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ABSTRACT: We describe a novel approach to RBF
approximation, which combines two new elements: (1) linear
radial basis functions and (2) weighting the model by each
descriptor’s contribution. Linear radial basis functions allow
one to achieve more accurate predictions for diverse data sets.
Taking into account the contribution of each descriptor
produces more accurate similarity values used for model
development. The method was validated on 14 public data sets
comprising nine physicochemical properties and five toxicity
endpoints. We also compared the new method with five
different QSAR methods implemented in the EPA T.E.S.T.
program. Our approach, implemented in the program GUSAR, showed a reasonable accuracy of prediction and high coverage for
all external test sets, providing more accurate prediction results than the comparison methods and even the consensus of these
methods. Using our new method, we have created models for physicochemical and toxicity endpoints, which we have made freely
available in the form of an online service at http://cactus.nci.nih.gov/chemical/apps/cap.

■ INTRODUCTION

The aim of drug discovery is to find promising compounds that
show good potency and selectivity against selected targets.
Potential hits need to have reasonable properties in the areas of
absorption, distribution, metabolism, elimination, and toxicity
(ADMET).1 Compounds must be absorbed by the human
body, be transported to the target, and then interact with the
target receptors or enzymes. To reach a tissue, the compound
usually is taken up into the bloodstream, which usually occurs
via mucous surfaces such as the digestive tract (intestinal
absorption). Factors such as poor compound solubility, gastric
emptying time, intestinal transit time, chemical instability in the
stomach, and inability to penetrate the intestinal wall can all
reduce drug absorption after oral administration. Solubility of
compounds in turn depends on solvent properties. A solvent’s
main physicochemical characteristics, which can be classified as
surface versus transport properties of a liquid, are surface
tension, viscosity, and thermal conductivity.2 The magnitudes
of these properties are dependent upon intermolecular
interactions between the solvent molecules. Therefore, the
physicochemical properties of chemical structures play
important roles in the design and optimization of ADMET
parameters of potential drug compounds.3

In addition to possessing balanced ADME properties,
potential drug candidates should provide the desirable effect
while avoiding toxicity and side effects. Toxicity is considered
one of the most important factors for success or failure in drug
development.4 Toxic and unwanted side effects observed in

drug candidates or marketed drugs can be caused by many
different modes of action such as interactions with enzymes,
receptors, and ion channels.5

Although experimental testing of ADME properties and
toxicity is generally thought to provide the most reliable data
about the interaction of a given compound with a biological
system, it is very time consuming and expensive and thus not
suitable for the screening of large sets of compounds.6 For that
purpose, several different computational approaches based on
quantitative structure−activity relationships (QSAR) have been
used7−10 instead.
The main idea of QSAR methods is to describe relationships

between activity measures and structural descriptors of
compounds and to create models that can be used for
prediction of the same activity for new compounds. There are
numerous different techniques that have been used for this task.
Among the currently most widely used ones are Support Vector
Machines,7 Random Forests,9 and Artificial Neural Networks
(ANN).11 These methods allow the creation of nonlinear
models that can successfully describe the structure−activity
relationships of multi-faceted properties such as ADME,
physicochemical properties, and toxicity. ANNs typically
provide better results in comparison to other methods8 due
to their capability for construction of nonlinear models of any
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level of complexity, especially in cases where the general form
of the analytic dependence is unknown.
The process of neural network training includes two steps.

