
RESEARCH ARTICLE

A robust pooled testing approach to expand

COVID-19 screening capacity

Douglas R. BishID
1*, Ebru K. Bish1, Hussein El-Hajj2, Hrayer Aprahamian3

1 University of Alabama, Information Systems, Statistics, and Management Science, Blacksburg, VA, United

States of America, 2 Virginia Tech, Industrial and Systems Engineering, Blacksburg, VA, United States of

America, 3 Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States of

America

* drbish@cba.ua.edu

Abstract

Limited testing capacity for COVID-19 has hampered the pandemic response. Pooling is a

testing method wherein samples from specimens (e.g., swabs) from multiple subjects are

combined into a pool and screened with a single test. If the pool tests positive, then new

samples from the collected specimens are individually tested, while if the pool tests nega-

tive, the subjects are classified as negative for the disease. Pooling can substantially expand

COVID-19 testing capacity and throughput, without requiring additional resources. We

develop a mathematical model to determine the best pool size for different risk groups,

based on each group’s estimated COVID-19 prevalence. Our approach takes into consider-

ation the sensitivity and specificity of the test, and a dynamic and uncertain prevalence, and

provides a robust pool size for each group. For practical relevance, we also develop a com-

panion COVID-19 pooling design tool (through a spread sheet). To demonstrate the poten-

tial value of pooling, we study COVID-19 screening using testing data from Iceland for the

period, February-28-2020 to June-14-2020, for subjects stratified into high- and low-risk

groups. We implement the robust pooling strategy within a sequential framework, which

updates pool sizes each week, for each risk group, based on prior week’s testing data.

Robust pooling reduces the number of tests, over individual testing, by 88.5% to 90.2%, and

54.2% to 61.9%, respectively, for the low-risk and high-risk groups (based on test sensitivity

values in the range [0.71, 0.98] as reported in the literature). This results in much shorter

times, on average, to get the test results compared to individual testing (due to the higher

testing throughput), and also allows for expanded screening to cover more individuals.

Thus, robust pooling can potentially be a valuable strategy for COVID-19 screening.

Introduction

With around 46.8 million confirmed cases and 1.2M deaths in at least 188 countries (as of 11/

2/2020) [1], the COVID-19 pandemic continues to be the cause of considerable suffering and

economic disruption. Effective mitigation requires laboratory-based testing to identify

COVID-19 positive subjects. As the WHO Director-General Ghebreyesus puts it, "The most
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effective way to prevent infections and save lives is breaking the chains of transmission, and to

do that you must test and isolate. We cannot stop this pandemic if we don’t know who is

infected. We have a simple message for all countries: test, test, test” [2]. Testing is essential not

only for symptomatic individuals, but also for asymptomatic individuals [3], because they are

a major source of transmission [4].

Unfortunately, a major impediment to mitigation efforts in the United States (US), and in

other parts of the world, has been the limited testing capacity for COVID-19, which, in the US,

has constrained the number of tests that could be conducted, mostly restricting testing to

those with symptoms for case identification, and less on mass screening and contact tracing

efforts. Countries that were able to ramp up their COVID-19 testing capacity quickly and fol-

low an aggressive testing strategy earlier during the epidemic were considerably more effective

than others. For example, South Korea was able to curb the growth of the disease mainly

through expanded testing, without a strong imposition of social distancing measures. By test-

ing over 300,000 people out of its population of 52 million [5], South Korea was able to imple-

ment highly effective interventions early on, including contact tracing, followed by enforced

quarantines and isolations. Another example is Iceland, which is able to offer free COVID-19

testing to the general population [6], and as of June 14, 2020, was able to test around 17% of its

population [7].

The current mode of COVID-19 testing worldwide is individual testing, that is, each sub-

ject’s specimen is tested with a single test. An alternative to individual testing, proposed by

Dorfman in 1943 [8], is pooled testing, in which samples, sufficient for testing, are extracted

from the specimens (e.g., nasopharyngeal swabs) from multiple subjects, and combined in a

pool, and tested via a single test; if the pooled test’s outcome is positive, then all subjects in the

pool are individually tested (with the same type of test, using a new sample extracted from the

previously collected specimen); and if the pooled test’s outcome is negative, then all subjects in

the pool are classified as disease-negative. Pooled testing does not require any additional

resources beyond individual testing [9], and can substantially expand testing capacity over

individual testing, especially when prevalence rates are low. Pooled testing, and in particular

the Dorfman pooling method, is currently used in public health screening, including screening

for sexually-transmitted diseases and screening donated blood for transfusion-transmittable

infections [10–13]. An important design decision in pooled testing is the pool size (i.e., number

of specimens in each pool) so as to maximize the efficiency of testing (i.e., minimize the num-

ber of tests per subject) [11] provides a rigorous analysis on the selection of an optimal pool

size for Dorfman pooling. Because pooling has obvious application to COVID-19 testing,

there have been several recent pooling papers focused on COVID-19, for example [14–16],

offer various simplifications of the analysis in [11], with a focus on COVID-19. Unlike [14–

