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Objectives: To determine if a set of time-varying biological indicators 
can be used to: 1) predict the sepsis mortality risk over time and 2) 
generate mortality risk profiles.
Design: Prospective observational study.
Setting: Nine Canadian ICUs.
Subjects: Three-hundred fifty-six septic patients.
Interventions: None.
Measurements and Main Results: Clinical data and plasma levels of 
biomarkers were collected longitudinally. We used a complementary 
log-log model to account for the daily mortality risk of each patient 
until death in ICU/hospital, discharge, or 28 days after admission. 
The model, which is a versatile version of the Cox model for gaining 
longitudinal insights, created a composite indicator (the daily hazard 
of dying) from the “day 1” and “change” variables of six time-varying 
biological indicators (cell-free DNA, protein C, platelet count, cre-
atinine, Glasgow Coma Scale score, and lactate) and a set of con-
textual variables (age, presence of chronic lung disease or previous 
brain injury, and duration of stay), achieving a high predictive power 
(conventional area under the curve, 0.90; 95% CI, 0.86–0.94). 
Including change variables avoided misleading inferences about the 
effects of day 1 variables, signifying the importance of the longitudinal 
approach. We then generated mortality risk profiles that highlight the 
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relative contributions among the time-varying biological indicators to 
overall mortality risk. The tool was validated in 28 nonseptic patients 
from the same ICUs who became septic later and was subject to 
10-fold cross-validation, achieving similarly high area under the curve.
Conclusions: Using a novel version of the Cox model, we created a 
prognostic tool for septic patients that yields not only a predicted 
probability of dying but also a mortality risk profile that reveals how 
six time-varying biological indicators differentially and longitudinally 
account for the patient’s overall daily mortality risk.
Key Words: biomarkers; longitudinal analysis; mortality; mortality risk 
profiles; sepsis

Sepsis, defined as life-threatening organ dysfunction caused 
by a dysregulated host response to infection (1), is the lead-
ing cause of mortality and critical illness worldwide (2, 3). 

Patients who survive sepsis often endure long-term cognitive and 
functional declines (4). Sepsis is the most expensive syndrome 
treated in the United States, accounting for $20.3 billion (5.2%) of 
total hospital costs in 2011 (5). Despite supportive strategies such 
as use of broad-spectrum antibiotics, fluid resuscitation, source 
control, and mechanical ventilation (6–9), the mortality rate from 
sepsis remains high (15–30%) (10–12).

Current clinical scoring systems for septic patients such as 
Acute Physiology and Chronic Health Evaluation (APACHE) II, 
III, IV, the Multiple Organ Dysfunction Score (MODS), and the 
Sequential Organ Failure Assessment (SOFA) have been shown 
to have prognostic utility (13–20). However, limitations of these 
scores include lack of longitudinal analysis (e.g., APACHE scores 
are based on status within 24 hr of ICU admission) and lack of 
insights into how individual components of the scoring systems 
differentially account for a patient’s overall mortality risk.

We previously showed that high plasma levels of cell-free DNA 
(cfDNA) and low levels of protein C predicted mortality in sepsis 
(15). We also demonstrated that combining cfDNA and protein C 
with the MODS score enhanced the prognostic power of MODS 
(15). Plasma cfDNA, released from activated neutrophils, aids in 
pathogen clearance but also exerts collateral damage by promot-
ing blood coagulation and inhibiting fibrinolysis (21). Protein C is 
a natural anticoagulant that prevents blood clotting in the micro-
circulation. Increased consumption of protein C is a hallmark 
of sepsis and may be associated with disseminated intravascular 
coagulation and multiple organ failure (22–24).

The purpose of this study is to address the limitations of cur-
rent sepsis prognosis scores by creating a mortality risk profile 
(MRP) for any patient that reveals the relative importance of a 
set of time-varying biological indicators (TVBIs) in account-
ing for the patient’s mortality risk that may change markedly 
within a few days. Six TVBIs (cfDNA, protein C, platelet count, 
creatinine, Glasgow Coma Scale [GCS] score, and lactate) and 
a set of contextual variables (age, the preconditions of chronic 
lung disease and previous brain injury, and duration of stay) 
were used. To create the MRPs, we used a complementary log-
log (CLOGLOG) model, which is a versatile version of the Cox 
model for achieving longitudinal insights, after removing the 

proportional hazards assumption and replacing the maximum 
partial likelihood method by the maximum likelihood method 
for estimation.