First, the network architecture, which includes the number of
hidden layers and neurons, needs to be constructed. Second,
the network parameters associated with the neurons are
determined using different optimization algorithms, which try
to minimize the errors of the network’s predictions compared
to the observed values in the training set examples. This is the
training procedure, during which the network learns the
relationships between the input and output variables. Most
ANN learning algorithms require a lot of computational time
due to their optimization methods.12

Radial basis function (RBF) neural networks form a class of
ANNs that has certain advantages over other types of ANNs,
including better approximation capabilities, a simpler network
architecture, and faster learning algorithms.12 The main idea of
RBF neural networks is to create the proper number of hidden
neurons and determine the weight of each neuron. Functions
that depend only on the distance from a center vector of the
neuron (calculated in descriptor space) and are radially
symmetric around that vector are called radial basis functions.
They provide a nonlinear approximation of the input data.
Often the selection of the center vectors of the neurons is
performed with different clustering methods. Some of them
require setting up the initial number of neurons (centroid-
based clustering), and other methods calculate the optimal
number of neurons (distribution-based clustering). After
selection of the neurons, it is necessary to calculate the weight
of each neuron. For this purpose, the simple least-squares
method can be used.
Although RBF networks are a very powerful approach, one

disadvantage has to be mentioned. As with most ANN
methods, RBF neural networks need to select the hidden
neurons, which is both ambiguous and sometimes poorly
reproducible. To avoid this problem, the radial basis function
interpolation approach can be applied. The difference between
the radial basis function interpolation approach and a general
RBF network is that the former has a number of hidden
neurons equal to the number of input variables (training set
members), whereas the latter has a significantly reduced
number. Thus, the learning procedure of the RBF interpolation
approach uses all the elements in the training set. However, the
RBF interpolation approach can be sensitive to noise created by
both a huge number of descriptors and low-quality data.
Earlier, we had shown that self-consistent regression (SCR)

could successfully be used to generate models from a large
number of descriptors for different noise levels in the data.13 In
this work, we propose a new approach that combines the
advantages of both the RBF interpolation and self-consistent
regression methods.14 We call this approach RBF-SCR. We
compare the RBF-SCR method with the radial basis function
interpolation method and RBF neural networks with k-means
clustering. For these comparisons, 14 publicly available data
sets were used: nine data sets with physicochemical properties
and five data sets with toxicity endpoints. In addition, we
compare the RBF-SCR method with different QSAR methods
implemented in the U.S. Environmental Protection Agency
(EPA) T.E.S.T. program on the same data sets. All QSAR
models developed with the RBF-SCR method have been made
freely available in our Chemical Activity Predictor Web service:
http://cactus.nci.nih.gov/chemical/apps/cap.

■ MATERIALS AND METHODS

Data Sets. All 14 data sets were downloaded from the EPA
Web site.15 Nine are related to physicochemical properties and
five to toxicity. Each data set includes training and test sets. We
used the same partitioning of the training and test sets as
presented on the EPA Web site. To allow unbiased comparison,
the data was not curated, and we used it “as is.” Each data set is
briefly described in the following.

Physicochemical Data Sets. Boiling Point. The normal
boiling point is defined as the temperature at which a chemical
boils at atmospheric pressure. The total number of compounds
was 5758. The training set included 4607 compounds, and the
test set contained 1151 compounds. The modeled property is
the boiling point in °C, which varied from −128 to 548 °C in
the EPA set.

Density. The total number of compounds was 8908. The
training set included 7125 compounds and the test set
contained 1783 compounds. The modeled property is the
density in g/cm3, and it varied from 0.53 to 4.008 g/cm3 in the
EPA set.

Flash Point. The flash point of a chemical is defined as the
lowest temperature in °C at which it can vaporize to form an
ignitable mixture in air. The total number of compounds was
8362. The training set included 6690 compounds, and the test
set contained 1672 compounds. The modeled property is the
temperature in °C, and it ranged from −136 to 902.8 °C in the
EPA set.

Thermal Conductivity. The thermal conductivity is defined
as the property of a material in units of mW/(m·K) reflecting
its ability to conduct heat. The total number of compounds was
442. The training set included 352 compounds, and the test set
contained 90 compounds. The modeled property ranged from
35.55 to 352 mW/(m·K) in the EPA set.

