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Vitiligo is a complex disorder characterized by the loss of pigment in the skin. The current
therapeutic strategies are limited. The identification of novel drug targets and candidates is
highly challenging for vitiligo. Here we proposed a systematic framework to discover
potential therapeutic targets, and further explore the underlying mechanism of
kaempferide, one of major ingredients from Vernonia anthelmintica (L.) willd, for vitiligo.
By collecting transcriptome and protein-protein interactome data, the combination of
random forest (RF) and greedy articulation points removal (GAPR) methods was used to
discover potential therapeutic targets for vitiligo. The results showed that the RF model
performed well with AUC (area under the receiver operating characteristic curve) � 0.926,
and led to prioritization of 722 important transcriptomic features. Then, network analysis
revealed that 44 articulation proteins in vitiligo network were considered as potential
therapeutic targets by the GAPRmethod. Finally, through integrating the above results and
proteomic profiling of kaempferide, the multi-target strategy for vitiligo was dissected,
including 1) the suppression of the p38 MAPK signaling pathway by inhibiting CDK1 and
PBK, and 2) the modulation of cellular redox homeostasis, especially the TXN and GSH
antioxidant systems, for the purpose of melanogenesis. Meanwhile, this strategy may offer
a novel perspective to discover drug candidates for vitiligo. Thus, the framework would be
a useful tool to discover potential therapeutic strategies and drug candidates for complex
diseases.
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INTRODUCTION

Vitiligo is an acquired depigmenting skin disease due to abnormal melanocyte function, which
affects 0.5–2% of the world population (Picardo et al., 2015). The loss of pigment can be a serious
psychological burden for patients. Recent studies have indicated that several factors including
autoimmunity (Speeckaert et al., 2017; Tulic et al., 2019) and oxidative stress (Cui et al., 2019; Yi
et al., 2019) are implicated in the pathogenesis of the disease. Genome-wide association studies
(GWAS) of vitiligo have identified approximately 50 different susceptibility loci (Spritz and
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Andersen, 2017), and revealed that it is a complex disease
network regulated by immunomodulatory factors, apoptotic
and melanogenic proteins (Jin et al., 2016). Although these
studies can help us to understand the molecular mechanism of
vitiligo, there are still great difficulties in the development of anti-
vitiligo drug discovery.

Current therapeutic drugs of vitiligo focus on skin
repigmentation in a way of phenotypic intervention, such as
immunomodulators (glucocorticoids) and calcineurin inhibitors
(tacrolimus and pimecrolimus) (Iannella et al., 2016). However,
these drugs are not satisfactory to many patients because of time-
consuming and adverse reactions (Picardo et al., 2015; de
Menezes et al., 2016; Iannella et al., 2016). One possible
reason is that these therapeutic drugs are single-target
treatments, rather than multi-target strategy under the
network pharmacology (Hopkins, 2008). Furthermore,
traditional Chinese medicines (TCMs) have been frequently
used in the treatment of vitiligo, such as Vernonia
anthelmintica (L.) willd (Wang et al., 2017; Dogra et al., 2020).
It has been reported that the Vernonia anthelmintica (L.) willd
injection, the main ingredients of which is flavonoids such as
kaempferide, has a significant therapeutic effect for vitiligo
patients (Zhou et al., 2012; Huo et al., 2017; Niu et al., 2017;
Lai et al., 2021). However, the multi-target mechanism of these
TCM ingredients is still unclear, which severely hinders the
application of TCMs in the treatment of vitiligo. Thus, there is
an urgent demand to employ a systematic approach to explore the
multi-target mechanism of TCM ingredients, and further
discover novel therapeutic strategies.

Over the past decade, machine learning methods have been
widely used in drug discovery and development (Vamathevan
et al., 2019). The random walk-based method was used to explain
disease treatment mechanisms based on the multiscale
interactome network (Ruiz et al., 2021). Random forest (RF)
was used for dimensionality reduction and classification of multi-
omics data, and extensively applied for the diagnostic and
therapeutic clues of complex diseases (Fortino et al., 2020).
For example, a RF model was used to identify the proteomic
and metabolomic characterization from 18 non-severe and 13
severe COVID-19 patients, which might be useful for prioritizing
therapeutic strategies (Shen et al., 2020).

Meanwhile, network-based analysis methods were used to
study the complexity of biological systems (Barabási and
Oltvai, 2004; Harrold et al., 2013; Fotis et al., 2018). For
example, the network-based proximity method was used to
predict novel biological associations (Guney et al., 2016;
Cheng et al., 2018; Cheng et al., 2019), and had been applied
to drug discovery for COVID-19 (Zhou et al., 2020a; Zhou et al.,
2020b) and Alzheimer’s disease (Peng et al., 2020; Zhou et al.,
2021). In addition, another network analysis method was
proposed by the local tree approximation theory and used to
analyze articulation points (APs) in a network (Tian et al., 2017).
These APs play important roles in ensuring the robustness and
connectivity of many real-world networks including human
disease networks. If these nodes are removed from the disease
networks, these networks may be quickly decomposed. It means
this method can identify key targets in disease networks.