MATERIALS AND METHODS

Patients and Selection Criteria
Three-hundred ninety-two septic patients were recruited from 
ICUs in nine Canadian tertiary hospitals between November 
2010 and January 2013. The study was approved by the Research 
Ethics Boards of all participating centers. Eligible patients must 
have a confirmed or suspected infection, greater than or equal to 
1 dysfunctional organ system, greater than or equal to 3 signs of 
systemic inflammatory response syndrome, and were expected to 
remain in the ICU for greater than or equal to 72 hours. Blood 
samples and clinical data were obtained daily for the first week, 
followed by once a week for the duration of the patients’ stay in 
the ICU. Details of the inclusion criteria and data collection are 
described in Supplemental Text 1 (Supplemental Digital Content 
1, http://links.lww.com/CCX/A76).

Statistical Analyses
For each patient, we account for the “daily hazards of dying” from 
day 1 until the patient died in ICU/hospital, was discharged, or 
28 days since ICU admission (time of censoring). Using the daily 
hazard of dying as the dependent variable, the formulation of the 
CLOGLOG model and the estimation method are presented in 
Supplemental Text 2 (Supplemental Digital Content 1, http://
links.lww.com/CCX/A76).

The choice of the six TVBIs (cfDNA, protein C, platelet count, 
creatinine, GCS score, and lactate) and contextual variables (age, 
the preconditions of chronic lung disease and previous brain injury, 
and duration of stay) was based on 1) our previous pilot study (15), 
2) our finding from the removal of the assumption of equal weights 
that three out of the six components of MODS and SOFA (platelet 
count, creatinine, and GCS) had a greater predictive power than did 
MODS as a whole, and 3) assessments of a large number of poten-
tially useful routine clinical indicators and contextual variables.

For each TVBI, three analytical variables are defined as follows: 
1) the “day 1 variable,” which assumes the day 1 value through all 
days; 2) the “current variable,” which assumes the changing daily 
values; and 3) the “change variable,” which represents the change 
from day 1 to any day in question. For any daily value of a current 
variable that is not directly observed, we substituted via imputa-
tion (Supplemental Text 2, Supplemental Digital Content 1, http://
links.lww.com/CCX/A76). In the CLOGLOG model, two of these 
three analytical variables are used: the day 1 variable for quantify-
ing the “initial level effect,” and the change variable for quantify 
the “change effect.” In an effort to enhance the model’s predictive 
power in a biologically meaningful way with respect to variations 
in TVBI values, we transformed some of these variables as out-
lined in Supplemental Text 3 (Supplemental Digital Content 1, 
http://links.lww.com/CCX/A76). For example, the day 1 variable 
of platelets is log-transformed because a given difference of, say, 50 
× 109/L between two patients could have a greater effect on their 
mortality risk difference if the sicker patient had a platelet count 
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of 60 × 109/L rather than 150 × 109/L. Since “proportional” change 
works better than simple change for the change variable of plate-
lets, it is represented by a “change factor.”

With respect to the contextual variables, two dummy vari-
ables were used to represent the presence or absence of the pre-
conditions of chronic lung disease and previous brain injury 
separately. Age was used without being categorized. As justified 
in Supplemental Text 4 (Supplemental Digital Content 1, http://
links.lww.com/CCX/A76), the duration of stay and its natural log 
were used to quantify the temporal pattern of the hazard.

The CLOGLOG model was applied to 356 patients who did 
not have missing values after imputation. Together these patients 
contributed 6,724 observations (person-days) to the input data 
matrix. Relying on the assumption that explanatory variables 
make additive contributions to the log of hazard, we introduced a 
method for assessing relative predictive powers between day 1 and 
change variables and among the TVBIs as well as for construct-
ing MRPs (Supplemental Text 7, Supplemental Digital Content 1, 
http://links.lww.com/CCX/A76).

RESULTS
The baseline characteristics of the patients are provided in 
Table 1. The recruitment numbers for the nine ICUs are shown 
in Supplemental Table 1 (Supplemental Digital Content 1, http://
links.lww.com/CCX/A76). Eighty-eight percent of the admissions 
were medical, 94% of the patients required mechanical ventila-
tion, and 67% required vasopressors or inotropes. The lung was 
the main site of infection in the largest proportion of the patients 
(42%). The 28-day mortality rate was 23.5%.

