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Abstract
Mathematical modeling is a tool used for understanding diseases dynamics. The
discrete-time model is an especial case in modeling that satisfactorily describes the
epidemiological dynamics because of the discrete nature of the real data. However,
discrete models reduce their descriptive and fitting potential because of assuming
a homogeneous population. Thus, in this paper, we proposed contagion probability
functions according to two infection paradigms that consider factors associated with
transmission dynamics. For example, we introduced probabilities of establishing an
infectious interaction, the number of contacts with infectious and the level of con-
nectivity or social distance within populations. Through the probabilities design, we
overcame the homogeneity assumption. Also, we evaluated the proposed probabilities
through their introduction into discrete-time models for two diseases and different
study zones with real data, COVID-19 for Germany and South Korea, and dengue for
Colombia. Also, we described the oscillatory dynamics for the last one using the con-
tagion probabilities alongside parameters with a biological sense. Finally, we highlight
the implementation of the proposed probabilities would improve the simulation of the
public policy effect of control strategies over an infectious disease outbreak.
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1 Introduction

Using discretemathematicalmodels for the study of disease transmission has increased
because of the expansion of the diseases, health entities collect the data in discrete-
time units, making it a natural option to describe the transmission of diseases (Cao and
Tan 2015). The discrete models show a richer dynamical behavior than continuous
models, getting more diverse results for long-term diseases (Cao and Tan 2015; Li and
Li 2018). This advantage could be more appropriate for vector-borne diseases, where
time scales for the dynamics of the human and mosquito populations are significantly
different (Li and Li 2018).

However, some models assume that diseases spread over a homogeneous popu-
lation (Anastassopoulou et al. 2020). This assumption is linked to the definition or
paradigm of the contagion probabilities for each model. Thus, the way to design some
expressions, as the probabilities of contagion, affects the analysis of the spread of the
disease in large-scale populations and studies (Catano-Lopez and Rojas-Diaz 2020),
e.g., the classical expression of susceptible per infection over total population com-
monly used in continuous and discrete models (Wonham et al. 2004; Li and Li 2018).
Its expression does not include variations that a population might suffer due to human
behavior as the distance between individuals (Cabrera et al. 2021) or the heterogeneous
mixing between humans and vectors (Kong et al. 2018), among others.

Some other authors have proposed different ways of approaching to handle the
homogeneity problem, for continuous and discrete models. Cabrera et al. (2021)
present a transmission rate that depends on the social distance for transmission of res-
piratory infectious diseases; Kong et al. (2018) describe transmission function based
on a negative binomial distribution to characterize the heterogeneity in infectious
interactions of humans and mosquitoes. Sabatier et al. (2004) present a series of mul-
tiple discrete probabilities similar as the structure described by Martcheva (2015)
for discrete-time models related to sheep flock diseases. Sometimes these contagion
expressions become complex, not very intuitive, or practical approaches for public
policies development. Thus, we develop contagion probability functions that meet the
propagation principles in networks during the modeling process, which preserve a
biological sense and handle to fit models to real data of different localities as Germany
and South Korea (for COVID-19) and Colombia (for dengue).

We divide the paper as follows: a method section that describes the fundamental
properties of contagion probabilities wide proposed in the literature (Castillo-Chavez
and Yakubu 2001; Martcheva 2015), the structure of discrete compartmental models
and the data implemented to fit them. Then, we express the construction of the proba-
bilities functions with heterogeneity expression alongside the numerical experiments
implementing data of COVID-19 and dengue from different localities. Finally, we
present the discussion and conclusions of implementing the new probability functions
on two diseases.
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2 Methodology

2.1 Case Studies: COVID-19 and Dengue Diseases

Health systems quantify the effect of the disease in affected populations because epi-
demics have explosive characteristics that depend on the nature of the diseases and
involve the type of transmission. Thus, we address in this study two different diseases
according to their contagion sources, e.g., human–human and human–vector diseases
as COVID-19 and dengue, respectively.

COVID-19 it is a direct-transmitted infectious disease caused by the SARS-CoV-2
virus with main symptoms related to respiratory illness (Fink et al. 2020). It became a
worldwide issue because of its high transmission rate, even affecting social behaviors,
where processes such as quarantine and lockdowns became a daily dynamic in human
populations. COVID-19 affected countries with a high population density, low control
policies and limited health systems; it generates multiple and consecutive outbreaks
or behaviors different from the classical bell-form of reported cases. For example,
Germany presented one peak and oscillations in reported cases; also, South Korea
presented two consecutive outbreaks. For that reason, we took these countries tomodel
and fit the COVID-19 dynamics. We use the data of the number of active (total—
recovered—dead cases) reported from March 3, 2020, to September 19, 2020, for
Germany and February 2, 2020, to September 27, 2020, for South Korea (Dong et al.
2020).

Dengue behind COVID-19, other endemic diseases in vulnerable regions are con-
sidered a public health issue, e.g., dengue virus as the vector-borne disease transmitted
byAedes females in some tropical and subtropical regions asColombia. Thus,we chose
the municipalities of Bello and Itagüí, located in Aburrá Valley (Antioquia, Colom-
bia), as study sites. Bello and Itagüí are overcrowded localities with a population of
407,000 and 207,000 inhabitants in 2010 (DANE 2011). These regions have endemic
dengue transmission and have shown co-circulation of the four dengue serotypes over
the last ten years (Usme-Ciro et al. 2008; Vega 2013; Peña-García et al. 2016). Also,
they presented two dengue outbreaks: (i) Bello from the 49th epidemiological week
in 2009 to the 34th epidemiological week in 2011 and (ii) Itagüí from the 9th epi-
demiological week in 2010 to the 2nd epidemiological week in 2011. The data are a
time series of the new cases of dengue per week reported in the Public Health System
(SIVIGILA by its Spanish initials).