In this study, we proposed a systematic framework (Figure 1)
to discover potential therapeutic targets for vitiligo via combining
machine learning and network analysis together, and further
explore the underlying mechanism of kaempferide. The workflow
mainly included three major parts. Starting from gene expression
profiles of normal and vitiligo skin samples, a random forest
model was built to identify the discrimination and select
important transcriptomic features for vitiligo. Then, the
vitiligo protein-protein interaction subnetwork (VitNet) was
constructed, and potential therapeutic targets in the VitNet
were predicted by a network-based analysis method. Finally,
some potential therapeutic targets were validated by proteome
and experiments analysis, which was useful to explore the multi-
target strategy for vitiligo.

MATERIALS AND METHODS

Data Collection and Preparation
Gene Expression Dataset
Three gene expression profiles (GSE53146, GSE65127 and
GSE75819) of skin samples were downloaded from Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The array data of GSE53146 included five
normal skin samples and five vitiligo lesional skin samples
(Rashighi et al., 2014). The array data of GSE65127 consisted
of 10 normal skin samples, 10 non-lesional skin samples and 10
vitiligo lesional skin samples (Regazzetti et al., 2015). The array
data of GSE75819 contained 15 non-lesional skin samples and 15
vitiligo lesional skin samples (Singh et al., 2017). In this study,
these non-lesional skin samples were considered as normal skin
samples. The robust multiarray average (RMA) method (McCall
et al., 2010) was applied to preprocess these gene expression
profiles, mainly including background correction and data
normalization. According to the platform information
(GPL570, GPL6884 and GPL14951) of each gene expression
profile, the intersection of these gene probes was considered as
the common transcriptomic signatures.

Human Protein-Protein Interactome Dataset
In previous studies, Cheng et al. assembled 15 commonly used
databases, focusing on high-quality protein-protein
interactions (PPIs) with various types of evidence, to build
an unbiased, systematic human protein-protein interactome
dataset (Cheng et al., 2018; Cheng et al., 2019). Moreover, the
STRING database (v11.0, https://string-db.org/) stored the
multi-species protein-protein association networks by
collecting all publicly available sources of PPIs (Szklarczyk
et al., 2018; Szklarczyk et al., 2020). In this study, the above
two datasets were integrated into a more comprehensive
human protein-protein interactome dataset. For the STRING
database, the organism Homo sapiens was chosen and the
interaction score was set to be not less than 0.9. These
protein-coding genes were then mapped to their official gene
symbols and Entrez ID based on NCBI Gene database (https://
www.ncbi.nlm.nih.gov/gene/). Self-interacting proteins were
removed in the human protein-protein interactome dataset.
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Machine Learning
Random Forest
The RF (Liaw andWiener, 2002) method was employed to build a
machine learning model. We randomly split the gene expression
dataset into a training set and a test set in a ratio of 8:2 for model
building and validation, respectively. In the RF analysis, 500 trees
were built using R package randomForest (v4.6.14) (Breiman,
2001) with 10-fold cross validation, and this was repeated for 100
times. The test set was used to evaluate the trained model. The
normalized additive predicting probability was computed as the
final predicting probability. The larger probability for the binary
classification was adopted as the predictive label. The area under
the receiver operating characteristic curve (AUC) was calculated,
and the value of AUC ranges from 0.5 to 1, which represented
random classifier and perfect classifier, respectively.

Feature Selection
Feature selection was performed based on mean decrease in
accuracy (MDA) provided by the trained RF model. This
method is to change the value of a variable into a random
value. Then, the degree of decrease in the prediction accuracy
of RF model is further evaluated. The larger MDA indicates the
greater importance of the variable. In this study, those variables
with MDA larger than 1 were considered as important
transcriptomic features for vitiligo (Lu et al., 2020; Monforte
et al., 2021).

Network Analysis
Construction of the Vitiligo PPI Subnetwork
In this study, the VitNet was constructed to evaluate the
functional interactions among those important transcriptomic
features based on the integrated human protein-protein
interactome dataset. If no interactions, these transcriptomic
features (nodes) were removed from the networks. The
Cytoscape software (v3.7.2) was utilized for the visualization of
PPI network (Shannon et al., 2003). The NetworkAnalyzer
(Assenov et al., 2007) tool was applied to compute topological
parameters of the VitNet. The Molecular Complex Detection
(MCODE, v1.4.2) (Bader et al., 2003) was conducted to screen
core modules of the VitNet. In detail, cutoff values were 2 for the
degree and 0.2 for the node score, while the k-score was 2 and the
maximum depth was 100.

Greedy Articulation Points Removal Method
The GAPR method was developed to find APs in networks (Tian
et al., 2017). This method can analyze all the APs of the initial and
disrupted network based on the local tree approximation theory.
A node in a network is defined as AP if its removal disconnects
the network or increases the number of network-connected
components. These APs can ensure the robustness and
connectivity of many real-world networks including human
disease networks (Tian et al., 2017). Thus, we used the GAPR
method to comprehensively and deeply understand the VitNet,

FIGURE 1 | The systematic framework to discover potential therapeutic strategies for vitiligo by combining machine learning and network analysis together.
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leading to suggestion of novel potential therapeutic targets for
vitiligo.