Viscosity. The viscosity is defined as a measure of the
resistance of a fluid to flow in cP defined as the proportionality
constant between shear rate and shear stress. The total number
of compounds was 557. The training set included 444
compounds, and the test set contained 113 compounds. The
modeled property ranged from −0.859 to 2.975 cP in the EPA
set.

Surface Tension. The surface tension is defined as a
property of the surface in dyn/cm of a liquid that allows it to
resist an external force. The total number of compounds was
1416. The training set included 1133 compounds, and the test
set contained 283 compounds. The modeled property ranged
from 9.42 to 66.178 dyn/cm in the EPA set.

Water Solubility. The water solubility is defined as the
amount of a chemical that will dissolve in liquid water to form a
homogeneous solution. The total number of compounds was
5020. The training set included 4016 compounds, and the test
set contained 1004 compounds. The modeled property ranged
from −1.494 to 13.172 mg/L in the EPA set.

Vapor Pressure. The vapor pressure is defined as the
pressure of a chemical’s vapor in mmHg in thermodynamic
equilibrium with its condensed phases in a closed system. The
total number of compounds was 2510. The training set
included 2006 compounds, and the test set contained 504
compounds. The modeled property ranged from −17.699 to
5.243 mmHg in the EPA set.

Melting Point. The melting point is defined as the
temperature in °C at which a chemical in the solid state
changes to a liquid state. The total number of compounds was
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9384. The training set included 7509 compounds, and the test
set contained 1875 compounds. The modeled property ranged
from −196 to 492.5 mmHg in the EPA set.
Toxicity Data Sets. Fathead Minnow. The fathead

minnow LC50 endpoint represents the concentration in water
which kills half of a population of fathead minnows (Pimephales
promelas) in 4 days (96 h). The total number of compounds
was 823. The training set included 659 compounds, and the
test set contained 164 compounds. The experimental data are
represented by −Log10 (LC50 [mol/L]) and ranged from 0.037
to 9.261 in the EPA set.
Daphnia magna. The Daphnia magna LC50 endpoint

represents the concentration in water which kills half of a
population of Daphnia magna (a water flea) in 48 h. The total
number of compounds was 353. The training set included 283
compounds, and the test set contained 70 compounds. The
modeled property is −Log10 (LC50 [mol/L]) and varied from
0.117 to 10.064 in the EPA set.
Tetrahymena pyriformis. The Tetrahymena pyriformis IGC50

endpoint represents the 50% growth inhibitory concentration
of the T. pyriformis organism (a protozoan ciliate) after 40 h.
The total number of compounds was 1792. The training set
included 1434 compounds, and the test set contained 358
compounds. The modeled property is −Log10 (IGC50 [mol/L])
and varied from 0.334 to 6.36 in the EPA set.
Oral Rat Acute Toxicity. The oral rat LD50 endpoint

represents the amount of the chemical (mass of the chemical
per body weight of the rat) which when orally ingested kills half
of the rats. The total number of compounds was 7413. The
training set included 5931 compounds, and the test set
contained 1482 compounds. The modeled property is −Log10
(LD50 [mol/kg]) and varied from 0.291 to 7.207 in the EPA
set.
Bioconcentration Factor. The bioconcentration factor

(BCF) is defined as the ratio of the chemical concentration
in biota as a result of absorption via the respiratory surface to
that in water at steady state. The total number of compounds
was 676. The training set included 541 compounds, and the
test set contained 135 compounds. The modeled property is
Log10(BCF) and varied from −1.7 to 5.694 in the EPA set.