16], this paper considers uncertainty in the prevalence rate, which is a defining feature of

COVID-19; in other public health screening applications, the disease spread is less dynamic

and prevalence changes at a much slower rate (e.g., sexually-transmitted diseases). For

COVID-19, disease prevalence changes quickly, and there is high uncertainty around its preva-

lence at any point in time.

Considering pooled testing design, one concern is accuracy, in particular a potential

increase in the number of false-negatives as a result of pooling. Pooling does not increase the

number of false-positives over individual testing [11]. With imperfect tests, pooling will

increase the false-negative rate (e.g., see [11]), because a disease-positive subject must be tested

twice (first in a pool, then individually) to be classified as positive. Further, pooling may lead

to the “dilution” of the infected specimen(s) in the pool, reducing the sensitivity of the pooled

test, thus increasing the false-negative rate, especially for larger pools [13]. A common method

for reducing dilution is to set a maximum pool size for, e.g., see [10, 12].
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There are several lab-based studies that investigate the impact of pooling on the sensitivity

of a PCR test for COVID-19, which is the most common type of test for COVID-19 screening.

This preliminary research indicates that pooled testing leads only to a minor reduction in PCR

sensitivity for larger pool sizes. For example, [9] shows that the PCR test was able to detect an

infected specimen in pools of size of 32 in nine out of the ten pools tested. [17] shows a similar

result for pools of size 30. In addition, several other studies find no loss of sensitivity for

smaller pools, e.g., [18–20] use pool sizes of 5, 8, and 10, respectively. Not surprisingly [21, 22],

show that the dilution effect is more pronounced when the infected specimens in the pool

have low viral loads; the window period analysis in [21] indicates that the low viral load typi-

cally occurs for specimens that are collected either too early or too late after infection. Related

to the overall pooled testing design [23], proposes a design where the pooled test is repeated to

reduce false-negatives, and shows that such a design is still efficient compared to individual

testing. On the other hand [24], explores, via simulation, different pooling designs (e.g., adap-

tive and non-adaptive) and different metrics (e.g., efficiency and accuracy).

A PCR test run takes in the order of 2 hours [25, 26] to complete, thus, pooled testing, fol-

lowed by individual testing as needed, is viable from a time perspective, and does not signifi-

cantly increase the testing time for a particular subject. Further, testing machines have a

capacity, which limits their throughput (e.g., number of completed tests per testing day), e.g., a

limit of 96 samples per testing cycle (run) is common [25]. Because pooled testing increases

the number of specimens tested per testing cycle, it also increases the throughput, shortening

the average time to get the test results. The expanded testing capacity provided by pooling

could enable more extensive testing for COVID-19.

This paper builds on previously published mathematical models by the authors; develops a

robust approach for pooled testing design that can be customized for different testing popula-

tions and for a dynamic and uncertain disease prevalence; and demonstrates that the proposed

pooled testing approach has the potential to substantially increase COVID-19 testing capacity.

Further, we explore the impact of test sensitivity, and provide insight on how to manage the

uncertainty in test sensitivity. This research is timely as limited COVID-19 testing capacity

remains a serious problem, and more testing capacity is urgently needed, especially given the

increasing number of infections, and the efforts to return to some form of “normalcy.”

Methods

We study case identification via pooled testing; develop an easily implementable method for

robust pooling design under prevalence uncertainty [27, 28], and for risk-stratified groups;

and illustrate the benefits through a case study on mass screening for COVID-19. Our model

builds on our earlier work, in particular, we take the analytically complex models and results

from [10], which uses risk-based pooling (to determine pool sizes and pool assignments for

subjects given their individual disease risk), from [11], which uses robust optimization (to

determine pool sizes under prevalence uncertainty), and from [29], which develops sequential

pooling design for surveillance; and we develop a novel method for designing a simple, robust
pooling strategy, which can be incorporated into a sequential pooling design framework to con-

sider infection dynamics and prevalence uncertainty. For practical relevance, we develop a

companion COVID-19 pooling design tool (through a spread sheet), which will be available

online.