The process of APs prediction can be considered as the
network decomposition process. For an initial network (the
first layer), these APs and the edges linked to them were
removed from the network and formed a new disrupted
network (the second layer). Then, the disrupted network was
peeled off step by step, until there is no AP left and a well-defined
residual giant bicomponent (RGB) is formed. The RGB was the
core module of networks. These APs of each layer were regarded
as articulation proteins in disease networks. And some
articulation proteins were used for experimental validation.

Robustness Evaluation
To explore the robustness of the GAPR method, we tested if our
results were tolerant against data incompleteness (Kovács et al.,
2019). These PPIs of the VitNet were randomly removed at a rate
of 1–50%, and this was repeated for 100 times. Then, the GAPR
method was used to find articulation proteins in the incomplete
VitNet. Next, the articulation protein overlap rate was calculated
by comparing the differences of articulation proteins in the
complete and incomplete VitNet. Finally, the robustness was
represented by the mean value of articulation protein
overlap rate.

Experimental Validation
Chemicals and Reagents
Kaempferide (PubChem CID: 5281666, purity ≥98%), 8-MOP
(PubChem CID: 4114, purity ≥98%), phenylthiourea (PTU;
PubChem CID: 676454, purity ≥98%) and alpha-melanocyte-
stimulating-hormone (α-MSH; PubChem CID: 16132636, purity
≥97%) were purchased from Yuanye Biotechnology (Shanghai,
China). Flavopiridol (PubChem CID: 5287969, purity ≥99%) and
OTS-964 (PubChem CID: 89675898, purity ≥99%) were
purchased from Topscience (Shanghai, China). Dulbecco’s
modified Eagle’s medium (DMEM) and First Strand cDNA
Synthesis Kit was purchased from Thermo Fisher Scientific
(Carlsbad, United States). Fetal bovine serum (FBS) was
obtained from Biological Industries (Cromwell, United States).
Rotor-Gene SYBR Green PCR Kit was purchased from Qiagen
(Hilden, German). Total RNA Extractor (Trizol) kit was obtained
from Sangong (Shanghai, China). Penicillin/streptomycin was
purchased from Solarbio (Beijing, China).

In vitro Melanogenic Assay in B16F10 Cells
The B16F10 murine melanoma cell line was purchased from
the Cancer Cell Repository (Shanghai Cell Bank, China). Cells
were cultured in DMEM containing 10% FBS and 1%
penicillin/streptomycin in a 5% CO2 humidified incubator
(Thermo Fisher Scientific, United States) at 37°C. The
B16F10 cells were seeded in a density of 5 × 104 cells/ml in
a 2 ml system and treated with DMEM, α-MSH (10 nM),
flavopiridol (10 nM) and OT-964 (10 nM) for 48 h. The
samples were digested and collected in 1.5 ml EP tubes,
centrifuged at 1200 RPM for 10 min and photographed by
the PENTAX K-7 (Tokyo, Japan).

In vivo Melanogenic Assay in Zebrafish
Adult TU zebrafish (RRID: ZIRC_ZL784) were purchased from
YSY Biotechnology (Nanjing, China) and maintained in a 3 L
polystyrene aquarium tank (10 zebrafish per tank) under
standard conditions at 28.5°C with a 14 h light/10 h dark cycle
(Lim et al., 2019). Embryos were obtained from natural crosses
between the adult TU zebrafish and raised in embryonic water.
Synchronized 72 h post-fertilization (hpf) embryos that were
placed in 6-well plates (5 ml embryonic water; six embryos per
well), were pre-treated with PTU (200 μM) for 48 hpf. PTU, a
highly potent tyrosinase inhibitor, showed the strongest anti-
melanogenesis effect at standard concentrations of 200 μM in
zebrafish embryos. Then, these embryos were treated with 8-
MOP (100 μM), flavopiridol (10 nM) and OTS-964 (10 nM) for
48 hpf. 8-MOP was used to repigment the lesional skin of vitiligo
patients. Embryos were anaesthetized in clove oil and mounted in
1% methyl cellulose. The pigmentation of embryos was
photographed under the OPTEC SMZ-T2 stereomicroscope
(Chongqing, China).

RNA Extraction, cDNA Synthesis and qPCR
The B16F10 cells were collected to perform the qPCR analysis.
The total cellular RNA was isolated using a Total RNA Extractor
(Trizol) kit. RNA quality was tested using the A260/A280 ratio.
The cDNA synthesis was performed using Moloney murine
leukemia virus reverse transcriptase with a First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, United States). The
cDNA synthesis system was performed according to the
manufacturer’s instructions. The abundance of Mitf
(Microphthalmia-associated transcription factor), Tyr
(Tyrosinase), Gsr (Glutathione reductase, mitochondrial) and
Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) mRNA in
the samples were quantified using SYBR Green-based Rotor-
Gene Q (Qiagen, German) and quantified using the 2−ΔΔCt

method. The mRNA expression was normalized using Gapdh
as an endogenous control. The amplification was performed for
36 cycles (denaturing at 95°C for 10 min, annealing at 95°C for 5 s,
and extension at 60°C for 45 s). These primers sequences
(Supplementary Table S1) were synthesized by Sangong Co.,
Ltd. (Shanghai, China).