Note that COVID-19 and dengue cases have different sampling times because of
their natural history and the resources invested for their identification. The health sys-
tems weekly report dengue in Colombia, while COVID-19 is daily in some countries
such as Germany and South Korea. Thus, the way we sample the phenomena would
involve modeling the real system.
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2.2 Basic Structure for Discrete Compartmental Models

The explosive characteristics and emergence of new outbreaks are a cause of studying
diseases using mathematical models, even for new diseases (COVID-19) and endemic
ones (dengue). There are different ways to represent and study the transmission phe-
nomenon, e.g., mathematical models as discrete compartments. Several authors give
basic structures to define the model structure; in this paper, we follow the structure
introduced by Martcheva (2015) and Allen (1994) to create models for the trans-
mission of COVID-19 and dengue because they are diseases that need two different
compartment representation.

We based on a classic representation of a SIRS for human-to-human direct trans-
mission, with a constant population of N and a mortality probability μ, allowing a
periodic behavior of the disease (Allen 1994); with this basic structure, we present two
new discrete models in Sect. 3.2: one for COVID-19 and another one for vector-borne
diseases as dengue.

For COVID-19, we disaggregate the susceptible S, infected I and recovered R
compartments into free circulation (S f and I f ), quarantined (Sq and Iq ), and identified
individuals (I j ) as some authors suggested for direct diseases as SARS (Zhou et al.
2004). For the vector-borne case, as classically shown in the literature, we create
a compartmental system for each population, i.e., a SIR model for humans and a SI
model for the vector in which we connect both models by an expression that represents
a contagion probability, G(·). There are different ways to define this probability (see
Table 4 in “Appendix A”), inclusive some authors set it is as a modeling issue or
paradigm (Cabrera et al. 2021).

2.3 Definition of Contagion Probabilities for Discrete Models

The way to represent the contagion contacts in a discrete-time model depends on the
definition of the prevalence function G(I/N ) in time t . This function determines the
fraction of the susceptible population becoming infected for the next time step. For this
work, we will follow the guidelines proposed in Castillo-Chavez and Yakubu (2001),
that requires such function to satisfy the following conditions:

1. G : [0,∞) → [0, 1]
2. G(0) = 0
3. G is a monotone increasing function with G ′(x) ≥ 0 and G ′′(x) < 0.

The first condition delimits the range of the function to the range of a probability.
The second one indicates that the chance of developing a disease is zero when there
are no infected individuals in the population. The third condition specifies that the
contagion expression increase as the number of infected increases. The last property
could be modified according to the population behavior against the disease; because
as in the COVID-19 case, not all diseases obey its classical representation because
of factors such as the heterogeneity of the population, the connections inside the
population or the control of health entities. Thus, we proposed different functions for
the contagion probability according to the execution of the human interaction with the

123



Discrete Models in Epidemiology: New Contagion Probability... Page 5 of 23 127

infectious resource (human or vector depending on the addressed disease). Also, we
introduce the concept of heterogeneity to these proposed expressions.

2.4 Numerical Approach: Fitting Discrete Models with Real Data

We exemplify the uses of the new proposed probabilities using them in discrete-time
models that present different paradigmsof infection:COVID-19anddengueoutbreaks.
We fit the COVID-19 model to detected active cases using the state I j (see Eq. (6)
in Results 3.2.1). Otherwise, we fit the dengue model with an output that represents
instantaneous cases per week (see Eq. (10) in Results 3.2.2).

For the COVID-19 case, we test and compare the different probabilities with each
other because all probabilities fit the direct human transmission. Otherwise, for the
dengue case, we do not compare probabilities because the paradigm of human–vector
transmission is represented by the fusion of the probabilities.We performed all numer-
ical experiments using MATLAB 2020a and the GSUA_CSB toolbox (Rojas-Díaz
and Vélez-Sánchez 2019), in which we estimated parameters using the Interior-Point
Algorithmwith Analytic Hessian in GSUA_CSB toolbox; those experiments and their
results are available in GitHub https://github.com/alexacl95/ContagionProbability
repository for each locality.

3 Results

We present two main results related to the definition and implementation of the con-
tagion probabilities. First, we define their mathematical structure according to the
individual election and add an expression to represent the heterogeneity of popula-
tions during the contagion dynamics. Then, we implement in twomodels the contagion
probabilities following two paradigms: direct transmission diseases as COVID-19 and
vector-borne diseases as dengue.