Findings From Fitting the CLOGLOG Model to the Data
Table 2 shows the estimation results of the CLOGLOG model. In 
the best estimation result (Panel 1), the day 1 and/or change vari-
ables of three TVBIs (cfDNA, lactate, and creatinine) have positive 
estimated coefficients, indicating that higher values of these vari-
ables are associated with greater hazards of dying. In contrast, the 
estimated coefficients for the corresponding variables of protein 
C, platelets, and GCS are negative, indicating the opposite associa-
tion with the hazard of dying. The estimated coefficients of two 
preconditions and age were also positive, suggesting that the pres-
ence of these preconditions as well as advanced age are associated 
with higher hazards of dying. Except for the day 1 variable of cre-
atinine, the coefficients of all variables representing the six TVBIs 
are significantly different from 0 at the significance level of 0.05. 
The exception resulted from an overlap in explanatory power with 
other day 1 variables (Supplemental Text 6, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A76).

The model’s predictive power is measured by the conventional 
AUC_P28 (the area under the curve [AUC] from predicting a “sin-
gle” mortality outcome for each patient in 28 d) and the alternative 
AUC_P1 (the AUC from predicting all “daily” mortality outcomes), 
with AUC_P1 being always less than AUC_P28 in face values 
(Supplemental Text 5, Supplemental Digital Content 1, http://
links.lww.com/CCX/A76). Although AUC_P1 is more natural for 
our CLOGLOG model, AUC_28 should be used for comparison 

with the studies that did not make predictions on daily basis. With 
AUC_P28  =  0.903 [95% CI, 0.864–0.941] and AUC_P1  =  0.865 
[95% CI, 0.826–0.903] our model achieved a high predictive power.

In Panel 2 of Table 2, some important longitudinal insights are 
revealed by removing all change variables from the model. First, 
AUC_P28 dropped from 0.903 (95% CI, 0.864–0.941) to 0.817 
(95% CI, 0.767–0.867), implying that changes in the TVBIs within 
the short interval of 28 days were strongly associated with changes 
in mortality risks. Second, the magnitude of the coefficient of the 
day 1 variable of GCS decreased to almost 0 and its associated p 
value rose sharply from 0.0002 to 0.8369, leading to the mislead-
ing inference that GCS was not useful for predicting mortality. An 
explanation is that the day 1 and change variables of GCS have a 
strong negative correlation (r = –0.70), which resulted from the 
fact that a high proportion of patients with low GCS scores on day 
1 selectively experienced large improvements so that their origi-
nally high mortality risks declined later. The removal of the change 
variable of GCS covered up this selective process and hence led to 
the misleading finding. Similarly, the removal of the change vari-
able of lactate also resulted in the misleading conclusion that lac-
tate did not have a predictive effect on mortality.

As shown in Figure 1A, the relative predictive powers between 
the day 1 and change variables differed markedly among the TVBIs 
(Supplemental Text 7, Supplemental Digital Content 1, http://
links.lww.com/CCX/A76). For example, 88% of the predictive 
power of lactate was attributable to its change variable, whereas 
91% of the predictive power of cfDNA was attributable to its day 1 
variable. To gain more insights into this contrast, we examined the 
temporal patterns of all six TVBIs (Fig. 1B–G). For each TVBI, the 
septic patients were divided into four quartiles based on the values 
of its day 1 variable. To avoid the selection bias resulting from the 
death process that could misleadingly exaggerate improvements 
as the sickest patients in each group were successively removed, 
the daily records of all nonsurvivors were removed from the data 
before the daily averages were calculated. From the differences in 
predictive powers and temporal patterns, we infer that large and 
rapid improvements in lactate and GCS were associated with large 
and rapid improvements in ICU mortality. However, the levels of 
some TVBIs did not change much over time (e.g., cfDNA, protein 
C), suggesting that such TVBIs were less powerful for predicting 
changes in mortality risks. Further details on the temporal profiles 
of the TVBIs are described in Supplemental Text 8 (Supplemental 
Digital Content 1, http://links.lww.com/CCX/A76).

