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A prediction model for oral bioavailability of drugs 
using physicochemical properties by support vector 
machine

Abstract
Objective: A computational model for predicting oral bioavailability is very important both in the early stage of drug discovery 
to select the promising compounds for further optimizations and in later stage to identify candidates for clinical trials. In present 
study, we propose a support vector machine (SVM)-based kernel learning approach carried out at a set of 511 chemically diverse 
compounds with known oral bioavailability values. Material and Methods: For each drug, 12 descriptors were calculated. The 
selection of optimal hyper-plane parameters was performed with 384 training set data and the prediction efficiency of proposed 
classifier was tested on 127 test set data. Results: The overall prediction efficiency for the test set came out to be 96.85%. 
Youden’s index and Matthew correlation index were found to be 0.929 and 0.909, respectively. The area under receiver operating 
curve (ROC) was found to be 0.943 with standard error 0.0253. Conclusion: The prediction model suggests that while considering 
chemoinformatics approaches into account, SVM-based prediction of oral bioavailability can be a significantly important tool for 
drug development and discovery at a preliminary level.
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INTRODUCTION

A drug intended for use in humans should have an ideal 
balance of  pharmacokinetics and safety, as well as potency 
and selectivity. Human oral bioavailability is an important 
pharmacokinetic property[1] which describes the fraction of  
an administered drug that reaches the systematic circulation 
and its site of  action, to exert its pharmacological and 
therapeutic effects. Bioavailability is 100% when a 
medication is administered parenterally as it goes straight 
into the bloodstream and is usually completely used by 
the body. However, when a medication is administered via 
other routes (such as orally), its bioavailability decreases. 

Prediction of  oral bioavailability is not an easy task, as 
bioavailability depends on superposition of  two processes: 
absorption and liver first-pass metabolism. Absorption in 
turn depends on solubility and permeability of  compounds, 
as well as interactions with transporters and metabolizing 
enzymes in gut wall. Permeability further depends on 
the size of  the molecule, as well as its capacity to make 
hydrogen bonds, its overall lipophilicity and possibly its 
shape and flexibility. Molecular flexibility, for example, as 
evaluated by counting the number of  rotatable bonds, has 
been identified as a factor influencing bioavailability. [2-4] 
The bioavailability of  drugs from oral formulations is 
also influenced by many physiological factors including 
gastrointestinal fluid composition, pH and dynamics, transit 
and motility and transport. These factors may vary with 
age, gender, race, food, and disease.[5] Oral bioavailability 
is denoted by the letter F.

To lower the attrition rate of  drug development there is a 
need to develop strong and accurate computational methods 
that can predict and prioritize compounds before they are 
synthesized or moved towards to preclinical and clinical 
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development.[6] Various prediction models are reported 
in the literature on known oral bioavailable drugs such 
as statistical models,[7-15] mechanistic models,[16-21] QSAR/
QSPR models,[22-28] genetic programming,[29-33] artificial 
neural networks, machine learning classification,[34-36] etc. 

MATERIALS AND METHODS

Dataset
We have selected oral bioavailability data from various 
literature studies.[4,15,37-41] The whole dataset comprises 
of  1664 drugs. Redundancy was completely removed by 
manually screening and selected dataset for this study 
comprises of  chemically diverse 511 drugs. Drugs having 
oral bioavailability less than 30% were regarded as low orally 
bioavailable drugs and drugs with oral bioavailability 30% 
or more were regarded as high orally bioavailable.[15] Class 
labels were defined as “1” for high oral bioavailability and 
‘0’ for low oral bioavailability. Further the whole dataset of  
511 drug molecules was randomly split into training set of  
384 drugs and test set of  127 drugs. Training set was used 
for training various classifiers, while testing set was not 
exposed to the system during descriptor selection, learning, 
kernel selection, and hyper-parameter selection phases. 

Descriptor selection
In classification problem usually the data that is to be 
classified is associated with a large number of  features or 
descriptors. As a result, we get large dimension feature 
space, making classification a bit difficult task. So first 
and foremost step is to reduce the dimensions. Feature 
or descriptor selection is a process of  identifying and 
removing as much of  the irrelevant and redundant 
information as possible. The removal of  irrelevant and 
redundant information often improves the performance of  
machine learning algorithms. Twelve optimal descriptors 
were selected using the sequential forward feature selection 
(SFFS) algorithm.[42]

SFFS algorithm starts with an empty set of  features. In 
first iteration, algorithm considers all feature subsets with 
only one feature. Feature subset with higher accuracy is 
used as basis of  next iteration. Iteratively algorithm adds 
to the basis each feature which was not previously selected 
and retains the feature subset that results in the highest 
estimated performance. The search terminates after the 
accuracy of  the current subset cannot be improved by 
adding any other feature. SFFS is stated as: Given a feature 
set X={xi | i=1…N}, find a subset YM ={xi, …, xM}, 
with M<N, that optimizes an objective function J(Y).