3.1 Formulation of Probabilities of Contagion and Their Properties

It is common in the literature to find definitions for G(·) that describe the spread
of infectious diseases through contact between susceptible and infectious individuals
(Chávez et al. 2017; Fink et al. 2020), especially discrete expressions derived from
expressions as e−x or x(x+1)−1 (Hernandez-Ceron et al. 2013;Martcheva 2015) (see
Table 4 in “Appendix A”). Thus, we propose new functions for contagion probability
based on the idea of consuming the networks through disease expansion within a
heterogeneous population. For notation summarization, we define all time-dependent
states without (t) through the explanations document where appropriate, e.g., the
population states.
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Fig. 1 We exemplify the contagion functions through the dynamic of individual selection. The main idea is
similar to the analogy of selecting a ball of a specific color in a bag full of balls: let be the total population
in a bag full of people in different states (S, I and R). The probability of an I to choose an S individual
over the whole population is g1 and vice versa is g2 (color figure online)

3.1.1 Probability of Contagion from Interaction with Living Carriers

First, assume we have a homogeneous population of susceptible S ≥ 1 and I ≥ 0
the number of disease carriers. Then, the number of infectious interactions that reach
S would be z I S/N , where z is the mean number of interactions that a member of
the population exerts over another one. If we consider that interaction as a process of
choice, we could define two contagion paradigms described as probability functions
g1 and g2 (see Fig. 1):

1. g1(S, I , N ) is the probability of S to receive an infectious interaction from an
infected individual I ; i.e., an S is chosen at least once.

g1(S, I , N ) = 1 − [
1 − 1

S

]z I S
N (1)

Note that an infected individual could be composed of individuals from another
species population, e.g., a vector species as mosquitoes (see Sect. 3.2.2, for the
dengue study case).

2. g2(I , N ) is the probability of a S establishing interaction with an I at least once,
i.e., an S choose an I .

g2(I , N ) = 1 − [
1 − I

N

]z
(2)

Now, note that we assume the total population N is homogeneous for the basic
definition. However, in Sect. 3.1.2 we propose an expression to overcome it.
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The occurrence probability of one infectious interaction that involves a susceptible
individual must be defined as

GT (S, I , N ) = g1(S, I , N ) + (1 − g1(S, I , N ))g2(I , N )

Now, a natural way for defining G(·) is

G(S, I , N ) = β GT (S, I , N )

whereβ is the probability of a S getting infected after at least one infectious interaction.
It is possible to define the function G(S, I , N ) through g1(S, I , N ) or g2(I , N ),
separately. That election should respond to the interest of the researchers and the
nature of the disease under study. For instance, g1(S, I , N ) is appropriate to model
vector-borne diseases, while g2(I , N ) is not because hosts do not choose vectors; we
can see this in Sect. 3.2.2 during the model description. Finally, in “Appendix B” we
present the proofs that the proposed probabilities meet the conditions described in
Sect. 2.3.

3.1.2 Overcoming the Homogeneous Population Issue

In the above subsection, we defined the probabilities under the assumption of a homo-
geneous population (see Fig. 1). However, it is a debated assumption in the literature
(Anastassopoulou et al. 2020). To overcome the homogeneity assumption, we added
a mathematical expression to the proposed probabilities g1 and g2 that approach it by
redefining the total population as an incomplete graph (see Fig. 2).

If we represent the total population over a spatial area as a graph whose nodes
are individuals, it becomes equivalent to a complete graph under the homogeneity
assumption. For an epidemiological model, the homogeneous population produces a
bell-shaped output for actively infected individuals, not a feasible behavior formultiple
outbreaks. We took the idea of the graph and rebuilt it as many strongly connected
subgraphs (clusters) and a few edges connecting one cluster to another. At the start
of the outbreak, the rapid dispersion of the disease gradually slows down, followed
by oscillations or plateau-shaped behavior in the infected cases; this is an effect of
consuming the contagion networks within each cluster.

It should be possible to induce this behavior in discrete-time models by defining
a function of S and I in a way such that the number of infectious contacts decreases
whether I increases or S decreases. Since the probabilities we defined in previous
sections involves proportions, a natural way to define that function is

ℵ(S, I ) = 1 + ν I
S+I
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Fig. 2 Graph representation of the contact in a population. The left side represents a homogeneous popu-
lation: if we introduce an infected individual I , it has the same probability to interact with any individual
of the population, creating a bell-shaped output. The left side represents a heterogeneous population: if
we introduce an infected individual I , it does not have direct contact with the total population at the time,
implying a delay in the disease’s spread because of the different contagion networks, creating a plateau or
oscillatory infective output (color figure online)

where ν is the parameter of intrinsic isolation and then implement it in (1), and (2) to
decrease probability of contact whenever I increases or S decreases. Hence, contact
probabilities are redefined as follows

G1(S, I , N ) = 1 − [
1 − 1

S

]z I
(

S
N

)ℵ(S, I )

(3)

G2(S, I , N ) = 1 −
[
1 − [ I

N

]ℵ(S, I )
]z

(4)

Also, ℵ(S, I ) expression can be implemented in other probability functions, as the
classical one:

G3(S, I , N ) = (I/N )ℵ(S, I ) (5)

Although the (5) has a connectivity expression, it does not represent the same
behavior as (3) and (4) and does not take into account a parameter for the number of
infectious interactions.

Note that with the ℵ(S, I ) expression, the modified probabilities meet the first and
second properties described in Sect. 2.3. Even so, they do not necessarily meet the
third one, giving diverse behaviors in the probability that match with some burnout
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of the infection network in diseases such as COVID-19 because they are related to
human behavior, especially to the distance between individuals.

