel plots

(Figure 2). Figure 2 shows where the branch-point data were

obtained in each patient’s 9-panel plot. Exercise capacity was

significantly reduced due to identifiable defects in 16 of the 28

patients. In these patients, peak VO2 and VO2 at AT were ,75% of

the absolute predicted value and/or oxygen pulse reached a plateau

at a significantly reduced value above the AT (Figure 2b, panel 2).

Several measurements in Table 2 are of special interest. FVC

values were mildly reduced, 6MWD was moderately reduced, and

DLCO values were markedly reduced from normal in the PV

group (p,0.001). However, reductions were qualitatively similar

in the two cardiovascular disorders, the difference did not reach

statistical significance. The FVC/DLCO ratio showed the same

results: Only the normal and the PV group showed a difference

which reached statistical significance (p = 0.01). The difference

between the normal and the LVD group, as well as the difference

between the PV and the LVD group were not statistically

significant (p = 0.17 and p = 0.37, respectively).

Peak VO2, AT, peak O2 pulse and D VO2/DWR were all

reduced in patients with PV and LVD, but the magnitudes and

patterns of these reductions did not distinguish the two disorders.

As single parameters, only PETCO2@AT (p = 0.004), VE/

VCO2@AT (p = 0.002) and the changes in PETCO2 from early

exercise to the AT (p = 0.002) distinguished LVD from PV.

The directional change in PETCO2 at the start of exercise to the

AT (DPETCO2) tends to be negative (decreases to the AT), as has

been previously shown in patients with idiopathic PAH [17,18]. In

contrast, PETCO2 increases from the start of exercise to the AT in

the normal subjects and the patients with LVD (Fig. 3). There was

no significant difference between the normal (3.262.3 mm Hg)

and LVD (3.962.0) groups (p = 0.93) in the PETCO2 change.

However, the PV group (21.362.6) differed significantly from

both (p,0.001 and p = 0.002, respectively).

Figure 4 shows the relationships of PETCO2 to VE/VCO2 at

the AT of all patients. Although there is some overlap, most

patients with pulmonary vasculopathy had a lower PETCO2 and

higher VE/VCO2 than the normal and LVD groups.

The FEV1/FVC ratio was normal in all subjects. However, on

average, our patients with PV tended to have lower FVC than the

normal and LVD groups, (Table 2). To distinguish those patients

with PV and restriction from those without or less restriction, we

plotted the FVC against VE/VCO2 and PETCO2 at AT (Figures 5a

and 5b). Approximately half of the patients with ventilation-

perfusion mismatch (high VE/VCO2 and low PETCO2 at the AT)

had significant reductions in FVC, while the others had PV with

no or minimal restriction (normal FVC).

Table 2. Physiologic measurements related to resting lung function and gas exchange during exercise in 28 scleroderma patients.

Normal exercise
capacity (NL)
(n = 12)

Left Ventricular
Dysfunction
(LVD)
(n = 5)

Pulmonary
vasculopathy
(PV)
(n = 11) NL vs. LVD

p-value
NL vs. PV LVD vs. PV

Aerobic
capacity

6-MWD (m) 444678 394666 351676 0.22 0.01 0.31

Peak V̇O2

(% predicted)
73.5613.1 46.965.8 48.8612.0 ,0.001 ,0.001 0.76

AT
(% predicted)

102.0617.8 66.0611.5 71.5619.4 ,0.001 ,0.001 0.58

Cardiac
Function

Peak O2 pulse
(% predicted)

87.1613.1 65.566.5 72.6617.6 0.009 0.03 0.37

D V̇O2/DWR ((ml/min)/W) 9.160.9 7.260.9 6.562.0 0.001 ,0.03 0.45

Ventilatory
inefficiency

V̇E/V̇CO2AT* 29.862.9 30.262.4 39.268.3 0.87 ,0.001 0.002

PETCO2AT* (mmHg) 37.964.5 37.464.0* 31.062.5* 0.82 ,0.001 0.004

Difference PETCO2AT –
PETCO2Start (mmHg)