The set of  optimal descriptors include molecular mass 
(MA), molecular surface area (MSA), molecular volume 

(MV), molecular refractivity (MR), total hydrogen count 
(HC), partition coefficient (logP), rotatable bonds (RTB), 
total polar surface area (TPSA), solubility index (logS), 
shape flexibility index (SFI) sum of  E-states indices (SESI) 
and count of  hydroxyl groups (HYG). 

Different feature values for dataset falls in different ranges 
hence to avoid the discrepancy we have further scaled 
down these numeric values between –1 to 1. Such scaling 
facilitates better representation of  feature values in kernel 
function and also avoid numerical difficulties during the 
calculation.

Support vector machine description 
In this process, input vector for training as well as the test 
set has been quantified as Xi=(Xi

1, X
i
2,………, Xi

13), each 
labeled by corresponding yi = 0 or yi = 1 depending on 
whether it represents high orally bioavailable drug or low 
orally bioavailable drug, respectively.

Training set was then subjected to the support vector 
machine (SVM) classifier, which involved fixing several 
hyper-parameters which further determines the function 
optimized by SVM. It is extremely crucial and has a 
profound impact on the performance of  trained classifier. 
We used several kernels: linear, polynomials, and radial 
bias function (RBF) initially to determine which of  them 
is applicable to our data and is able to classify it efficiently.
[43] We found RBF as the suitable classifier function (as 
the number of  features was not very large in comparison 
to the dataset) for which training errors on low oral 
bioavailability data (false negatives) outweigh errors on 
high oral bioavailability data (false positives).

K (Xi, Xj) = exp (–γ | | Xi – Xj ||2)  .......(1)

where γ > 0.

This kernel (1) is best for the data in which the class-
conditional probability distribution function approaches 
the Gaussian distribution. It maps the non-linear data into a 
higher dimension space where data is linearly separable. Its 
exponential nature can be expanded into an infinite series, 
giving rise to an infinite-dimension polynomial kernel. 
However, this kernel is bit difficult to design, in the sense 
that it is difficult to arrive at an optimum “γ” and choose 
the corresponding C that works best for a given problem. 
This has been taken care by running grid parameter search 
exploring all combinations of  C and γ with each cross-
validation routine, where γ ranged from 2−15 to 24 and C 
ranged from 2−5 to 215.[44] To identify an optimal hyper-
parameter set we have performed a two-step grid-search 
on C and γ with the use of  10 folds cross-validation, by 
dividing training set into 10 subsets of  equal size (~38 
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drugs each having 12 descriptors). Iteratively each subset 
is tested using the classifier trained on the remaining nine 
subsets. Pairs of  (C; γ) have been tried and the one with the 
best cross-validation accuracy has been picked. Using RBF 
kernel, the best cross-validation accuracy was obtained at 
γ = 0.0078125 and C = 512. The result obtained showed 
a good classification accuracy of  88.54% during the cross-
validation. Adopted methodology for model generation is 
illustrated in Figure 1. 

RESULTS 

To optimize the SVM parameters γ and C, 10-fold cross-
validation was applied on each of  the training datasets 
bin, exploring various combinations of  C (2−5 to 215) and γ 
(2−15 to 24). In 10-fold cross-validation, the training dataset 
(384 drugs, each having 12 descriptors) was spilt into 10 
subsets, each of  equal size, where one of  such subsets was 
used as the test dataset while the other subsets were used 
for training the classifier. The process is repeated 10 times 
using a different subset of  a corresponding test and training 
datasets, hence ensuring that all subsets are used for both 
training and testing. A twofold grid optimization has been 
considered and the result shown [Figure 2] suggests that 
the optimized C and γ were found to be 512 and 0.0078125, 
respectively. 

The best combination of  γ and C that was obtained from 
grid based optimization is used for training a RBF-based 
SVM classifier using entire training data (384 drugs each 
having 12 descriptors). The result obtained showed a 
good classification accuracy of  88.54% during the cross-
validation. The reported accuracy on the training datasets 
depicts the effectiveness and reliability of  this prediction 
method; but still it may or may not give the equivalent or 
better accuracy when applied on the novel drugs, i.e. drugs 
with an unknown oral bioavailability profile. Therefore, it 
is extremely important to test the SVM classifier on the 
non-cross validated test set which is out-of-sample and 
independent of  the training set data. We applied the SVM 
classifier on the whole test set (127 ligands each having 12 
descriptors), the classifier incurred an accuracy of  96.85% 
by using the RBF kernel with γ = 0.0078125 and C = 
512. This prediction accuracy suggests that SVM-based 
prediction of  oral bioavailability can be considered as a 
helpful tool in drug discovery and development.