To demonstrate how a TVBI and the probability of dying of a 
patient could change markedly within a few days, Figure 2 shows the 
trajectories of (Fig. 2A) GCS and (Fig. 2B) the predicted probability of 
dying in 7 days (P7) for three patients: a survivor discharged on day 8, 
a survivor censored on day 28, and a nonsurvivor who died on day 5. 
The first two patients experienced large improvements in GCS and P7 
within a few days and survived. In contrast, the third patient experi-
enced worsening in GCS and P7 within a few days and died on day 5.

Application of the Assessment Tool to Individual 
Patients
In addition to generating a predicted probability of dying for each 
patient, our tool can generate a MRP that provides information 
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TABLE 1. Baseline Characteristics of 392 Septic Patients
Characteristic Survivors, n = 296 Nonsurvivors, n = 96 Total, n = 392

Age, yr, mean ± sd (minimum–maximum) 62.5 ± 15.2 (19–93) 67.4 ± 14.0 (36–91) 63.7 ± 15.1 (19–93)

Gender, % female (n/total) 37.2 (110/296) 44.8 (42/96) 38.8 (152/392)

Acute Physiology and Chronic Health Evaluation II score, mean ± 
sd (minimum–maximum)

23.8 ± 7.9 (3–53) 26.6 ± 7.9 (7–52) 24.5 ± 8.0 (3–53)

Multiple Organ Dysfunction Score score, mean ± sd 
(minimum–maximum)

6.5 ± 2.9 (0–18) 7.5 ± 3.4 (2–17) 6.7 ± 3.0 (0–18)

Sequential Organ Failure Assessment score, mean ± sd 
(minimum–maximum)

8.1 ± 2.8 (1–15) 9.5 ± 2.9 (3–17) 8.4 ± 2.9 (1–17)

Medical vs surgical, % medical (n/total) 88.5 (262/296) 86.5 (83/96) 88.0 (344/392)

Mechanical ventilation, % (n/total) 90.9 (269/296) 88.4 (84/96) 90.3 (353/392)

Use of vasopressors/inotropes, % (n/total) 62.5 (185/296) 79.1 (76/96) 66.6 (261/392)

Chronic disease, % (n/total) 74.3 (220/296) 88.5 (85/96) 77.8 (305/392)

  Liver disease 6.8 (20/296) 7.3 (7/96) 6.9 (27/392)

  Diabetes 28.4 (84/296) 30.2 (29/96) 28.8 (113/392)

  Congestive heart failure 13.2 (39/296) 21.9 (21/96) 15.3 (60/392)

  Ischemic heart disease 14.9 (44/296) 12.5 (12/96) 14.3 (56/392)

  Chronic lung disease 21.3 (63/296) 35.4 (34/96) 24.7 (97/392)

  AIDS 1.7 (5/296) 1.0 (1/96) 1.5 (6/392)

  Cancer 14.5 (43/296) 24.0 (23/96) 16.8 (66/392)

  Chronic renal insufficiency 10.1 (30/296) 19.8 (19/96) 12.5 (49/392)

  Chronic dialysis 3.4 (10/296) 7.3 (7/96) 4.3 (17/392)

  Brain injury 3.7 (11/296) 5.2 (5/96) 4.1 (16/392)

Site of positive cultures, % (n/total)

  Lung 40.5 (120/296) 45.8 (44/96) 41.8 (146/392)

  Pleural cavity 3.4 (10/296) 1.0 (1/96) 2.8 (11/392)

  Blood 20.3 (60/296) 27.1 (26/96) 21.9 (86/392)

  Urinary tract 12.8 (38/296) 20.8 (20/96) 14.8 (58/392)

  Gastrointestinal 1.7 (5/296) 4.2 (4/96) 2.3 (9/392)

  Peritoneal cavity 4.4 (13/296) 1.0 (1/96) 3.6 (14/392)

  Skin 7.1 (21/296) 5.2 (5/96) 6.6 (26/392)

  Other 5.1 (15/296) 4.2 (4/96) 4.8 (19/392)

  Unknown 31.4 (93/296) 31.3 (30/96) 31.4 (123/392)

Positive cultures, % (n/total)

  Gram-negative bacteria 11.8 (35/296) 10.4 (10/96) 11.5 (45/392)