■ METHODS

Descriptors. The QSAR models in this study were
developed using the GUSAR program.16,5,17 GUSAR uses a
combination of three types of descriptors: whole-molecule
descriptors, QNA (Quantitative Neighborhoods of Atoms)
descriptors,14 and descriptors based on predictions from the
PASS algorithm for predicting the biological activity spectra of
compounds.18

The whole-molecule descriptors used in GUSAR are
topological length, topological volume, lipophilicity, number
of positive charges, number of negative charges, number of
hydrogen bond acceptors, number of hydrogen bond donors,
number of aromatic atoms, molecular weight, and number of
halogen atoms.
QNA descriptors are defined by two functions, P and Q. The

values for P and Q for each atom i are calculated as
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IP is the ionization potential, EA is the electron affinity for each
atom, and C is the connectivity matrix for the molecule as a
whole.14 Two-dimensional Chebyshev polynomials are used for
approximating the functions P and Q over all atoms of the
molecule.
The PASS biological descriptors are calculated using the

PASS algorithm,18 which predicts a wide range of biological
outcomes including transporter protein binding, gene ex-
pression activities, and various mechanisms of action, adding
up to about 6400 “biological activities” at a mean prediction
accuracy threshold of at least 95%. The output from PASS is
the probability, for each predicted outcome, that the compound
will be active (Pa) and the probability that it will be inactive
(Pi). The difference between these two values (Pa−Pi), for a
randomly selected subset of the predicted activities, was used as
a molecular descriptor for the regression analysis in GUSAR.

RBF Neural Networks. We used Radial Basis Function
networks with three layers: an input layer, a hidden layer with a
nonlinear RBF activation function, and a linear output layer.
The input is represented as a vector of real numbers x ∈ Rn.
The output of the network is then a scalar function of the input
vector, y:Rn → R, and is determined by

∑ ϕ= || − ||
=

y x w x c( ) ( )
i

N

i i
1 (4)

where N is the number of neurons in the hidden layer, ci is the
center vector for neuron i, and wi is the weight of neuron i in
the linear output neuron.
To determine center vectors (centroids), k-mean clustering

was used. There are many radial basis functions that can be
applied to construct neural networks: linear, Gaussian, multi-
quadric, polyharmonic spline, etc. In this work, we decided to
compare two RBF functions: Gaussian and linear radial basis
functions. For this purpose, we have used Gaussian radial basis
functions for the RBF NN and linear functions for the RBF
interpolation and RBF-SCR methods.

RBF Interpolation. As mentioned above, the difference
between an RBF interpolation and an RBF network is that the
first method uses each input variable as a centroid. Therefore,
the learning process is performed across all input variables in
the training set

∑ φ= || − || = Φ
=

y x w x x w( ) ( )
i

N

i i
1 (5)

where the approximating function y(x) is represented as a sum
of N radial basis functions, each associated with a different
center xi, and weighted by an appropriate coefficient wi.
If the points xi are distinct, then the interpolation matrix Φ in

the above equation is nonsingular. Thus, the weights w can be
solved simply by

= Φ−w y1
(6)
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To find the weights, a simple least-squares method was used. A
linear radial basis function was applied for the RBF
interpolation.
RBF-SCR. We showed earlier that self-consistent regression

(SCR) can be successfully applied to different QSAR
tasks.14,18,19,16 The basic purpose of the SCR method is to
remove those variables that poorly describe the target value.
The final number of variables in the QSAR equation selected
after the SCR procedure is significantly smaller compared to
the initial number of variables. Also, it has been shown that
SCR is robust against noise in the data.13 Self-consistent
regression is a regularized least-squares method

∑ ∑ ∑= − +
= = =

a y x a v aArgMin[ ( ) ]
i

n

i
k

m

ik k
k

m

k k
1 0

2

1
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where a is the regression coefficient, n is the number of objects,
yi is the response value of the ith object, m is the number of
independent variables, xik is the value of the kth independent
variable of the ith object, ak is the kth value of the regression
coefficients, and vk is the kth value of the regularization
parameters.
Equation 7 has the following solution