We consider a PCR test, which can be used for both individual and pooled testing. For

pooled testing, we consider the Dorfman method [8] (hereafter, “pooling”). The test produces

a binary outcome, with a positive (negative) outcome indicating the presence (absence) of the

infection in the pool (for pooled testing) or in the individual specimen (for individual testing).
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We let Se and Sp respectively denote the test sensitivity (true positive probability) and specificity
(true negative probability), and assume that pooling does not change the test’s efficacy up to a

maximum allowable pool size. The terms “subject” and “specimen” respectively refer to the

individual to be tested, and specimen collected from the individual, and are used interchange-

ably. We assume that each specimen has sufficient material (samples) for multiple tests, thus, if

an individual follow-up test is needed for a subject, it is conducted on a new sample extracted

from the subject’s previously collected specimen.

Model

We design a pooling strategy for a testing population divided into risk groups based on each

group’s estimated disease prevalence, by determining, for each group, a robust pool size. The

objective is to maximize the efficiency of testing (minimize the expected number of tests per

subject) under unknown prevalence. In the following, we detail the derivation of the robust

pool size, discuss its extension to sequential pooling design, and derive the false-negative rate

of pooling.

To simplify the subsequent notation, we omit the group index. Consider a given group, and

let P denote the unknown prevalence for the group, with uncertainty set (range) S(P) = [L, U],

which consists of discrete prevalence scenarios, each with probability, Pr(P = p), p � S(P); our

method extends to any user-specified discrete or continuous distribution for P. The uncer-

tainty set S(P) is estimated by the tester, and does not necessarily correspond to the true sup-

port of random variable P, which is unknown in practice.

Testing efficiency

Let nmax denote the maximum allowable pool size (due to technological limitation, dilution

effect, etc.). If a pool with n specimens tests negative, then only 1/n tests are needed per subject;

and if the pool tests positive, then each subject requires an individual “follow-up” test, leading

to 1+1/n total tests per subject (Table 1 displays the probability of each possible event). Then,

for any pool size n and prevalence scenario p, the expected number of tests per subject tested

(“expected tests”) under pooling, denoted by E[T(n,p)], follows:

E T n; pð Þ½ � ¼
1þ n½Se � ðSeþ Sp � 1Þð1 � pÞn�

n
: ð1Þ

The probabilities for the intersections of all possible pooled test outcomes and subject status

in pooled testing.

A key characteristic of COVID-19 is dynamic and uncertain prevalence rates, thus during

testing the actual prevalence rate is unknown. To develop a pool size that is robust under prev-

alence uncertainty, we use the Regret measure (e.g., [11]), which can be computed for any pool

size n and prevalence scenario p as follows:

Regretðn; pÞ ¼ E½Tðn; pÞ� � E½TðnðpÞ; pÞ�; ð2Þ

Table 1. Probabilities of all possible events in pooled testing (for a Pool of n Subjects).

Pooled Test Outcome True

Subject Status in Pool

Pooled Test Negative Pooled Test Positive

(Pooled Test Only) (Pooled Test Plus n Individual Tests)

All Subjects Negative Sp(1−p)n (1−Sp)(1−p)n

At Least One Subject Positive (1−Se)(1−(1−p)n Se(1−(1−p)n)

https://doi.org/10.1371/journal.pone.0246285.t001
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where n(p) is the pool size that minimizes E[T(n,p)] for prevalence scenario p (i.e., the mini-

mizer of Eq (1) under perfect information on p, the prevalence rate), and can be approximated

as follows [11]:

nðpÞ � argminðn2ðb~nðpÞc;d~nðpÞe;nmaxÞ
½E½Tðn; pÞ��; ð3Þ

where ~n pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

pðSeþSp� 1Þ

q
.

In Eq (3), we evaluate the expected tests, E[T(n,p)], at the ceiling and floor of ~nðpÞ, and at

the maximum allowable pool size, nmax, and select the value that yields a lower expected num-

ber of tests, in order to obtain an integer pool size, n(p). A complex algorithm that derives the

(exact) optimal pool size for scenario p is provided in our previous work [11].