3.262.3 +3.962.0* 21.362.6 * 0.93 ,0.001 0.002

Lung function/
imaging

FVC
(% predicted)

94.9613.8 92.1623.1 75.7618.5 0.75 0.01 0.08

FEV1/FVC
(% predicted)

95.566.6 91.068.6 95.468.2 n/s (p = 0.60)

DLCO

(% predicted)
89.8622.6 71.8612.9 54.7617.6 0.18 ,0.001 0.05

FVC/DLCO

(no unit)
1.1460.17 1.3060.28 1.4560.29 0.17 0.01 0.37

Presence of ILD 3/12 2/5 8/11 n/s (p = 0.07)

Pulse oximetry Resting SpO2

(%)
96.861.81 95.8(2.17 96.5(2.07 n/s (p = 0.82)

Nadir SpO2
(%)

91.9(5.52 94.4(3.78 90.8(6.14 n/s (p = 0.48)

* = p,0.05, left ventricular dysfunction group vs. pulmonary vasculopathy group.
doi:10.1371/journal.pone.0014293.t002
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Discussion

Previous studies have described lung gas exchange abnormal-

ities at rest and during exercise in SSc patients [20]. However, this

is the first study to show that abnormal gas exchange patterns

during exercise, characteristic of PV, can be seen in patients with

SSc without elevated pulmonary artery pressure on echocardiog-

raphy or of having pulmonary vascular disease based on clinical

Figure 3. Difference between PETCO2 at AT and PETCO2 at start of exercise, plotted against AT, percent predicted, for SSc patients
with normal exercise tolerance, left ventricular dysfunction, and pulmonary vasculopathy.
doi:10.1371/journal.pone.0014293.g003

Figure 4. PETCO2 as a function of VE/VCO2 at the anaerobic threshold in 28 SSc patients.
doi:10.1371/journal.pone.0014293.g004

Gas Exchange in Scleroderma
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suspicion. These abnormal CPET patterns may represent early

PV, which with time, may lead to clinical and symptomatic

pulmonary hypertension at rest.

Using CPET, we found evidence of possible PV in an SSc patient

population, which was asymptomatic for the disease. A decreased

peak VO2 along with a reduced AT has been the primary marker of

reduced exercise capacity in patients with cardiovascular limitations

to exercise [21]. However, patients with multi-organ diseases like

scleroderma, are frequently exercise-limited with unclear cause.

The 6MWD cannot be expected to define pathophysiology or

differentiate causes of reduced exercise capacity. Therefore

assessment of measures beyond 6MWD and peak VO2 measure-

ments is needed to identify the specific pathophysiology underlying

exercise intolerance.

In this study, we hypothesized that measures of ventilatory

efficiency, specifically PETCO2 and VE/VCO2 and their patterns

of change during exercise, added to other gas exchange measures

evaluating peak and sustainable cardiac output, or VO2, could be

used to differentiate patterns which indicate possible PV from

other causes of exercise gas exchange abnormalities. Elevated VE/

Figure 5. FVC as a function of PETCO2at AT (Fig. 5a) and PETCO2 at the AT(Fig. 5b) in 28 SSc patients with normal exercise tolerance,
left ventricular dysfunction, and pulmonary vasculopathy.
doi:10.1371/journal.pone.0014293.g005
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VCO2 values at the AT or VCP are important non-invasive

measurements of ventilation-perfusion mismatching due to loss of

pulmonary vasculature, and can be identified without maximal

exercise. The additional finding of a low PETCO2@AT was even

more discriminatory when used to differentiate early LVD from

early PV (Table 2).

Because of loss of perfusion to ventilated lung, there is less CO2

laden blood to release CO2 to the airspaces for a given ventilation

in patients with suspected PV. Thus, to eliminate the metabolic

CO2, ventilation must increase resulting in an elevated ratio of VE

to VCO2. In left ventricular failure, it is also common for portions

of the lung to be well-ventilated, but be poorly perfused. Thus,

VE/VCO2 is commonly used as an index of the severity of LVD

[22,23]. Due to its pathogenesis, VE/VCO2 should invariably be

increased in patients with PV [18,24,25]. Because of the loss of

vascularity to lung acini, PETCO2 is diluted in proportion to the

fraction of underperfused acini. Thus, PETCO2 is decreased as

VE/VCO2 is increased, the degree depending on disease severity.