= = + −a yTX T X X V, ( )T T 1

where XT is the transposed regression matrix of X, and V is the
diagonal matrix of the regularization parameters.
The regression coefficients, obtained from SCR, reflect the

contribution of each particular descriptor (variable) to the final
equation. The higher the absolute value of the coefficient, the
greater its contribution. Thus, regression coefficients obtained
after SCR can be used for weighting of descriptors (variables)
according to their importance. We used this advantage to create
a new machine learning approach that combines self-consistent
regression with the radial basis function interpolation method,
which we therefore call RBF-SCR.
Typically, the radial basis function is calculated using the

Euclidean distance (similarity) between descriptor vectors and
centroids. In the case of RBF interpolation, the same type of
distance (similarity) is calculated between input vectors of
descriptors. If one takes into account the contribution of each
descriptor, a more accurate distance (similarity) value can be
obtained and thus a more accurate prediction be achieved. For
this purpose, the descriptors are weighted during the
calculation of the radial basis functions by the coefficients
obtained from SCR. Thus, RBF-SCR can be expressed as the
equation

∑ φ= || − ||
=

y x w ax a x( ) ( )
i

N

i i i
1 (8)

where a is taken from eq 7 (SCR). The weights ai are the novel
element compared with eq 5.
Therefore, RBF-SCR can be described as a 3-step algorithm:

(1) Self-consistent regression determines coefficients and
selects descriptors. (2) Radial basis functions are calculated
using similarity that is weighted by SCR coefficients. (3) RBF
weights are determined by the least-squares method.
A general scheme of the RBF-SCR approach is shown in

Figure 1.
A linear radial basis function was used for the RBF

interpolation and RBF-SCR methods. In contrast to the
commonly used Gaussian function, a linear function has the

effect that the more dissimilar the input compounds
(represented by descriptor vectors) are, the more contribution
they provide (Figure 2).

Thus, the linear radial basis function can be used for
modeling of diverse training sets with a high level of
dissimilarity between the objects. We have implemented the
RBF-SCR method in the program GUSAR.

Applicability Domain Estimation. GUSAR uses three
different approaches for estimation of model applicability
domains: similarity, leverage, and accuracy assessment.

Similarity. For each compound, the pairwise distance to each
of its three nearest neighbors in the training set is calculated
using Pearson’s correlation coefficient in the space of the
independent variables obtained after SCR. The compound is
considered to be in the applicability domain of the model if the
average of these three distances is less than or equal to 0.7.

Leverage. Leverage calculations are a method for identifying
outliers based on the contribution of each molecule to its own
predicted value

= −x xX XLeverage ( )T T 1

where x is the vector of the descriptors for a test compound,
and X is the matrix formed from the rows corresponding to the
descriptors of all the molecules in the training set. A compound
is considered outside the applicability domain of a model if its
leverage is higher than the 99th percentile in the distribution of
the leverage values calculated for the training set.

Accuracy Assessment. Here, the applicability domain
prediction for each compound is calculated based on the
error of prediction for the three most similar compounds in the

Figure 1. Schematic representation of the RBF-SCR radial basis
function approach.

Figure 2. Representation of linear and Gaussian functions in the
descriptor space.
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training set (see the similarity metric above) relative to the
training set as a whole

=AD RMSE /RMSEvalue 3NN train

In this study a threshold of 1 was used for the ADvalue.
Consensus Modeling. The final predicted values for each

physicochemical and toxicity endpoint are calculated using a
weighted average of the predictions from several different
QSAR models. Each model is based on a different set of QNA
and “biological” descriptors, and its predictions for each
compound are weighted according to the similarity value as
calculated during the applicability domain assessment.
EPA T.E.S.T. Program. We compared our approach with

well-known methods implemented in the T.E.S.T. (Toxicity
Estimation Software Tool) program version 4.1 provided by the
EPA.15 This program includes models obtained using several
QSAR methods.
Hierarchical Method. This method uses a weighted average

of the predictions from several different models. The different
models are obtained by using Ward’s method to divide the
training set into a series of structurally similar clusters. A
genetic algorithm-based technique is used to generate models
for each cluster.
FDA Method. This is an on-the-fly model that is fit to the