Proteome Analysis
The B16F10 cells were incubated with kaempferide (32 μM) for
24 h, 48 h. At the end point of this treatment, cells were collected
to perform the tandem mass tag (TMT) labeling-based
quantitative proteomic analysis. These samples were lysed in
300 µl lysis buffer supplemented with 1 mM PMSF (Sigma,
United States) by ultrasonication. The cell lysate was 15,000 g
centrifuged at 4°C for 15 min, and the supernatant was collected.
Protein concentration was determined by using the BCA Protein
assay (Beyotime, China) according to the manufacturer’s
instructions.

The proteins were digested by trypsin through the Filter Aided
Sample Preparation (FASP) method as described before
(Wiśniewski et al., 2009). For TMT labeling, these samples
were re-suspended in 100 μl 50 mM TEAB and 40 μl of each
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sample were transferred into new tubes for labeling.
Subsequently, TMT labeling of individual protein digests from
each sample with the TMT label reagent (Thermo Fisher
Scientific, United States) was conducted according to the
manufacturer’s instructions. Finally, the labeling peptides
solutions of each samples were performed on the Reverse-
phase liquid chromatography (RPLC)-Mass spectrometry (MS)
analysis. The detail of the RPLC-MS analysis was described in
Supporting Information.

The raw data were searched by the Proteome Discoverer TM
2.2 software (Thermo Fisher Scientific, United States) with the
following parameters: sample type was set as TMT 10 plex
(Peptide Labeled) and trypsin digestion. The Cysteine
Alkylation was set as Iodoacetamide. For protein
quantification method, the false discovery rate (FDR) was
calculated by the target-decoy mode. The identification result
was strictly filtered with 1% FDR. The differentially expressed
proteins (DEPs) were characterized according to the following
criteria: FC ≥ 1.5 or FC ≤ 2/3 and p-value < 0.05 (Student’s t-test).

Glutathione Species Analysis
A pair of molecularly imprinted polymer (MIP) modified
electrochemical sensors (GSH-MIP and GSSG-MIP sensors)
(Zhang et al., 2016) were used to detect glutathione (GSH)
and glutathione disulfide (GSSG) in B16F10 cells. Both of
sensors exhibited the relatively wide linear detection range and
low detection limit. The B16F10 cells were treated with
kaempferide (8, 16, 32 μM) for 12 and 24 h. At the end point
of this treatment, these samples were frozen rapidly and thawed
twice with liquid nitrogen at 37°C and then at 4°C for 5 min. The
supernatant was harvested by centrifugation at 10,000 g for
10 min for glutathione species analysis.

Bioinformatics and Statistical Analysis
The bioinformatics analysis including gene ontology (GO) and
KEGG pathway enrichment analysis was performed by R package
clusterProfiler (v3.16.0) (Yu et al., 2012). The statistical analysis in
this study was carried out by the R software (v3.6.3). The R
package pheatmap (v1.0.12) (Kolde, 2018) was applied to
construct the heat map for DEPs. All values are presented as
means ± standard error and analyzed by Student’s t-test and one-
side Wilcoxon rank sum test. All experiments were done at least
3 times with similar results.

RESULTS

Statistics of Datasets
In this study, a total of 70 skin samples (Supplementary Table
S2) were collected including 40 normal skin samples (Control
group) and 30 vitiligo lesional skin samples (Vitiligo group). After
preprocessing and standardization of all gene expression profiles,
there were a total of 11,095 transcriptomic signatures.
Furthermore, we built a more comprehensive human protein-
protein interactome dataset by integrating two publicly available
PPIs datasets. Cheng’s PPI dataset included 217,160 PPIs
connecting 15,970 unique proteins. In the STRING database,

the human protein-protein interactome dataset included 489,764
PPIs connecting 11,913 unique proteins. After integration, the
comprehensive human protein-protein interactome included
427,997 unique PPIs connecting 17,143 unique proteins
(Supplementary Table S3).

Important Transcriptomic Features for
Vitiligo via Machine Learning
We next investigated the possibility of differentiating vitiligo and
normal samples from the transcriptome level. By collecting the
transcriptomic data (Figure 2A), the RF method was used to
build a machine learning-based classifier model for identifying
the discrimination between normal and vitiligo skin samples.
This model reached an AUC of 0.926 in the training set
(Figure 2B; Supplementary Figure S1). We then tested the
model on test set (Figure 2C). The model achieved an overall
accuracy of 78.6% in the test set. All normal samples and half of
vitiligo samples were correctly identified, except these three
vitiligo samples (GSM1587720, GSM1587725 and
GSM1587727) from the same gene expression profile
(GSE65127). More samples data could improve the model
performance, but an advantage of the RF method was that it
could extract effective information from relatively small datasets
(Shen et al., 2020; Unger et al., 2020).