3.1.3 Numerical Approach for Contagion Probabilities

We present how the change in parameters could affect the contagion probabilities
behavior. First, using the derivatives we have

∂G2(S, I , N )
∂ν

< 0 ∂G1(S, I , N )
∂ν

< 0

∂G2(S, I , N )
∂z > 0 ∂G1(S, I , N )

∂z > 0

where the probabilities decrease by increasing the connection parameter (ν), i.e., the
population acquires a heterogeneous behavior. On the other hand, the infectious prob-
abilities increase by varying z, representing the mean number of infectious contacts.
Also, we identified that G2(S, I , N ) and G1(S, I , N ) are concave down for z

∂2G1(S, I , N )

∂z2
< 0 ∂2G2(S, I , N )

∂z2
< 0

and concave up and down for ν meeting the following conditions:

∂2G1(S, I , N )

∂ν2
> 0 for z > −1

I log(1−1/S)(S/N )−ℵ(S, I )

∂2G1(S, I , N )

∂ν2
< 0 for z < −1

I log(1−1/S)(S/N )−ℵ(S, I )

∂2G2(S, I , N )

∂ν2
> 0 for z < (I/N )−ℵ(S, I )

∂2G2(S, I , N )

∂ν2
< 0 for z > (I/N )−ℵ(S, I )

These mathematical properties allow a rich behavior for probabilities values in an
epidemic, in which the heterogeneity could increase for the different conditions of the
infected population increase or decrease.

In Fig. 3, we present a numerical example using smoothed data from South Korea
(see Sect. 2.1 for datamethodology). This figure illustrates different function behaviors
byvaryingparameters z and ν. For z,we identify a vertical displacement of the solution;
for ν, we can see a deformation of the original form of the function.

3.2 Numerical Results: Implementation of Contagion Probabilities in
Compartmental Models

We present two model paradigms, one for direct transmission diseases as COVID-19
and the other for vector-borne diseases. For both cases, we describe the mathematical
model, the fitting process and the parameter values estimated for each locality.
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Fig. 3 Monte Carlo simulations using Eqs. (3) and (4). The black dotted lines represent the functions
G2(S, I , N ) and G1(S, I , N )) evaluated with the real data (number of active cases in Korea), z = 1 and
ν = 0. In a) the blue lines are G2(S, I , N ) and G1(S, I , N ) simulations with ν = 500 and varying z in
the interval [1, 11]. In b) the blue lines are G2(S, I , N ) and G1(S, I , N ) simulations with z = 1 and ν

in the interval [250, 4750] (color figure online)

Fig. 4 Representation of a SIRS
model by desegregating
susceptible population into S f
and Sq , and infected population
I f , Iq and I j (color figure
online)

3.2.1 Direct Transmission Diseases: COVID-19 Case

In Eq. (6) and Fig. 4, we present a discrete model with quarantines and identification
compartments for direct transmission diseases as COVID-19. First, we defined the
population flows between compartments: the susceptible population in free circulation
could become infected with a probability βG̃(·) (see Eq. (7)). Also, they could enter
quarantine with probability λ and leave it with probability α. The infected population
could be in free circulation α, quarantine λ, or be detected and completely isolated θ .
Infected individuals recovered from the disease with a probability γ and could lose
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immunity with a probability μ (for more information and descriptions see Table 1).

S f (t + 1) = S f (1 − βG̃(·))(1 − λ) + Sq(t)α + μR(t)

Sq(t + 1) = S f (t)(1 − βG̃(·))λ + Sq(t)(1 − α)

I f (t + 1) = S f (t)βG̃(·) + I f (t)(1 − γ )(1 − θ)(1 − λ)

+Iq(t)(1 − γ )(1 − θ)α

Iq(t + 1) = I f (t)(1 − γ )(1 − θ)λ + Iq(t)(1 − γ )(1 − θ)(1 − α)

I j (t + 1) = (I f (t) + Iq(t))(1 − γ )θ + I j (t)(1 − γ )

R(t + 1) = R(t)(1 − μ) + γ (I f (t) + Iq(t) + I j (t))

(6)

For the contagion probabilities G̃(·) in Eq. (6), we implemented the proposed func-
tions G̃1 and G̃2 based on Eqs. (3) and (4):

G̃1(S f , I f , N ) = 1 −
(
1 − 1

S f

)z I f (S f /N)
ℵ(S f ,I f )

G̃2(S f , I f , N ) = 1 −
(
1 −

[
I f
N

]ℵ(S f ,I f )
)z (7)

with ℵ(S f , I f ) = 1 + ν
I f

I f +S f
and IT = I f + Iq + I j the infected population. Note

that, because of the quarantines in the model, the contagion equations focused on free
circulation susceptible and infectious populations.

The probabilities implementation depends on the modeler’s interest to represent the
infection dynamics. Thus, we add to the performance analysis the classical contagion
probability

g̃3(I f ) = I f /N (8)

and the classical one by adding the heterogeneity expression ℵ

G̃3(S f , I f , N ) = (I f /N )ℵ(S f ,I f )

We performed 2000 parameter estimations for Germany and South Korea using the
basic structure in (6) with the different proposed probabilities (G̃2 and G̃1) and the
modified ones (G̃3 and g̃3). We selected the best parameter estimations by its cost
function value and visual fitting. Figure 5 presents the multiple fits for each locality
according to the mentioned functions. The models with ℵ expression (G̃2, G̃1 and G̃3)
present notorious oscillations, better fitting the model with G̃1 since the model with
g̃3 could not follow the oscillations for no locality.