The perfect information assumption used in Eq (3), which implies a known prevalence rate,

is obviously not realistic, and is utilized for the purpose of deriving a robust pool size when the

prevalence rate is uncertain. Specifically, we determine a robust pool size, n�, so as to minimize

the expected Regret over the uncertainty set S(P) of random variable P, that is:

n� ¼ argminðn2Zþ ;n�nmaxÞ
½
P

p2SðPÞPrðP ¼ pÞ � Regretðn; pÞ�: ð4Þ

Utilizing the Regret objective in Eq (4) requires the determination of a set of perfect infor-

mation pool sizes a priori via Eq (3). The Regret objective leads to a robust solution that is not

overly conservative, and a simple method for determining a robust pool size, compared to the

analytically complex algorithm of [11].

In summary, to design a robust pooling strategy under prevalence uncertainty, we use Eqs (3)

and (4) with each risk group’s respective parameters. Specifically, using Eq (3), we first calculate a

set of perfect information pool sizes, n(p), for each scenario p in the range of P; and then use Eq (4)

to determine the robust pool size for the group under prevalence uncertainty, n�. This process is

automated in our spread sheet, and the user needs to only input the problem parameters, includ-

ing any user-specified probability distribution (discrete or continuous) for random variable P.

Sequential pooling design

Due to infection dynamics, we allow for updates to pooling design in each testing period (see,

e.g., [29] for sequential pooling design for surveillance). To present our framework for sequential

pooling design, we use index t to denote testing period t2Z+. At the beginning of each testing

period t, we update the uncertainty set of random variable P based on the testing data obtained

in periods 1,. . ., t -1, compute each group’s pool size in period t (Eqs (3) and (4)), and use the

updated pool sizes in testing period t. We repeat this process through the testing horizon.

False-negative rate

We determine the expected false-negatives (FNs) per subject tested under pooling. When a

pool contains infected specimen(s), FN(s) occurs if the pool tests negative, or the pool tests

positive but the individual follow-up test for an infected specimen is negative, leading to:

E½FNPool� ¼ ð1 � Se2Þp: ð5Þ

On the other hand, for individual testing, when a subject is infected (with probability p), the

test falsely provides a negative outcome (with probability 1-Se), leading to:

E½FNIndividual� ¼ ð1 � SeÞp: ð6Þ
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Data

We demonstrate the efficiency of robust pooling for mass screening using published data for

COVID-19, which is stratified into low- and high-risk groups based on symptom class. To this

end, we construct each group’s uncertainty set for the prevalence random variable to corre-

spond to the 95% confidence interval (CI) from the dataset, with 100 equally-spaced preva-

lence scenarios (each with equal probability) within each uncertainty set; and develop a robust

pooling design for each group (via Eqs (3) and (4)).

We consider the PCR test for COVID-19 testing. In [9], ten pools of size 32 were con-

structed, where each pool contained one specimen infected with COVID-19 and 31 infection-

free specimens. Using the PCR test, nine pools tested positive and one pool tested negative

(due to dilution). Other studies suggest that the sensitivity of the PCR test for COVID-19 can

be as low as 0.71 and as high as 0.98 [30]. As a result, we perform a one-way sensitivity analysis

on the test sensitivity parameter, Se, over a wider range, of [0.70, 1.00], discuss the specific

results for the published values (i.e., Se values of 0.71 and 0.98) in detail, and qualitatively dis-

cuss the results for other test sensitivity values. We also assume that the test has perfect speci-

ficity, i.e., Sp = 1 [31], which is not subject to the dilution effect, and nmax = 32 [9].

Case study data. The case study focuses on mass screening of high- and low-risk subjects

based on Iceland’s COVID-19 testing dataset [7]. This dataset includes 63,134 subjects, and

reports the number of subjects screened and the number of positive test outcomes for

COVID-19 per day, based on testing data from two laboratories, which collectively conduct all

COVID-19 screening in Iceland: 1) 21,576 high-risk subjects with “severe symptoms and/or

are at high risk of infection because of close contact with a diagnosed individual” [32], tested

by the National University Hospital of Iceland (NUHI) between February-28-2020 and June-

14-2020, leading to 1,628 positive-testing subjects; and 2) 41,558 low-risk subjects in the gen-

eral population who have requested screening on a voluntary basis, tested by deCODE genetics

between March-15-2020 and June-14-2020, leading to 182 positive-testing subjects.