Among 11,095 variables, 722 variables withMDA larger than 1
were considered as important transcriptomic features for vitiligo
based on the RF model (Figure 3). Several top-ranked variables
such as DCT (L-dopachrome tautomerase), PMEL (Melanocyte
protein PMEL), GPR-143 (G-protein coupled receptor 143) and
MC1R (Melanocyte-stimulating hormone receptor) were closely
related to the melanin-biosynthetic process. Some transcriptomic
features were also associated with the immune characteristics,
such as LARP7 (La-related protein 7), PBK (Lymphokine-
activated killer T-cell-originated protein kinase), ABL1
(Tyrosine-protein kinase ABL1) and inflammatory cytokines
(IL-19, IL-33 and IL-34) (Supplementary Table S4). These
transcriptomic features may be screened as candidate vitiligo-
related biomarkers and would be helpful for understanding the
molecular mechanism of vitiligo and giving us the ability to
discover potential therapeutic targets.

Potential Therapeutic Targets for Vitiligo via
Network Analysis
For further analysis of potential therapeutic targets for vitiligo
from these important transcriptomic features, the VitNet
(Figure 4A) was constructed based on the integrated human
protein-protein interactome dataset, which consisted of 466
nodes and 1,583 edges (Supplementary Table S5). The node
degree distribution (Supplementary Figure S2) of the VitNet
followed the power law (R2 � 0.920; Correlation � 0.955)
indicating that the network was a scale-free network.

We then investigated that AP-based removal strategy was an
effective strategy for discovery of potential therapeutic targets.
When these APs are removed in the VitNet, the complex
biological network will be disrupted as soon as possible with
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the aim of treating diseases. The GAPR method was developed to
find articulation proteins in the VitNet and analyze potential
therapeutic targets for vitiligo (Figure 4A). This result showed

that the VitNet consisted of six layers and 160 articulation
proteins (Figure 4B; Supplementary Table S6). As the
network was peeled of step by step, the number of articulation
proteins for each layer gradually decreased. Furthermore, we
found that the articulation protein overlap rate reached 60%
even if these PPIs of the VitNet were randomly removed at a rate
of 50% (Figure 4C). This indicated that the GARP method had
good robustness.

Subsequently, several network centrality parameters such as
degree, betweenness and stress were calculated to explore the hub
nodes in the VitNet (Supplementary Table S6). It was found that
the distribution of the top 10 nodes (Supplementary Figure S3A)
or top 100 nodes (Supplementary Figure S3B) was not commonly
consistent among three network centrality parameters. These
nodes that shared three types of network centrality parameters
were considered as hub nodes (top 10: 5 hub nodes, top 100: 62 hub
nodes). In these hub nodes, we found that articulation proteins in
the VitNet had a higher coverage rate (top 10: 100%, top 100: 79%)
(Supplementary Figure S3C). We also found that RGB modules
(core modules) based on the GAPR method had certain
consistency with MCODE method (Figure 4A; Supplementary
Figure S4), but they also had certain differences. The reason is that
these network centrality parameters can only identify hub nodes of

FIGURE 2 | Summaryofmachine learningdesign andmodel performance. (A)Studydesign formachine learning-based classifier development for vitiligo patients. (B)Receiver
operating characteristic (ROC) of the random forest model in the training set. (C) Performance of the model in the test set containing six vitiligo and eight normal skin samples.

FIGURE 3 | Important transcriptomic features for vitiligo prioritized by
random forest analysis.
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initial network, and cannot further analyze the disrupted VitNet.
The advantage of the GAPRmethod is that it can analyze all APs of
the initial and disrupted networks.

Finally, we gave priority to those articulation proteins that
were highly expressed in vitiligo skin samples. The one-side
Wilcoxon rank sum test was used to calculate the statistical

significance of articulation proteins. The alternative hypothesis
was supposed that the expression of an articulation protein in
vitiligo samples could be higher than that of normal samples.
There were 44 articulation proteins that were significantly high
expressed in vitiligo (Figure 5; Supplementary Table S7). These
articulation proteins mainly included TXN (Thioredoxin), PBK,
CDK1 (Cyclin-dependent kinase 1), which may be served as
potential therapeutic targets for vitiligo.

The Multi-Target Strategy of Kaempferide
for Vitiligo
In our previous works, we explored the network pharmacological
mechanism of Vernonia anthelmintica (L.) in the treatment of
vitiligo (Wang et al., 2017). The melanogenic effect of flavonoids
such as kaempferide (Supplementary Figure S5A) was identified
via in vitro and in vivo models (Wang et al., 2017; Wang et al.,
2018; Yu et al., 2020). Some studies had also reported the similar
results (Horibe et al., 2013; Xu et al., 2017; Ma et al., 2018). These
studies indicated that flavonoids could play an important role in
the treatment of vitiligo. However, the therapeutic mechanism of
flavonoids remained unclear. In this study, we tried to apply the
proteomic technology and integrate the above results to explore
the underlying mechanism of kaempferide for vitiligo.