  Gram-positive bacteria 23.3 (69/296) 17.7 (17/96) 21.9 (86/392)

  Fungus 12.8 (38/296) 13.5 (13/96) 13.0 (51/392)

  Mixed 17.9 (53/296) 27.1 (26/96) 20.2 (79/392)

  Viral 1.4 (4/296) 0.0 (0/96) 1.0 (4/392)

  Protozoan 0.3 (1/296) 0.0 (0/96) 0.3 (1/392)
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about how different TVBIs accounted for the patient’s risk of 
dying on any given day, relative to a benchmark representing the 
best 10th percentile of survivor patients in terms of the predicted 
hazard of dying as of the last day.

The construction of the MRP for a 66-year-old male patient 
on day 28 is described in Supplemental Text 9 (Supplemental 
Digital Content 1, http://links.lww.com/CCX/A76) and shown in 
Supplemental Tables 6 and 7 (Supplemental Digital Content 1, 
http://links.lww.com/CCX/A76). Figure 3 shows three ways that 
the patient’s MRP can be visualized. In terms of his difference in 
log of hazard from the benchmark, top of Figure 3 shows that the 
day 1 variables that contributed the most to his elevated overall 
mortality risk were GCS, protein C, and lactate. The risks attrib-
utable to both GCS and lactate decreased markedly and the risk 
attributable to protein C increased modestly from day 1 to day 
28. Middle shows the combined effect of the day 1 and change 

variables for each TVBI, revealing that persistent deficiency of 
protein C contributed the most to the patient’s overall mortality 
risk. After translating the information in Middle into the familiar 
measures of hazard ratios (HRs) by exponentiation, Bottom shows 
the HR-1 for each TVBI. Protein C had the highest HR of 2.09.

In Supplemental Text 9 (Supplemental Digital Content 1, http://
links.lww.com/CCX/A76), we also demonstrate with the data of 
another patient how the knowledge of the dynamic nature of the 
benchmark is useful in assisting the use of the MRP as a reference.

Validation
For validation, we used two approaches: 1) using our model to 
predict the mortality outcomes of a validation group and 2) con-
ducting a 10-fold cross-validation with the data of our derivation 
group (Supplemental Text 10, Supplemental Digital Content 1, 
http://links.lww.com/CCX/A76).

TABLE 2. Estimation Results of the Complementary Log-Log Model for the 6,724 Person-Day 
Records of 356 Septic Patients

Explanatory Variable

Panel 1: Best Estimation Result Panel 2: Misleading Estimation Result

Estimated Coefficient χ2 p Estimated Coefficient χ2 p

Intercept –1.6867 2.1 0.1453 –1.8107 1.9 0.1677

Level effects

  cfDNA_day_1 0.1857 23.7 < 0.0001 0.1777 32.3 < 0.0001

  Log(proteinC_day_1) –0.7289 16.5 < 0.0001 –0.6703 15.2 < 0.0001

  Log(platelets_day_1) –0.4426 7.2 0.0075 –0.6848 19.9 < 0.0001

  Log(creatinine_day_1) — — — –0.0319 0.0 0.8397

  GCS_day_1 –0.1281 14.1 0.0002 –0.0050 0.0 0.8369

  Lactate_day_1 0.0661 3.8 0.0504 0.0341 1.5 0.2236

Change effects

  cfDNA_simple_change 0.1871 8.6 0.0034 — — —

  Log(proteinC_change_factor) –0.6341 7.8 0.0051 — — —

  Log(platelets_change_factor) –0.3386 5.2 0.0221 — — —

  Log(creatinine_change_factor) 0.5919 10.0 0.0016 — — —

  GCS_simple_change –0.1518 28.1 < 0.0001 — — —

  Log(lactate_change_factor) 0.7902 18.3 < 0.0001 — — —

Contextual effects

  Chronic lung disease 1.0210 15.9 < 0.0001 0.8735 13.0 0.0003

  Previous brain injury 1.1211 4.9 0.0263 1.6274 11.4 0.0007

  Age 0.0152 3.0 0.0822 0.0277 11.2 0.0008

  Duration –0.0666 2.6 0.1056 –0.0732 3.4 0.0637

  Log(duration) 1.1033 8.6 0.0033 0.6398 3.6 0.0591

AUC_P28 0.903 (95% CI, 0.864–0.941) 0.817 (95% CI, 0.767–0.867)