We present the parameter values for the best fits for all functions and both localities
in Table 2. The values for quarantine-related parameters (λ and α) indicate that the
population did not leave or enter often to quarantine for model structures with ℵ
expression; thus, g̃3 indicates the highest probability of leaving the quarantine. For
models with new infection probabilities (G̃2 and G̃1), the θ values indicate that both
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Table 1 Parameter and states (factors) definition for both models

Factors Definition Estimation range

S f (0) Free-circulation susceptible population –

Sq (0) Quarantined population –

I f (0) Free-circulation infected population –

Iq (0) Quarantined infected population –

I j (0) Identified infected population –

R(0) Non-identified recovered population –

R j (0) Identified recovered population –

N Total human population

λ Probability of entering quarantine [0, 1]

α Probability of leaving quarantine [0, 1]

μ Probability of mortality/immunity lost [0, 0.01]

θ Identification probability [0, 1]

γ Human recovery probability [0, 1]

ν Connectivity index [0, 1000]

z Number of direct infective interactions [0, 30]

β Infection probability [0, 1]

We present the range for each factor as the values that can take in initial conditions (states) and alongside
its dynamics (parameters and functions)

Fig. 5 Discrete model (6) fitted to real data for a) Germany and b) South Korea with the probabilities
given by Eqs. (7) and (8); we present the parameters in Table 2. The cost functions for Germany fittings are
2.0751e6, 2.0766e6, 2.0765e6 and 2.151e6 for G̃2, G̃1, G̃3 and g̃3, respectively; and the cost functions for
South Korea are 1.50e5, 1.511e5, 1.497e5 and 1.43e5 for G̃2, G̃1, G̃3 and g̃3 (color figure online)

localities presented a high identification of infected individuals. Then, in the case of
ℵ, Germany is a less connected place than South Korea because the ν value is fewer
for the first than for the second one.
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Table 2 Estimated parameters for outbreaks occurred inGermany and SouthKorea using the discretemodel
in (6) with each contagion probability (G̃2, G̃1, G̃3 and g̃3)

Factors Germany Korea
G̃1 G̃2 G̃3 g̃3 G̃1 G̃2 G̃3 g̃3

S f (0) 8.3e7∗ 8.3e7∗ 8.3e7∗ 8.3e7∗ 5.1e7∗ 5.1e7∗ 5.1e7∗ 5.1e7∗
Sq (0) 0 0 0 0 0 0 0 0

I f (0) 14 19 51 63 20 69 194 1000

Iq (0) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
I j (0) 114∗ 114∗ 114∗ 114∗ 87∗ 87∗ 87∗ 87∗
R(0) 16∗ 16∗ 16∗ 16∗ 16∗ 16∗ 16∗ 16∗
λ 0.022 0.022 0.019 0.035 0.09 0.004 0.01 0.99

α 0.046 0.047 0.031 3.7e−10 0.11 0.026 0.04 1

μ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
θ 1 1 0.5 0.38 1 0.92 0.5 0.26

γ 0.04 0.04 0.04 0.03 0.02 0.03 0.026 0.012

ν 614 19 40 – 4163 368 546 –

z 13 2 – – 15 2 – –

β 0.13 0.99 1 1 0.15 0.87 1 1

∗Fixed parameters during parameter estimations

3.2.2 Vector-Borne Mosquitoes Transmission: Dengue Case

In this section, we present one model for indirect transmission (vector-borne diseases
as seen in Fig. 6). We developed the compartmental model (9) following two criteria:

• The periodicity in which some countries report arboviral cases, i.e., one epidemi-
ological week.

• The implementation of a discrete structure and both types of infection proposed
probabilities. Because of the natural history of the disease, and in contrast to the
COVID-19 case, G̃hm(Sh, Ih, Nh) and G̃mh(Sh, Sm, Im) defined in (11)–(12)
are the base probabilities to describe the human–mosquito and mosquito–human
interactions, respectively. Thus, the analysis focused on the performance of both
probabilities together.

Thefirst criteria imply some reductions in expressions and the number of stages. The
incubation periods are implicit in the period for the individuals to pass from susceptible
to infected, e.g., if this week some individuals had an infectious interaction, then the
next week they would enter the infected compartment. It matches the low limit of the
intrinsic and extrinsic incubation periods reported in the literature, about 4–10 days
and 8–12 days for dengue (World Heatlh Organization 2021), respectively.

The vector-bornemodel follows the same idea of compartment flux defined by event
probabilities: the contact within two populations (humans and mosquitoes) produces
the infectious individuals. In Table 3, we present the parameter definitions for the
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Fig. 6 Representation of the SIR
vector-borne model that includes
different compartments for
human and vector populations
(color figure online)

model.

Sm(t + 1) = Sm(t)(1 − βhmG̃hm(·))(1 − μm) + A(t)

Im(t + 1) = SmβhmG̃hm(·)(1 − μm) + Im(t)(1 − μm)

Sh(t + 1) = Sh(t)(1 − βmhG̃mh(·))(1 − μh) + Nhμh

Ih(t + 1) = Sh(t)βmhG̃mh(·)(1 − μh) + Ih(t)(1 − γ )(1 − μh)

Rh(t + 1) = Rh(t)(1 − μh) + Ih(t)(1 − μh)γ

(9)

As we mentioned in Sect. 2.4, we disaggregate a model estate (Ih) to fit it to real
data. The new output is the instantaneous infectious population because there is no
actual cases information as the COVID-19 case as shown in:

Ihins (t + 1) = Sh(t)βmhG̃mh(·)(1 − μh) (10)

We implemented a recruitment expression to simulate the vector emerging dynamic
for the aquatic population input. Note that the vector population is not constant and
could vary over time according to the mortality and birth rate, which we defined as
a discrete Ricker expression. The expression depends on the number of mosquitoes
from two weeks ago, simulating the aquatic phase delay:

A(t) = r Nm(t − 2) exp

(
1 − Nm(t)

Cm

)
, with Nm = Sm + Im .