chemicals that are most similar to the test compound.
Single Model Method. This is a multi-linear regression

model that is fit to the training set (using molecular descriptors
as independent variables) using a genetic algorithm-based
approach. The regression model is generated prior to runtime.
Group Contribution Method. This method is a multi-linear

regression model that is fit to the training set (using molecular
fragment counts as independent variables). The regression
model is generated prior to runtime.
Nearest Neighbor Method. This method uses an average

value for the three chemicals in the training set that are most
similar to the test chemical.
Consensus Method. This method uses the average of the

predicted toxicities from all of the above QSAR methods
(provided the predictions are within their respective applic-
ability domains).

The T.E.S.T. program contains 797 two-dimensional
descriptors spanning the following descriptor classes: E-state
values and E-state counts, constitutional descriptors, topological
descriptors, walk and path counts, connectivity, information
content, 2D autocorrelation, Burden eigenvalue, molecular
properties (such as the octanol−water partition coefficient),
Kappa, hydrogen bond acceptor/donor counts, molecular
distance edge, and molecular fragment counts.
We compared our results with those provided by the T.E.S.T.

program as described in the User’s Guide for T.E.S.T. (version
4.1).20

■ RESULTS
Comparison of RBF Methods (GUSAR) against Each

Other. For each training set, 20 models based on “biological”
descriptors and 20 models based on QNA descriptors were
created using each of the three RBF methods implemented in
GUSAR: RBF-SCR, RBF interpolation, and RBF neural
network with k-means clustering. Thus, 40 QSAR models
were created for each RBF method. These models were used
for the consensus prediction of the test sets. Thus, three
consensus prediction results were obtained from the three RBF
methods for each particular test set. To compare the prediction
results obtained for each test set, R2 and RMSE were calculated
(Table 1).
As shown in Table 1, the radial basis function (Gaussian

functions) neural networks (RBF NN) showed poor results in
comparison with RBF interpolation and RBF-SCR (linear
functions). The reason for this is that RBF NNs are based on
centroids, whose number is significantly lower than the number
of objects in the training sets. In addition, RBF NNs are based
on Gaussian functions, which are not as powerful for diverse
data sets as the linear functions used in the RBF interpolation
and RBF-SCR methods. Also, selection of the centroids is
dependent on the clustering method, which is not always
adequate.
The R2 values for the test sets varied from 0.60 to 0.97 for

both RBF interpolation and RBF-SCR. Thus, both methods
showed good results for all types of activities. RBF-SCR showed
the best results in terms of RMSE in eight cases and in terms of

Table 1. Comparison of QSAR Models Generated by GUSAR with Different RBF Methodsa

RBF NN
(Gaussian
functions)

RBF interpolation
(linear functions)

RBF-SCR (linear
functions)

RBF NN
(Gaussian
functions)

RBF interpolation
(linear functions)

RBF-SCR (linear
functions)