In less severe stages of pulmonary vascular disease, small increases

in VE/VCO2 are accompanied by large decreases in PETCO2

[18] (Figure 4). Thus, a reduced PETCO2 at the AT or VCP is a

valuable marker of blood vessel loss, and may be sensitive in

detecting early pulmonary vascular disease.

It has also been shown, in the transition from the start of exercise

to the AT, that PETCO2 tends to decrease in PAH, whereas the

PETCO2 tends to increase in LVD [17]. This observation appears to

occur in SSc patients with suspected PV as well.

Figure 5 relates the degree of lung restriction (reduced FVC) to

the elevation of VE/VCO2 (Fig. 5a) and dilution of PCO2 (Fig. 5b)

at the AT or VCP. All three groups had reductions in FVC, but it

is mainly the PV group that had the abnormally high VE/VCO2

and low PETCO2 values. This might become therapeutically

relevant in patients with SSc and borderline pulmonary hyper-

tension. Presumably, the best candidates for specific therapy would

be those patients with the highest VE/VCO2 and lowest PETCO2

values and least lung restriction. However, the validation of this

hypothesis is subject to further studies.

Study limitations
Our diagnostic algorithm categorizing exercise pathophysiolo-

gy, based on patterns of exercise gas exchange, was designed to

identify scleroderma patients with characteristic patterns of PV

and normal pulmonary artery pressure on echocardiography. We

did not perform right-heart catheterization in our patients, as the

study aim was to detect patterns of early PV in patients who might

not have yet progressed to clinical resting pulmonary hyperten-

sion, so that an elevated PAP during a resting right heart

catheterization might not have been evident, given a normal

systolic PAP on echocardiography. Only long-term longitudinal

evaluation of these patients will enable us to discern the rates of

progression of these abnormalities, and may provide insight into

the natural course of PV in patients with SSc.

True dead space/tidal volume ratio can only be calculated using

arterial blood gas measurements. We did not do arterial blood

sampling during exercise in order to avoid discomfort, and the

potential for sudden peripheral vasospasm in SSc patients.

However, increased VE/VCO2 beyond that found in normal

subjects [26], and simultaneously decreased PETCO2 at the AT, as

well as specific changes in the patterns of these two variables as

work rate is increased, strongly suggest that dead space ventilation

is increased.

Although more patients with systemic sclerosis suffer from the

limited type than from the diffuse type, the distribution between

diffuse and limited SSc may have been shifted towards patients

with the limited form of the disease in our cohort, as only a few

patients were found to have the diffuse form. Thus, our findings

might be influenced by an overrepresentation of patients with the

limited form of SSc.

The differential diagnosis of pulmonary veno-occlusive disease

(PVOD) in SSc patients, an important clinical question, is

challenging. We could not definitely exclude PVOD in our

subjects, as this would require histological confirmation. However,

this procedure is not recommended as it carries a significant risk

[27]. HRCT, which was performed in all patients with suspicion of

ILD (20 out of 30 patients) did not show any findings consistent

with PVOD such as enlarged mediastinal lymph nodes, alveolar

hemorrhage, or septal lines in any of the patients. In the remaining

10 patients, HRCT was not indicated as clinical status, PFT, chest

x-ray and (except for one asymptomatic patient) VE/VCO2 were

normal, and hence the probability of PVOD is considered very

low. Furthermore, in these patients the nadir SpO2 during exercise

were significantly higher than the values found in PVOD patients

reported by Montani et al [28].

We conclude that routine CPET may be a sensitive method to

detect developing exercise intolerance and provide additional

information on the mechanism of exercise limitation in SSc. More

detailed analysis of the specific pathophysiological mechanism

underlying the developing exercise intolerance, such as PV and

LVD, might clarify the treatment direction and therefore might

help in preventing progression. However, there are no data to

prove this, and further investigations are warranted.
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