We implemented both contagion probabilities to describe two different infectious
interactions, i.e., human to mosquito and mosquito to human. Also, we include the
ℵ expressions to model the heterogeneous mixing between humans and vectors. This
approach represents another paradigm of infectious source interaction that we describe
in Sect. 3.1.1.

• The function G̃hm(Sh, Ih) is the human interaction probability, i.e, the probability
of a susceptible mosquito to bite a infected human.

G̃hm(Sh, Ih, Nh) = 1 −
(

1 −
[
Ih(t)

Nh(t)

]ℵh(Sh , Ih)
)z

(11)
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Fig. 7 Discrete model (9) fitted to real data of two endemic localities: a Bello (cost function 59) and b
Itagüí (cost function 120) with the parameters presented in Table 3 (color figure online)

with ℵh(Sh, Ih) = 1 + νh Ih
Ih+Sh

the connectivity expression related to the human
population, Nh = Sh + Ih + Rh .

• The function G̃mh(Sh, Sm, Im) is the mosquitoes interaction probability, i.e., the
probability of a susceptible human to be bitten by an infected mosquito:

G̃mh(Sh, Sm, Im) = 1 −
[
1 − 1

Sh

]z Im (Sh/Nh)
ℵh (Sm , Im )

(12)

with ℵm(Sm, Im) = 1+ νm Im
Im+Sm

the connectivity expression related to mosquitoes
population.

We performed 2000 parameter estimations for themunicipalities of Bello and Itagüí
in Colombia using the model given in (9) and selected the best parameter estimations
by its cost function value. Figure 7 presents the fits for each locality, in which the
model fits the classical bell shape for the date related to dengue outbreaks.

In Table 3, we show the parameter values for the Bello and Itagüí model fits. We
highlight that both localities are geographically close, and both outbreaks occurred
at a similar time. We can identify parameters related to mosquitoes behavior and life
cycle that are similar for both localities, e.g., the μm , z, r and C . On the other hand,
the parameters βmh and νm considerably vary between populations. Finally, note that
νm and νh values are different for each locality are considerably low.

4 Discussion

Mathematical models are tools that represent relationships between the different com-
ponents of a real system, such as disease transmission. Also, there are different
ways to represent the systems through models, and their structure will depend on
the researcher’s vision and interpretation of the world. Even so, a disadvantage of
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Table 3 Parameter and states (factors) definition for vector model

Factor Definitions Ranges Bello Itagüí

Sm Susceptible mosquitoes [1e4, 5e5] 28030 5550

Im Infected mosquitoes [0,100] 4 4

Sh Susceptible humans – 4.5e5∗ 2.8e5∗
Ih Infected humans – 8∗ 43∗
Rh Recovered humans – 0∗ 0∗
μh Human probability of dying – 0∗ 0∗
μm Mosquitoes probability of dying [0,0.4] 0.35 0.4

γ Recovered probability [0.1,1] 1 0.4

z Number of effective interactions [1,10] 8 8

βhm Human-to-mosquito infection probability [0,1] 0.87 0.94

βmh Mosquito-to-human infection probability [0,1] 0.28 0.95

r Mosquitoes reproductive rate [0,60] 0.12 0.1

C Mosquitoes carrying capacity [1e3, 3.5e4] 325590 348490

νh Human connectivity index [0, 1e4] 0.0006 0.0002

νm Mosquitoes connectivity index [0, 3e4] 0.8 0.07

We present the range for each factor as the values that can take in initial conditions (states) and alongside
its dynamics (parameters and functions). Also, estimated parameters for outbreaks occurred in Bello and
Itagüí using the discrete model given in (9)
∗Fixed parameters during parameter estimations

the traditional epidemiological models is the classical structures that model the conta-
gion probabilities (Anastassopoulou et al. 2020; Catano-Lopez and Rojas-Diaz 2020).
Thus,we developed theoretical functions based on the behavior of disease transmission
in a contagion network that considers different factors associated with transmission
dynamics, e.g., probabilities of establishing an infectious interaction, the number of
infectious contacts and the level of connectivity or social distance within populations.

We could address the direct contagion probability for COVID-19 through four dif-
ferent expressions (G̃1, G̃2, G̃3, and g̃3). In contrast to dengue, in which the contagion
representation is different because of the presence of two populations (human and
vector populations with G̃hm and G̃mh), the infection paradigm will depend on the
definition of the disease interactions. Alternative probabilities described in the litera-
ture focused on different ways of representing contagion, e.g., for vector-borne disease
with heterogeneous populations (Kong et al. 2018), the contagion probability in terms
of distance between people in COVID-19 (Cabrera et al. 2021), among others. Those
expressions sometimes have a numerous parameters to estimate or measure in the field
(Zhou et al. 2004; Cabrera et al. 2021; Liu et al. 2021).