activity name R2 R2 R2 RMSE RMSE RMSE

Physicochemical

boiling point (°C) 0.84 0.95 0.95 34.63 20.11 19.50

density (g/cm3) 0.93 0.97 0.97 0.08 0.06 0.05

flash point (°C) 0.78 0.89 0.88 39.13 27.20 28.51

thermal conductivity (mW/(m·K)) 0.85 0.90 0.93 15.39 12.20 10.08

viscosity (log10(cP)) 0.65 0.87 0.88 0.34 0.22 0.20

surface tension (dyn/cm) 0.83 0.88 0.93 2.86 2.43 1.86

water solubility (log10(mol/L)) 0.83 0.87 0.87 0.90 0.79 0.80

vapor pressure (log10(mmHg)) 0.86 0.95 0.95 1.34 0.82 0.80

melting point (°C) 0.77 0.86 0.86 49.22 37.73 37.97

Toxicity

Fathead minnow, (−log10(LC50)) 0.67 0.73 0.74 0.84 0.76 0.76

Daphnia magna (−log10(LC50)) 0.57 0.60 0.61 1.16 1.10 1.07

Tetrahymena pyriformis (−log10(IGC50)) 0.70 0.81 0.82 0.55 0.43 0.41

oral rat acute toxicity (−log10(LD50)) 0.56 0.66 0.66 0.64 0.56 0.56

bioconcentration factor (log10(BCF)) 0.73 0.77 0.78 0.71 0.66 0.65
aRBF-SCR is the novel method proposed in this article. Best model parameter for each endpoint is shown in bold.
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R2 for seven cases out of 14. RBF interpolation was better than
the other methods for three cases in terms of RMSE and for
one case in terms of R2. Thus, RBF-SCR provided more
accurate predictions in comparison with RBF interpolation.
Comparison of RBF-SCR vs T.E.S.T. In addition, we

compared results obtained with RBF-SCR to the results
provided by FDA for the T.E.S.T. program.
To select the most predictive models obtained by RBF-SCR,

a leave-10%-out cross-validation procedure was performed 20
times for each model. From the full set of 40 models, we
selected only those models that satisfied the following
conditions: a value of Q2 exceeding 0.6 and a R2 value from
the leave-10%-out cross-validation procedure exceeding 0.5.
The selected models were used for consensus prediction of the
external test set of each activity/endpoint, taking into account
the applicability domain of these models.
The methods implemented in T.E.S.T. provide only

predictions that fall in the applicability domain of each
model. Thus, for the same test set the various methods have
different coverage. Direct comparison of the RBF-SCR method
and the methods realized in T.E.S.T. is therefore not possible.
However, we performed an indirect comparison taking into
account both accuracy of prediction and coverage. For this
indirect comparison, we analyzed which method showed higher
coverage and/or better accuracy of prediction across the 14 test
sets by determining both RMSE and coverage values. One can

see that the T.E.S.T. consensus results are in most cases better
than the results obtained by each individual T.E.S.T. method
but still worse than the results achieved by RBF-SCR, which
showed better results in terms of RMSE values for 10 data sets
out of 14. The coverage provided by RBF-SCR for the test sets
was better in eight out of 14 cases. Thus, on average the RBF-
SCR method provides more accurate prediction results than the
T.E.S.T. program methods and even the consensus of these
methods.

Chemical Activity Predictor Web Service. Utilizing the
QSAR models created with the RBF-SCR method, we have
developed a freely available online service for the simultaneous
prediction of the nine physicochemical properties and five
toxicity endpoints described in this paper, available at http://
cactus.nci.nih.gov/chemical/apps/cap. We have named this
service Chemical Activity Predictor. It provides two different
ways to input chemical structures. The first one is a classical
online chemical editor, which allows drawing of the desired
structure. The second one is based on our NCI/CADD
Chemical Identifier Resolver technology and allows the input of
different types of structure identifiers: InChIKey, drug names,
SMILES, IUPAC names, etc. The service permits the user to
input several structures simultaneously. As output, predictions
of the nine physicochemical properties and five toxicity
endpoints are provided for each compound. In addition, our
service estimates and outputs the applicability domain of each

Table 2. Comparison of the Results of GUSAR Using RBF-SCR with Those of the T.E.S.T. Program

hierarchical,
T.E.S.T.

single model,
T.E.S.T.

FDA,
T.E.S.T.

group contribution,
T.E.S.T.

nearest neighbor,
T.E.S.T.