The efficiency of  a classifier was further evaluated with 
the help of  various quantitative variable: (a) true positive 
(TP), represents total number of  correctly classified 
high orally bioavailable drugs, (b) true negative or (TN), 
represents total number of  correctly classified low orally 
bioavailable drugs (c) false positive (FP), represents total 
number of  incorrectly classified low orally bioavailable 

Figure 1: Stepwise illustration of generation of an oral bioavailability prediction model and its application
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drugs, (d) false negatives (FN), represents total number 
of  incorrectly classified high orally bioavailable drugs.
Using these quantitative variables, several statistical metrics 
were calculated to measure the effectiveness of  the oral 
bioavailability-SVM classifier.

Sensitivity (Sn) and specificity (Sp) metrics, which indicate the 
ability of  a prediction system to classify the high and low 
orally bioavailable drugs, were calculated by equations (2) 
and (3) and receiver operating characteristic curve (ROC) 
for the same was plotted [Figure 3].

Sn (%) = [TP/ (TP+FN)]*100   .......(2)

Sp (%) = [TN/(TN+FP)*100]   .......(3)

To indicate an overall performance of  the classifier system; 
accuracy (Ac), for the percentage of  correctly classified 
drugs and the Matthews correlation coefficient (MCC) 
were computed as follows:

Ac = [(TP + TN)/ (TP+FP+TN+FN)]*100 .......(4)

MCC= [(TP*TN)-(FP*FN)]/√ (TN+FP) (TN+FN) 
(TP+FP) (TP+FN)    .......(5)

 
Sensitivity (Sn) came out to be 95.60% with a false positive 
proportion (FP) of  0.79% whereas specificity (Sp) came 
out to be 97.30% with a false negative (FN) proportion 
of  3.15%. Similarly Youden’s Index (Youden’s Index = 
sensitivity + specificity – 1) was 0.929 and Matthews 
correlation coefficient (MCC) was found to be 0.909. The 
overall accuracy (Ac) calculated using equation (4) was 
96.1% which is significantly higher than existing methods. 
The area under ROC curve was found to be 0.943 with a 
standard error of  0.0253.

DISCUSSION 

The prediction model derived from SVM can serve 
as primary tool for generating some idea about oral 
bioavailability of  ligands. User just needs to calculate the 12 
physicochemical descriptors, as these values are prerequisite 
for prediction of  oral bioavailability through the generated 
SVM model [Figure 1]. The ligand with unknown oral 
bioavailability can be tested against the prediction model. 
For given 12 physicochemical properties this SVM model 
can predict the oral bioavailability of  the ligand under 
consideration. At preliminary level, this model can predict 
that whether the oral bioavailability of  the ligand under 
study is low or high.

Numerous attempt have been made to predict oral 
bioavailability of  drugs and ligands by computational and 

experimental method in past. Some of  those prediction 
models are listed in table 1 along with the current study and 
the model generated by SVM seems to be more satisfactory 
in terms of  prediction accuracy.

Absorption of  drug taken orally is a complex process 
and, although related to drug physicochemical properties, 
it is related in fairly complex ways. Physiological and 
environmental conditions influence the bioavailability 
of  drugs such as the presence or the absence of  food, 
residence time of  the drug in contact with the small 
intestinal epithelium, etc and make the absorption 
prediction further complex.[45] Failure to appreciate this 
complexity in attempting to build models may lead to the 
generation of  model with low confidence. An alternative 
approach to modeling oral bioavailability is to develop 
structure-based models for the properties contributing to 
the absorption process, such as solubility and permeability 
(included in presented model as logS and logP). These can 
then be used to identify opportunities for optimization. 
For example, if  a potential drug is expected to have poor 

Figure 2: Contour plot of grid search result showing optimum values 
of hyper-parameter

Figure 3: Receiver operating characteristic (ROC) plot for a classifier 
with optimized values of C and γ
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oral bioavailability due to low-intrinsic aqueous solubility, 
then this is a property amenable to manipulation by the 
formulation scientist. On the other hand, if  the compound 
is both poorly soluble and permeable, along with a 
significant metabolic liability, optimization may be very 
difficult if  not impossible. Such candidates present high 
risks to successful development and should be identified 
as such early in the drug identification and development 
process. Judicious development and use of  computational 
models will clearly aid in these processes.[46,47]

CONCLUSION 

The SVM classifier with radial basis function kernel with 
γ = 0.0078125 and C = 512 applied on the test datasets. 
The overall accuracy of  the model obtained is 96.85%. 
It suggests that while considering chemoinformatics 
approaches into account, SVM-based prediction of  oral 
bioavailability can be a significantly important tool for drug 
development and discovery at a preliminary level.
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