We developed probability functions that improve modeling diverse infectious
behaviors, i.e., generating plateau or oscillation patterns for discrete-time model sim-
ulation or fitting. These dynamics match some endemicity triggered by social issues,
e.g., the COVID-19 that is starting to deepen in some localities (Antia and Halloran
2021). Even so, other diseases show sporadic outbreaks triggered by environmental
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conditions after remaining endemic (d’Onofrio and Manfredi 2009; Cruz-Pacheco
et al. 2009). Thus, with the emerging diseases in recent years, we might explore more
complex expressions for describing their infection dynamics. Following the idea pro-
posed by (Cabrera et al. 2021), the infection behavior is a nonlinear process; thus,
the probability of infection should be treated in this way. For example, as the number
of infected increases, the probability of becoming infected may decrease because of
burnout of the contagion networks as by the action of public policies. With the expres-
sion ℵ, we provide a dynamic similar to that described through the idea of infection
networks, and we can identify that the third condition, described in Sect. 2.3, is not
mandatory for all diseases.

We focused on avoiding complexity in parameters and their definition; they are
immediately interpretable in dimensional units and biological sense. The parame-
ters could vary through localities and diseases, in which it is possible to identify
different epidemiological behaviors. To evaluate the proposed probabilities, we per-
form the parameter estimation for different localities and diseases because we focus
both expressions on the contagion interaction performed by the susceptible or the
infected population. In the COVID-19 case, we can implement all probabilities pro-
posed depending on the modeler interest and model approach because of the behavior
of the diseases, in which the paradigm for this infectious disease can be abroad from
infected searching interactions over susceptible and vice versa. On the other hand,
for vector-borne diseases, the general contagion process should be a mix of the pro-
posed probabilities because of the biological interpretation of the mosquitoes feeding,
i.e., G̃hm for the mosquito-to-human infection and G̃mh for the human-to-mosquito
infection.

With theCOVID-19 case, we selected two countries that differed on social behavior,
disease control and population density (Jang et al. 2021). We compare, for both local-
ities, the approach of the proposed expressions and classical probabilities. First, we
noted that the parameter ν causes the model to fit two consecutive disease oscillations
in the cases of classical and proposed contagion expressions. In some cases, consecu-
tive oscillations could be generated by changes in control policies, the increase of the
connection of individuals inside the population, or other external changes (d’Onofrio
andManfredi 2009). We can see these variations through the connectivity parameter ν
using our proposed expressions. Then, comparing the parameters obtained for South
Korea and Germany for G̃1, G̃2 and G̃3; we can see that both localities share simi-
lar quarantine and identification parameters. We highlight the values obtained for ν,
which are considerably different for south Korea and Germany in the three scenarios,
that indicate the first locality is less connected than the second one.

In the specific case of South Korea, the country had a less stringent containment
policy than countries such as Germany (Jang et al. 2021) but had a greater level of
contact tracing because of their previous experience with a large MERS coronavirus
outbreak (Nouvellet et al. 2021; Lim et al. 2021). Thus, South Korea had a greater ν

value than Germany because of their efficient policies. With these cases, we highlight
that the ν parameter could describe the connectivity of a locality through its density,
where a high-density population could present a low ν and vice versa. Also, a high ν

parameter could represent social characteristics in localities with high density, i.e., a
high value of ν in a population with high density describes the potential of lockdown,
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restrict the connectivity between its inhabitants, or a high capability of tracing infection
networks.

In the dengue case, we selected two localities geographically close to each other:
Bello and Itagüí in Colombia. These localities presented similar values of infectious
interactions (8 per week) that could result from the host-seeking behavior of the
mosquitoes that can bite on multiple occasions until fill up (Farjana and Tuno 2013).
Bello had lower values of βhm and βmh that could show a fewer infection potential
linked to mosquito intrinsic or extrinsic conditions or dengue strain presented in this
locality (Velasco et al. 2021). Note that for the ν parameter, both localities present
lower values (compared to COVID-19) case, showing that mosquito and human popu-
lations are quite homogeneous for both localities. It could result from the disease and
localities of study, i.e., other extrinsic conditions could affect the increase of the dengue
outbreaks more than the mixing the individual populations. In contrast to the COVID-
19, dengue outbreaks are related to the increase in mosquito populations and present
successive outbreaks according to the climatic conditions as the El Niño–Southern
Oscillation (Vincenti-Gonzalez et al. 2018).

The model fits the outbreaks we introduced in this study for the dengue case in
two different study zones. Thus, we highlight for future works to consider climatic
conditions even tomodel endemic and oscillatory behaviors alongside contagion prob-
abilities. Also, we can implement discretemodels alongside the proposed probabilities
to develop control policies for different diseases, e.g., controlling the disease propa-
gation by reducing the number of infectious interactions or the connectivity among
the population. Decision-makers could implement these developments using mathe-
matical models for different diseases and model paradigms.

5 Conclusions

We proposed contagion probability functions based on the behavior of disease
transmission in a contagion network. We incorporated the notion of population het-
erogeneity through the concept of exhaustion of local contagions in the network with
interpretable parameters at the biological level. These functions obey two paradigms
of contagion: when the infected perform the interaction over the susceptible and vice
versa. We took COVID-19 and dengue as case studies for both contagion approaches.
It was possible to fit a discrete model to the dynamics of dengue and COVID-19 cases.
The last one fits the oscillations in the infectious data for the localities of Germany
and South Korea. Also, future investigation in control development would include
the ν and z parameters to provide relevant information for developing public policies
based on mathematical models, e.g., simulating it as a social distancing process or the
heterogeneity level of the populations.
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Appendix A Probabilities in the Literature

see Table 4.