Proteomic Profiling of Kaempferide in B16F10 Cells
The TMT-10plex LC-MS/MS was used to analyze the proteomics
characterization of kaempferide in B16F10 cells. A total of 3,707

FIGURE 4 | Network analysis of important transcriptomic features using greedy articulation point removal (GAPR) method. (A) Construction of the vitiligo PPI
subnetwork (VitNet) and the GAPR method process. Blue nodes represented important transcriptomic features. Orange nodes represented articulation points. Grey
nodes represented supporting points. (B) The number of articulation protein in the initial and deep network. (C) Robustness analysis of the GAPR method.

FIGURE 5 | Dysregulated articulation proteins in vitiligo. The adjusted
p-value was calculated by one-side Wilcoxon rank sum test and Benjamini-
Hochberg method. GAPR: Greedy articulation points removal.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7541757

Wang et al. The Multi-Target Strategy for Vitiligo

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


proteins were identified and quantified (Supplementary Table S8).
Principal component analysis (PCA) showed that the three groups
(0, 24 and 48 h) could be clearly divided according to the first and
second principal components (Supplementary Figure S5B).
About 52.8 and 17.8% variation of the data could be explained
by the first and second principal components, respectively.
Furthermore, a total of 149 DEPs were identified in B16F10
cells in the 24 h vs. 0 h group (Figure 6A). In the 48 h vs 0 h
(Figure 6B) and 48 h vs. 24 h (Figure 6C) groups, there were 423
and 106 DEPs, respectively. Altogether, 472 proteins were obtained
by taking the union of DEPs for each group (Figure 6D;
Supplementary Table S9). 26 proteins were obtained by taking
the intersection of DEPs for each group (Table 1). In addition, the
proteomics profiling also proved that the melanogenic pathway
was activated by kaempferide (Supplementary Figure S6).

The Inhibition of CDK1 and PBK Promotes
Melanogenesis
Among these DEPs (Table 1), CDK1 and PBK were given the
priority due to the intersection of kaempferide-induced DEPs and
potential therapeutic targets based on the GAPR method
(Figure 7). These two targets were highly expressed in vitiligo.
However, in the proteomics analysis of kaempferide, the levels of
these two targets significantly decreased in a time-dependent
manner.

We observed that flavopiridol (CDK1 inhibitor) and OTS-964
(PBK inhibitor) (Figure 8A) effectively promoted melanogenesis
in B16F10 cells compared with α-MSH at the same concentration
of 10 nM (Figure 8B). In zebrafish model, compared with control
group, the melanin of zebrafish embryos pretreated with PTUwas
significantly reduced (Figure 8C). Then, these embryos treated

FIGURE 6 | Differentially expressed proteins in different groups. (A–C) Volcano plots for the proteomics characterization of kaempferide in B16F10 cells. (D) Venn
diagram of differentially expressed proteins overlapping in the comparison of different groups.
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with 8-MOP, flavopiridol and OTS-964 were pigmented again
(Figure 8C). The expression of Tyr and Mitf mRNA also
increased by the treatment of flavopiridol and OTS-964

(Figure 8D). Studies had demonstrated that PBK was
phosphorylated in mitosis by CDK1 (Stauffer et al., 2017) and
p38 MAPK was next phosphorylated by PBK (Abe et al., 2000).
Previous studies showed that the p38 MAPK signaling pathway
was associated with melanogenesis throughMITF in melanocytes
(Huang et al., 2013; Goding and Arnheiter, 2019). It should be
noted that the p38 MAPK phosphorylation showed inconsistent
expression patterns during melanogenesis (Bellei et al., 2010; Tu
et al., 2012; Huang et al., 2013; Karunarathne et al., 2019; Lim
et al., 2019). Our results showed that the level of MAPK14 was
decreased (Supplementary Table S9). Thus, these results
suggested that kaempferide induced melanogenesis through
the suppression of p38 MAPK signaling pathway by inhibiting
CDK1 and PBK.

The Regulation of Redox Proteome Promotes
Melanogenesis
On the other hand, TXN was highly expressed in vitiligo skin
samples (Figure 5) and controlled the cellular redox environment
(Lu and Holmgren, 2014). And previous studies had
demonstrated that oxidative stress was critical for the
progression of vitiligo (Chang et al., 2017; Ma et al., 2018; Yi
et al., 2019; Chen et al., 2021). However, there was no study to
report the relationship between TXN and vitiligo, which attracted
our attention. Moreover, in proteomic profiling, GO enrichment
analysis showed that some DEPs were enriched in oxidation-
reduction process (Supplementary Figure S7). KEGG pathway
enrichment analysis also suggested that several DEPs were related
to the HIF-1 and GSH metabolism pathways (Supplementary
Figure S8). Previous study had reported that melanogenesis led
to stimulation of HIF-1A expression and HIF-dependent

TABLE 1 | The levels of 26 proteins at different time.