T.E.S.T.
consensus

RBF-SCR,
GUSAR

RMSE RMSE RMSE RMSE RMSE RMSE RMSE

endpoint coverage coverage coverage coverage coverage coverage coverage

Physicochemical

boiling point (°C) 18.70 N/A 21.43 27.55 29.97 19.40 18.66

0.935 N/A 0.988 0.977 0.988 0.988 0.981

density (g/cm3) 0.05 N/A 0.06 0.12 0.12 0.07 0.05

0.942 N/A 0.992 0.992 0.997 0.996 1.000

flash point (°C) 28.90 N/A 31.48 33.63 36.83 28.50 26.00

0.924 N/A 0.989 0.987 0.993 0.992 0.953

thermal conductivity (mW/(m·K)) 11.02 11.86 16.41 15.90 12.83 12.41 10.08

0.956 0.956 0.967 0.911 0.978 0.967 1.000

viscosity (log10(cP)) 0.21 0.35 0.21 0.20 0.29 0.22 0.20

0.929 0.929 0.929 0.814 0.920 0.929 1.000

surface tension (dyn/cm) 1.79 N/A 2.22 2.93 3.32 2.11 1.85

0.919 N/A 0.979 0.926 0.936 0.968 0.993

water solubility (log10(mol/L)) 0.90 N/A 0.95 1.07 1.02 0.84 0.73

0.935 N/A 0.984 0.982 0.985 0.987 0.950

vapor pressure (log10(mmHg)) 0.75 N/A 0.83 1.00 1.25 0.77 0.73

0.940 N/A 0.982 0.968 0.980 0.980 0.935

melting point (°C) 44.36 N/A 45.10 54.95 52.10 41.46 37.52

0.932 N/A 0.993 0.997 0.998 0.998 0.979

Toxicity

Fathead minnow (−log10(LC50)) 0.80 0.80 0.92 0.81 0.88 0.77 0.76

0.951 0.945 0.945 0.872 0.939 0.951 1.000

Daphnia magna (−log10(LC50)) 0.98 0.99 1.19 0.80 0.98 0.91 1.07

0.886 0.871 0.900 0.657 0.871 0.900 1.000

Tetrahymena pyriformis
(−log10(IGC50))

0.54 N/A 0.49 0.58 0.64 0.48 0.41

0.933 N/A 0.978 0.955 0.986 0.983 0.989

oral rat acute toxicity (−log10(LD50)) 0.65 N/A 0.66 N/A 0.66 0.59 0.55

0.876 N/A 0.984 N/A 0.993 0.984 0.960

bioconcentration factor (log10(BCF)) 0.71 0.68 0.75 0.76 0.88 0.66 0.64

0.926 0.926 0.911 0.874 0.948 0.926 1.000

RMSE: root-mean-square error. The highest coverage and accuracy values are highlighted in bold.
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QSAR model. This calculation is performed for each compound
with the result that each prediction is annotated with either “In
AD” or “Out of AD”, indicating whether one can be confident
in the prediction or not. Our service performs at a reasonable
computational speed (about one compound per second for the
simultaneous prediction of 14 endpoints). The interpretation of
the prediction results for the implemented endpoints may be
done in the same way as an assessment for in vitro/in vivo
experimental assays.

■ CONCLUSIONS
We have developed a new RBF-SCR method and have
compared it with other machine learning approaches. The
two crucial novel elements of this method are (a) introduction
of weights for each descriptor vector used for calculation of
RBF based on that descriptor’s importance for the given activity
as determined by SCR and (b) linear basis function used for
better description of diverse data sets. A method comparison
was performed on 14 data sets comprising nine physicochem-
ical properties and five toxicity endpoints. We showed that the
RBF-SCR method provides more accurate prediction results
than other methods including even consensus predictions of
these methods. We believe that QSAR models developed with
the RBF-SCR method could successfully be used for the design
and optimization of ADMET properties of potential drug
compounds. We hope that our freely available online service for
quantitative prediction of physicochemical properties and
toxicity endpoints based on these models may be useful for
researchers in their quest of finding drug-like compounds with
desirable ADMET properties. It can also be used for optimizing
compounds with regards to several different endpoints
simultaneously.
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