We implement sequential pooling design, and compute the robust pool sizes for every week

between March-05-2020 and June-14-2020 (high-risk group), and between March-19-2020

and June-14-2020 (low-risk group), i.e., after obtaining a number of days of testing data for

each group. In particular, at the beginning of each week, we use the previous week’s testing

data for each of the low- and high-risk groups, and the Wald’s method [33], to construct a 95%

CI for each group’s prevalence:

Lðp̂Þ ¼ p̂ � z0:975

ffiffiffi

p̂
q

ð1 � p̂Þ=T; and Uðp̂Þ ¼ p̂ þ z0:975

ffiffiffi

p̂
q

ð1 � p̂Þ=T;

where p̂ is the point estimate, z0.975 is the inverse of the CDF of the standard normal distribu-

tion at point 0.975, and T is the number of subjects tested in the previous week.

Results

For illustrative purposes, Fig 1 reports the perfect information pool sizes (i.e., (n(p)) from Eq (3)

for prevalence scenario p) and expected number of tests per subject (simply, expected tests), for

various prevalence scenarios between 0.01 and 0.292, and test sensitivity values (Se = 0.71, 0.98,

1), considering that the test has perfect specificity. The expected tests under perfect information

on prevalence rate provides a lower bound (LB) on the number of tests achievable via pooling,

but is not realistic due to the inherent uncertainty in the prevalence rate (i.e., the lack of perfect

information), which is typically the case for a highly contagious disease like COVID-19. Pooling

is not more efficient than individual testing for prevalence scenarios above 0.292, due to the

large number of individual follow-up tests. Relatedly, Fig 2 shows the expected tests (E[T(n(p),
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p)]) for various prevalence scenarios between 0.025 and 0.30, and test sensitivity values of 0.98

(Fig 2(A)) and 0.71 (Fig 2(B)) over a range of pool sizes, and thus shows the impact of pool size

on efficiency for each prevalence scenario and test sensitivity.

Based on the Iceland dataset [7], we develop a robust pooling design within a sequential

framework for the high-risk (those tested by NUHI) and low-risk (those tested by deCODE)

groups, updated every week during the study period. We consider that the weekly robust pool

sizes are used each day of that week, and examine the daily testing results.

Fig 3 depicts the weekly robust pool sizes (n�) for two test sensitivity values (Se = 0.71, 0.98)

as well as the optimal pool size for each prevalence scenario (i.e., the perfect information pool

size for each p, n(p), from Eq (3)) within the 95% CI on the weekly prevalence forecast (with

Fig 1. Perfect information pool size and expected number of tests per subject versus prevalence rate for various

test sensitivity values. The perfect information pool size, n(p), and expected number of tests per subject, E[T(n(p),p)],
for each prevalence scenario p between 0.01–0.292 for test sensitivity values, Se = 0.71, 0.98, 1.

https://doi.org/10.1371/journal.pone.0246285.g001

Fig 2. Expected number of tests per subject versus pool size for various prevalence rates for test sensitivity values (a) Se = 0.98 and (b) Se = 0.71. The expected number of

tests per subject, E[T(n(p),p)], for various prevalence scenarios p between 0.01–0.25 for test sensitivity values (a) Se = 0.98 and (b) Se = 0.71 for pool sizes from 2–32.

https://doi.org/10.1371/journal.pone.0246285.g002

PLOS ONE A robust pooled testing approach to expand COVID-19 screening capacity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246285 February 8, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0246285.g001
https://doi.org/10.1371/journal.pone.0246285.g002
https://doi.org/10.1371/journal.pone.0246285


each CI discretized into 100 equally-spaced prevalence scenarios), along with the actual weekly

prevalence rate. Note that n(p) decreases as the prevalence rate p increases (Eq (3)). Thus, the

robust pool size (n�) is bounded from above by the optimal pool size for the lower limit of the

CI on prevalence, and from below by the optimal pool size for the upper limit of the CI. We

see that the robust pool size tends to be closer to the optimal pool size for the upper limit of the

CI, that is, closer to the lower bound pool size. This figure also shows that as the test sensitivity

increases, the robust pool size decreases.