UniProt ID Protein name Fold change

24 vs. 0 h 48 vs. 0 h 48 vs. 24 h

Q60936 COQ8A 2.86 6.43 2.25
Q9D379 EPHX1 1.75 2.66 1.52
Q91VD9 NDUFS1 0.61 0.41 0.66
Q9DC70 NDUFS7 0.66 0.40 0.61
Q8VCG1 DUT 0.66 0.39 0.59
E9PVX6 MKI67 0.62 0.38 0.62
Q8BY71 HAT1 0.65 0.38 0.59
Q9CQ79 TXNDC9 0.58 0.38 0.64
Q9QWF0 CHAF1A 0.62 0.37 0.60
D3Z7B5 CIP2A 0.61 0.37 0.60
P13864 DNMT1 0.58 0.34 0.59
D3YXW1 LLPH 0.52 0.34 0.66
Q9CQ75 NDUFA2 0.60 0.34 0.56
Q80V26 IMPAD1 0.64 0.34 0.53
Q9JJ78 PBK 0.51 0.34 0.65
Q99JW7 CDK1 0.56 0.32 0.56
B1ARD6 SLFN9 0.64 0.30 0.46
Q9D1C1 UBE2C 0.47 0.27 0.56
P11157 RRM2 0.53 0.26 0.49
A0A1S6GWI4 NDUFS5 0.55 0.25 0.45
P07742 RRM1 0.50 0.24 0.48
Q3UNC9 CKS1BRT 0.64 0.24 0.37
Q3UY05 NDUFS8 0.49 0.23 0.46
Q8VDF2 UHRF1 0.43 0.20 0.46
Q3UWQ9 HMGCS1 0.34 0.19 0.55
P52431 POLD1 0.33 0.16 0.49

FIGURE 7 | Heatmap of these 17 proteins. These proteins were the intersection of kaempferide-induced DEPs and articulation proteins based on the GAPR
method. DEP: differentially expressed protein. GAPR: greedy articulation point removal.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7541759

Wang et al. The Multi-Target Strategy for Vitiligo

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


attendant pathways (Slominski et al., 2014). This proteomics
profiling also demonstrated this fact. Moreover, the level of
RRM1 (Ribonucleoside-diphosphate reductase large subunit),
RRM2 (Ribonucleoside-diphosphate reductase subunit M2)
and GPX8 (Probable glutathione peroxidase 8) mainly
enriched in the GSH metabolism were significantly decreased
(Table 1) in a time-dependent manner. The GSH species analysis
showed that kaempferide significantly decreased the intracellular
content of GSH, GSSG and total GSH (Figures 9A–C).
Meanwhile, the expression of Gsr mRNA was inhibited by
kaempferide (Figure 9D). Since the GSH and TXN
antioxidant systems played important roles in maintaining the
cellular redox balance (Lu and Holmgren, 2014), we considered
the regulation of cellular redox homeostasis as one of the multi-
target strategies, which laid a foundation for further research.

By integrating the above results, we summarized that the
combination of PBK, CDK1 and TXN may be the underlying
mechanism of kaempferide (Figure 10) for vitiligo. It mainly
included 1) the suppression of the p38 MAPK signaling pathway

by inhibiting CDK1 and PBK, and 2) the modulation of cellular
redox homeostasis, especially TXN and GSH antioxidant systems,
for the purpose of melanogenesis. This also suggested to us that
this mechanism was a novel perspective to discover novel drug
candidates for vitiligo.

DISCUSSION

Considering the complexity of pathogenesis for vitiligo, it is
difficult for single-target drugs to work. With the development
of network pharmacology (Hopkins, 2008), the multi-target
concept may be hopeful to explain the complex mechanism
for vitiligo, especially the underlying mechanism of TCM
ingredients, which is conducive to promote the development
of TCMs. In previously studies, Pei et al. proposed a network
pharmacology approach to uncover the multi-target mechanism
of Qubaibabuqi formula for vitiligo (Pei et al., 2016). Lu et al.
applied network pharmacology to analyze the multi-target

FIGURE 8 | The effect of CDK1 and PBK inhibitors on melanogenesis in B16F10 cells and zebrafish. (A) Schematic of the chemical structure of flavopiridol (CDK1
inhibitor) and OTS-964 (PBK inhibitor). (B) Cells were treated with α-MSH (10 nM), flavopiridol (10 nM) and OTS-964 (10 nM) for 48 h. Cell pellets and cellular
pigmentation were photographed using the PENTAX K-7. The α-MSH is a regulator of melanocyte differentiation and melanogenesis by binding to the MC1R on
melanocytes. (C) The experimental design of the zebrafish model. Zebrafish embryos were pretreated with phenylthiourea (PTU; 200 μM) for 48 hpf. Then, these
embryos were treated with methoxsalen (8-MOP; 100 μM), flavopiridol (10 nM) and OTS-964 (10 nM) for 48 hpf. PTU was used as a negative control and 8-MOP was
used to a positive control. The pigmentation of the embryos was observed under a stereomicroscope. (D) The expressions of melanin-biosynthetic genes (Tyr andMitf)
mRNA were measured by qPCR assay. The B16F10 cells were incubated with flavopiridol (10 nM) and OTS-964 (10 nM) for 48 h.
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mechanism of Cyclosporin A in the treatment of vitiligo (Lu et al.,
2021). We had also explored the network pharmacological
mechanism of Vernonia anthelmintica (L.) in the treatment of
vitiligo (Wang et al., 2017). In addition, methoxypsoralen (8-
MOP), as the first-line therapeutic drug for vitiligo, was a multi-
target agent (Carbone et al., 2019). Thus, these studies indicated
that the multi-target concept may offer a novel perspective for
anti-vitiligo drug discovery.