Table 4 Structures implemented in mathematical models to describe contagion interactions. Some of these
expressions share parameters as β the infection rate, for vector-borne diseases, a is the average biting rate,
Nh for total host populations, Iv for infected vector

Structure Parameters Model type Ref.

βF (1 − Pr /(Pr + Z)) F : free vector Pr :
susceptible and
infected host Z :
vector searching

Continuous SIRD
vector for black
death

(Monecke et al.
2009)

β I/N – Continuous SIRD
for COVID-19

(Sen and Sen
2021)

k ln (1 + α pv Iv/(kNh)) k: Gamma
distribution with
shape parameter
pv :Transmission
probability from
vector to human per
bite a: number of
bites

Continuous
SEIRD vector
for dengue

(Kong et al. 2018)

aβ Iv/Nh – Discrete and
continuous
SIRD vector for
West Nile virus
and dengue

(Wonham et al.
2004) (Li and Li
2018)

β
[
2D̄∗/(D̄∗ + D)

]ν D: interaction
distance D∗: natural
equilibrium D′∗:
scaling distance ν:
decrease in the
infectious rate with
distance

Continuous SIR
for COVID-19

(Cabrera et al.
2021)

b(αP+αA+I )/N α: transmission rate of
unreported cases P:
reported infectious
A: isolation in
hospital

Continuous
SAPHIRE for
COVID-19

(Purkayastha et al.
2021)
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Table 4 continued

Structure Parameters Model type Ref.

(1 − ρ)β(I +
εE + A)

ε: Infection rate in
incubation period ρ:
Probability of
susceptibility to
isolation

Continuous
SEIRD for
COVID-19

(Liu et al. 2021)

Iβ/(1 + βMM) βM : the efficacy of
the awareness
programs M :
monotonic
decreasing function
of the number of
campaigns

Continuous SIR
for HIV/AIDS

(Greenhalgh et al.
2015)

(β I/(1 + α I ) α: The reciprocal of
half-saturation

Continuous SIRV (Masoumnezhad
et al. 2020)

λa [1 − (1 − γ1)

(1− γ2)] + (1−
λa)γ2

λa : proportion of
one-year-old
females γ1 and γ2:
exposure
probabilities during
the lambing and the
milking

Discrete SEIR for
scrapie lambs

(Sabatier et al.
2004)

(31 + t)/(22 + 5t) t : time Discrete SEIR-QJ (Zhou et al. 2004)

Appendix B Mathematical Properties of Contagion Probability Func-
tions

In this section, we present the mathematical properties for the new contagion prob-
abilities described above, following the criterion described in Sect. 2.3. First, note
that the expression G(S, I , N ) exhibits the three conditions required for the infection
function since they hold fixed values of S and 0 ≤ I/M ≤ 1 in g1(S, I , N ) and
g2(I , N ), so G(S, I , N ) −→ g1(S, I , N ) as long as I/M −→ 0, and we can state
that effect of g2(I , N ) is insignificant whether the number of I remains proportionally
low.

Now, we will focus on the asymptotic of g1(S, I , N ) and g2(I , N ), where the
expression z I S/N is a superior bound for the number of S that become exposed the
disease (Sg1(S, I , N ) and Sg2(I , N )). Also, as the number of S is larger than the
number of non-susceptible, i.e., S/N → 1, then the number of individuals from S
that have contagious interactions approaches to the number of infectious interactions.
We proof that (i) g1(S, I , N )S ≤ z I S/N , as long as z I S/N ≥ 1, and (ii) 1 >

Sg1(S, I , N ) for the case of 0 < z I S/N < 1.

Theorem 1 If g1(S, I , N ) = 1 − [
1 − 1

S

] z I S
N

1. and zI S
N ≥ 1 then Sg1(S, I , N ) ≤ z I S

N
2. and 0 < z I S

N < 1 then Sg1(S, I , N ) < 1
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Proof To prove 1 consider x = −1/S and τ = z I S
N , with S ≥ 1 for all t . It is clear

that x ≥ −1. Then, by applying the Bernoulli’s inequality1 the conclusion follows.
To prove 2, given that S ≥ 1, under 0 ≤ 1 − 1

S and 0 < τ < 1 we have that
1 − 1/S < [1 − 1/S]τ . Then

1 −
[
1 − 1

S

]τ

<
1

S
and Sg1(S, I , N ) < 1.

	

Demonstration for superior boundof g2(I , N ) is analogous. Theproof of the second

condition given in Sect. 2.3 for g1 and g2 is followed by considering I
N = 0.

Finally, checking the third property, we derivative each probability in terms of
x = I/N . For g1(S, I , N ) we have:

∂g1(x, N )
∂x = −S z log (1 − 1/S) (1 − 1/S)S x z

∂2g1(x, N )

∂x2
= −S2 z2 log (1 − 1/S)2 (1 − 1/S)S x z

∂g1(x, N )
∂x ≥ 0 since z ≥ 0, and ∂2g1(x, N )

∂x < 0 since S > 1 and x �= 0. For g2(I , N )

∂g2(x, N )
∂x = z (1 − x)z−1

∂2g2(x, N )

∂x2
= −z (1 − x)z−2 (z − 1)

Note that all expression meet 0 ≤ x ≤ 1.

Thus, ∂g2(x, N )
∂x > 0 and ∂2g2(x, N )

∂x < 0.
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