Fig 4 reports the daily number of tests for individual testing (i.e., the actual number of tests

conducted per day in the dataset), and the expected number of tests for robust pooling (i.e.,

using n�) and the perfect information lower bound (LB, i.e., using n(p)) for (a) high-risk and

(b) low-risk subjects for a test sensitivity of 0.98, and (c) high-risk and (d) low-risk subjects for

a test sensitivity of 0.71. Recall that the perfect information lower bound is unattainable,

because the prevalence rate is uncertain, and a prevalence rate forecast is required due to

changing disease dynamics. Considering test sensitivity values of 0.71 and 0.98, the total reduc-

tion in the number of tests, over individual testing, is 61.9% and 54.2% respectively for robust

pooling (62.7% and 55.6% respectively under perfect information) for the high-risk group dur-

ing the period of March-05-June-14; and 90.2% and 88.5% respectively for robust pooling

(91.0% and 89.5% respectively under perfect information) for the low-risk group during the

period of March-19–June-14.

Fig 3. Weekly robust pool size and 95% confidence interval pool sizes for (a) High-risk and (b) Low-risk groups for two test sensitivity values, and actual weekly

prevalence rates for (c) High-risk and (d) Low-risk groups. The robust pool size, n�, for each week along with pool sizes corresponding to the 95% confidence interval of

the prevalence forecast for (a) high-risk and (b) low-risk groups for test sensitivity values, Se = 0.71 and 0.98, and the actual weekly prevalence rates for (c) high-risk and

(d) low-risk groups.

https://doi.org/10.1371/journal.pone.0246285.g003
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In the above analysis, we use a maximum allowable pool size, nmax, of 32, to limit the dilu-

tion effect, which is set based on preliminary studies (see Introduction), hence we next study

how the value of nmax affects the results. Table 2 reports the efficiency of robust pooling, that

is, the percent reduction in the number of tests that can be achieved via robust pooling com-

pared to individual testing, for lower values of nmax, and for test sensitivity values of Se = 0.71

and 0.98, and the high- and low-risk groups. As expected, very low nmax values impact the effi-

ciency of testing more for the low-risk group compared to the high-risk group, because the lat-

ter group already uses small pool sizes due to their high prevalence.

Fig 4. Daily expected number of tests for the high-risk group for test sensitivity values of (a) 0.98 and (c) 0.71 and for the low-risk group for test sensitivity values of

(b) 0.98 and (d) 0.71. The daily expected number of tests required for the (a) high-risk group with Se = 0.98, (b) low-risk group with Se = 0.98, (c) high-risk group

with Se = 0.71, and (d) low-risk group with Se = 0.71 for the perfect information lower bound, robust pooling, and individual testing.

https://doi.org/10.1371/journal.pone.0246285.g004

Table 2. The percent reduction in the expected number of tests via robust pooling compared to individual testing for high-risk and low-risk groups and two test

sensitivity values for various maximum allowable pool sizes, nmax.

Maximum Allowable Pool Size (nmax) High-risk Group Low-risk Group

Se = 0.98 Se = 0.71 Se = 0.98 Se = 0.71

32 54.2% 61.9% 88.5% 90.2%

30 54.1% 61.8% 88.5% 90.1%

20 54.0% 61.7% 88.2% 89.8%

10 53.4% 61% 86.2% 87.4%

5 51.3% 58.8% 79.8% 80.8%

https://doi.org/10.1371/journal.pone.0246285.t002
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By requiring, on average, fewer tests per subject, robust pooling can substantially expand

testing capacity. To illustrate this concept, we select a week during the study period, i.e., the

week spanning April-2 to April-8 of 2020, during which 7,967 low-risk subjects were tested via

7,967 tests, of which 54 subjects tested positive. We report the expected number of subjects

that could be tested using the 7,967 tests under the different strategies. For this measure, the

perfect information lower bound on the expected tests per subject provides a perfect informa-
tion upper bound (UB) on the expected number of subjects tested. Fig 5(A) displays the

expected number of low-risk subjects that could be tested via 7,967 tests for the individual test-

ing and robust pooling (n�) strategies, and the perfect information upper bound (UB), for a

test sensitivity range [0.70, 1.00]. For each pooling strategy, the number of low-risk subjects

screened reduces as test sensitivity increases. For example, as test sensitivity increases from

0.70 to 1.00, the number of low-risk subjects screened reduces from 66,010 to 54,898 under

perfect information, and from 60,140 to 49,822 under robust pooling. This follows because a

higher test sensitivity implies a higher likelihood that a pool containing an infected specimen

will test positive, necessitating further individual testing for all subjects in the pool. As a result,

optimal pool sizes are non-increasing in test sensitivity (Fig 1).