In this study, through collecting transcriptome data of vitiligo
and protein-protein interactome data, we designed a systematic
framework to discover potential therapeutic targets for vitiligo via
combining machine learning and network analysis together.
Recently, Zuo et al. (2021) also proposed a similar framework
to look forward with TCMs against COVID-19. With the
framework, we used an interpretable machine learning method
to extract important transcriptomic features for vitiligo. It was a
practicality for most biological studies (Fortino et al., 2020; Shen
et al., 2020; Unger et al., 2020). Among these important
transcriptomic features, several top-ranked variables were closely
related to the melanogenesis and immune characteristics, which
was the main phenotypes of vitiligo (Picardo et al., 2015; Niu and
Aisa, 2017; Pu et al., 2021; Zhang et al., 2021). Moreover, we
constructed a more comprehensive VitNet and obtained 160

articulation proteins by the GAPR method. Among these
articulation proteins, previous study had reported that Imatinib
(ABL1 inhibitor) induced repigmentation of vitiligo lesions (Han
et al., 2008). A recent study also found that PBK, CDK1 and TXN
were considered as potential therapeutic targets by transcriptome
and methylation analysis (Pu et al., 2021). However, whether these
targets were related to melanogenesis had not been proved. In this
study, we proved that by in vitro and in vivo melanogenic assays.

Furthermore, we explored the multi-target strategy for vitiligo
(Figure 10) by the proteome analysis. To our limited knowledge,
this is the first time that we have applied the proteome to explore
the underlying mechanism of kaempferide in melanogenesis.
Previous study demonstrated that alcohol extract from
Vernonia anthelmintica (L.) willd enhanced melanin synthesis
through the p38 MAPK signaling pathway (Zhou et al., 2012).
However, this study did not indicate a specific therapeutic target.
In this study, we predicted and experimentally validated that the
multi-target composed of CDK1 and PBK played an important
role in VitNet. This mechanism not only explained the
melanogenesis effect of kaempferide, but also explained the
molecular characteristics of complex vitiligo network.
Although there was the protein-protein interaction between
CDK1 and PBK, the simultaneous inhibition of multi-target in

FIGURE 9 | The effect of kaempferide on the glutathione metabolism in B16F10 cells. (A–C) The concentration of GSH, GSSG and total GSH after kaempferide
treatment (8, 16 and 32 μM) in B16F10 cells for 12 and 24 h. Ctotal GSH � CGSH + 2CGSSG, C represented concentration. (D) The relative expression levels to GsrmRNA
after kaempferide treatment (8, 16 and 32 μM) in B16F10 cells for 4, 8 and 12 h.
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the same signaling pathway could play a synergistic role. In
addition, since the GSH and TXN antioxidant systems played
important roles in maintaining the cellular redox balance, the
regulation of cellular redox homeostasis was considered as one of
the multi-target strategies, which laid a foundation for further
research. Previous study identified that microRNA-211 and its
target genes (e.g. RRM2, TAOK1) regulated oxidative
phosphorylation and energy metabolism and represented
potential therapeutic targets for vitiligo (Sahoo et al., 2017;
Goding and Arnheiter, 2019). RRM2 and TAOK1 involved in
glutathione metabolism and p38 MAPK signaling pathways,
respectively. This also indicated that the multi-target
mechanism of kaempferide was relatively consistent with
microRNA-211. Meanwhile, we noticed that the level of gene
expression was not always consistent with the activity of
corresponding protein. Our results could only provide the
possible explanation for the multi-target mechanism of
kaempferide instead of exclusive conclusion. Nevertheless, the
systematic framework would be easily applied in other diseases
and become a useful tool in drug discovery and development.

CONCLUSION

In this study, we designed a systematic framework to discover
potential therapeutic targets for vitiligo via combining machine
learning and network analysis together. With the framework, we

had successfully predicted and experimentally validated that
some potential therapeutic targets such as CDK1 and PBK
were closely related to melanogenesis, and further explored the
multi-target strategy of kaempferide for vitiligo through
proteomics profiling. The strategy mainly included 1) the
suppression of the p38 MAPK signaling pathway by inhibiting
CDK1 and PBK, and 2) the modulation of cellular redox
homeostasis, especially TXN and GSH antioxidant systems, for
the purpose of melanogenesis. Meanwhile, the multi-target
strategy may offer a novel perspective to discover drug
candidates for vitiligo. If broadly applied, the framework can
become a useful tool to discover novel potential therapeutic
strategies and drug candidates for other complex diseases.
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