Fig 5. Expected number of low-risk subjects screened with 7,967 tests (a) under different strategies and (b) under different assumed test sensitivities, versus true test

sensitivity, and the expected number of (c) False-negative cases and (d) Missed and False-negative Cases versus Test Sensitivity. The expected number of low-risk

subjects screened with 7,967 tests (a) for the perfect information upper bound, robust pooling, n�, and individual testing versus test sensitivity, (b) assuming a

prevalence rate, p, of 0.0065 and a test sensitivity, Se, of 0.70, 0.85, and 1 versus true test sensitivity, (c) FNs (out of the 7,967 low-risk subjects tested under both

strategies), and (d) missed cases plus FNs for robust pooling and individual testing (out of 52,173 subjects, which corresponds to the expected number of low-risk

subjects tested via robust pooling) versus test sensitivity.

https://doi.org/10.1371/journal.pone.0246285.g005
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The sensitivity of the test may not be known with certainty. To examine the effect of the test

sensitivity estimate, we calculate the robust pool sizes for the low-risk group for the week span-

ning April-2 to April-8, using three assumed test sensitivity values, of 0.70, 0.85, and 1. Fig 5

(B) depicts the expected number of low-risk subjects that would be screened with 7,967 tests

under a range of true test sensitivity values, Se, in [0.70, 1]. At the extremes, when the true sen-

sitivity is 0.70 and the pooling strategy is based on a sensitivity of 1, 837.2 fewer subjects can be

tested in expectation compared to using the true sensitivity; and when the true sensitivity is 1

and the pooling strategy is based on a sensitivity of 0.70, 540.4 fewer subjects can be tested in

expectation.

Next, we study the effect of pooling on the expected number of FNs for various test sensitiv-

ity values. While pooling increases the number of FNs over individual testing for the same

number of subjects (Eqs (5) and (6)), it also allows for expanded testing, thus reducing poten-

tial missed cases over individual testing (i.e., infected subjects not tested by individual testing,

who could have been tested under pooling). To illustrate this point, we consider again the low-

risk subjects tested during the week spanning April-2 to April-8 in the Iceland dataset. Fig 5

(C) displays the number of FNs for both robust pooling and individual testing (for the 7,967

subjects tested under both strategies), as a function of test sensitivity, while Fig 5(D) displays

the FNs for robust pooling, and the sum of FNs and missed cases for individual testing, for

52,173 subjects that would have been screened under robust pooling (with 7,967 tests).

Discussion

In this paper, we provide a robust pooled testing approach to screen for COVID-19 and dem-

onstrate its value for overcoming difficulties associated with COVID-19 testing. These difficul-

ties include dynamic disease prevalence, which leads to high uncertainty in current

prevalence, a wide range of possible test sensitivity values, different risk groups, and limited

testing resources. For illustrative purposes, we use the Iceland dataset [7], in which the risk

groups are based on whether the subject was tested by NUHI (high-risk due to symptoms and/

or potential contacts) or by deCODE (low-risk, voluntary testing). The proposed robust pool-

ing strategy significantly reduces the expected number of tests required to accomplish the

screening conducted in Iceland for COVID-19 compared to individual testing, and the differ-

ences are more pronounced for the low-risk group, see Fig 3. Overall, the reductions in the

number of tests are 54.2% to 61.9% for the high-risk group, for test sensitivity of 0.98 and 0.71,

respectively, and 88.5% to 90.2% for the low-risk group, for test sensitivity of 0.98 and 0.71,

respectively. These reductions are based on weekly forecasted point estimates and confidence

intervals for the prevalence. The robust pooling strategy based on these forecasts does nearly as

well as having perfect prevalence information (for which the respective reductions are 55.6%

to 62.7% and 89.5% to 91.0%, for the high-risk and low-risk groups, for test sensitivity of 0.98

and 0.71), which, of course, we only have in hindsight. Thus, the proposed robust pooling

strategy can be used to substantially expand COVID-19 testing capacity. This expansion is

more pronounced at lower prevalence rates (due to fewer follow-up tests and larger pool

sizes).

Dilution is an important issue when considering pooling, especially for large pools. In our

models, we use a maximum allowable pool size, nmax, to limit the dilution effect, which is a via-

ble practice in pooled testing, especially when lab-based data on the magnitude of the dilution

effect for different pool sizes is scarce (as is the case with COVID-19). Informed by the

research that describes pool sizes for which pooling does not significantly affect the test sensi-

tivity for the PCR test for COVID-19 (see Introduction), we consider that nmax is 32. Our anal-

ysis (Table 2) indicates that reducing nmax, and thus further reducing the potential for dilution,
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does decrease the efficiency of robust poolng, but even at low values of nmax, e.g., nmax = 5,

robust pooling is still much more efficient than individual testing. As an alternative, if compre-

hensive data on the dilution effect for COVID-19 become available, one can derive a pooled

sensitivity function, as a function of pool size, and use this function in the analytical expres-

sions (Eqs (1), (3) and (5)) to model dilution (e.g., see [21, 34]). This will be an important

future research direction once such data become available.

We demonstrate the benefits of pooling in more detail using the week of April-2 to April-8

of 2020 for the low-risk group (with 7,967 low-risk subjects individually tested) considering a

test sensitivity of 0.85. In contrast to the 7,967 tests required for individual testing, robust pool-

ing uses a pool size of 14, thus requiring d7;967

14
e ¼ 570 pools. Given the true prevalence of

0.68% (calculated from the dataset), the probability that any pool will test positive (thus requir-

ing individual follow-up tests for the subjects in the pool) is given by Se(1−(1−p)n) = 0.07722

(see Table 1). Therefore, for the 570 pools, we have, on average, 0.07722×570×14 = 616.2 indi-

vidual follow-up tests. Thus, with pooling, the 7,967 subjects would require 1,186.2 (= 570

+616.2) tests in expectation, an 85.1% reduction over individual testing. This reduction is

closely related to a cumulative reduction in testing time, which we illustrate using the same

week assuming a PCR testing machine that has a capacity of 96 tests, that is, 96 tests can run at

the same time [25], and assuming that a test run takes 2 hours. Under individual testing, the

number of machine runs is d7;967

96
e ¼ 83, thus requiring 166 hours to complete testing. For the

pooled strategy, d570

96
e ¼ 6 runs are required for the pools, plus d616

96
e ¼ 7 runs for the expected

individual follow-up tests, thus requiring 26 hours of testing in expectation, compared to 166

hours for individual testing.

Next we discuss the effect of test sensitivity on pooling by examining Fig 5, which again

considers the week of April-2 to April-8 of 2020 for the low-risk group of 7,967 subjects. If the

7,967 tests were used in the pooled strategy, between 49,822 (at a sensitivity of 1.00) and 60,140 (at

a sensitivity of 0.70) subjects could have been tested (in expectation), see Fig 5(A). This is a consid-

erable difference, and as Fig 5(B) depicts, even if the pooling strategy is derived under the wrong

test sensitivity, pooling still does well, e.g., at a true sensitivity of 0.70, a strategy derived based on

perfect sensitivity (of 1.00) tests 59,122 subjects, equivalently, 89.6% of those that could be tested if

the true test sensitivity were known (i.e., derived using a test sensitivity of 0.70). This reduction is

due to using pools that are too small (13 versus 15 under the true sensitivity of 0.70), which results

in loss of efficiency, but this is somewhat mitigated by a lower probability that subjects in a pool

will need individual follow-up testing. Fig 5(B) suggests that a good strategy to handle uncertainty

in test sensitivity is to pick the mid-point of the potential sensitivity range.

Next, we compare the FNs under the different strategies. FN rate is larger under pooling

than individual testing (Eqs (5) and (6)). For instance, Fig 5(C) shows that for a test sensitivity

of 0.70, individual testing has 16 expected FNs, while pooling has 28 (for the 7,976 subjects).

Of course, pooling uses many fewer tests for these 7,976 subjects, thus allowing for expanded

testing. Considering this expanded testing population, Fig 5(D) shows that at a test sensitivity

of 0.70, there are 171 FNs from pooling, and 16 FNs plus 335 missed cases from individual test-

ing. As the test sensitivity increases, the FNs decrease fairly fast compared to the reduction in

missed cases.

As we demonstrate in this study, robust pooling can substantially expand the testing capac-

ity, and allow the testing of many more subjects for COVID-19. However, to achieve the maxi-

mum benefits of pooled testing, it is important to use pool sizes that are customized for the

different risk groups in the population, and pool sizes that are designed to hedge against preva-

lence that is dynamic and uncertain; these are the key features of the robust pooling approach

developed in this paper.
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Limitation

One limitation is the complex nature of the test sensitivity function for the PCR test for

COVID-19. PCR tests tend to have high sensitivity, but for COVID-19, the clinical sensitivity

may be lower [35] (due, for example, to low quality specimens), and the reasons for this lower

clinical sensitivity, and ways for improving the clinical sensitivity, have implications for

pooling.
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