AUC_P1 0.865 (95% CI, 0.826–0.903) 0.751 (95% CI, 0.700–0.802)

AUC = area under the curve, cfDNA = cell-free DNA, GCS = Glasgow Coma Scale.
AUC_P1 is the AUC based on using the daily probability of dying as the classifier, whereas AUC_P28 is the AUC based on using the probability of dying in 28 d as the 
classifier. The p value for the coefficient of Log(creatinine_day_1) before its removal from the model is 0.8647.
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Figure 1. Relative predictive powers and temporal patterns of the time-varying biological indicators (TVBIs). A, The relative contributions of the day 1 and 
change variables of the six TVBIs to their combined predictive power in 356 septic patients (difference in the log of hazard of dying between nonsurvivors 
and survivors). The sizes of areas are proportional to their shares of their combined predictive power (shown in Supplemental Table 5, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A76). B–G, Temporal patterns of the daily averages of Glasgow Coma Scale (GCS) (B), lactate (C), cell-free DNA (cfDNA) 
(D), protein C (PC) (E), platelet count (F), and creatinine (G). For each TVBI, the septic patients were divided into four quartile groups based on the values of its 
day 1 variable. Blue line (best quartile group), green line (second best quartile group), brown line (third best quartile group), and red line (worst quartile group). 
The normal levels in healthy individuals are as follows: 15 for GCS, 0.5 to 1.0 mmol/L for lactate, 2.2 ± 0.6 µg/mL for cfDNA, 61–133 U/mL for PC, 150 to 
400 × 109/L for platelets, and less than or equal to 100 µmol/L for creatinine.

http://links.lww.com/CCX/A76


Observational Study

Critical Care Explorations	 www.ccejournal.org	 7

In the first approach, the validation group consists of 28 non-
septic ICU patients who later became septic in the ICU. These 
patients were recruited from the same ICUs and during the sam-
ple time frame as the septic patients (baseline characteristics in 
Supplemental Table 11, Supplemental Digital Content 1, http://
links.lww.com/CCX/A76). With day 1 being defined as the day 
of becoming septic in the ICU, our analysis revealed that AUC_
P28 = 0.886 (95% CI, 0.746–1.000) and AUC_P1 = 0.863 (95% CI, 
0.748–0.979). Despite the rather wide CI as a consequence of the 
small sample size, the lower limit is much higher than 0.5.

In the second approach, the 10-fold cross-validation revealed 
that the means of the AUC_P1 were 0.865 (sd = 0.008) for the 10 
training sets and 0.854 (sd = 0.073) for the 10 test sets, compared 
with AUC_P1 = 0.865 (95% CI, 0.826–0.903) for the derivation 
group of our model.

DISCUSSION
Our analysis leading to the creation of MRPs for individual patients 
revealed some important insights. First, there were marked changes 
in the TVBIs and the related mortality risks. This finding explains 
why tools that do not use the values of TVBIs beyond the first 24 
hours tend to have low predictive powers. Second, predictive pow-
ers of the MODS and SOFA scores could be improved by replac-
ing the assumption of equal weights for all components by the 
maximum likelihood method that determines the weights based 
on the observed data. It is not surprising that our set of six TVBIs 
was stronger in predictive power (AUC_P28 = 0.90) than not only 

APACHE II (AUC_P28 = 0.77) but also MODS (AUC_P28 = 0.80) 
and SOFA (AUC_P28 = 0.86), both of which were also constructed 
from six TVBIs (Supplemental Text 11, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A76).

We extensively explored whether adding more TVBIs (e.g., 
bilirubin, Pao2/Fio2 ratio) or more contextual variables (e.g., site/
type of infection) could improve our model (Supplemental Texts 
12 and 13, Supplemental Digital Content 1, http://links.lww.com/
CCX/A76). Together with the good performance validated by two 
approaches, this exploration confirmed that with our input data, 
we have created a robust and concise model.

Figure 2. The trajectories of the Glasgow Coma Scale (GCS) levels (A) and 
the predicted probabilities of dying in 7 d (B) for three patients with large 
changes in GCS: brown line for a survivor discharged on day 8; blue line for a 
survivor censored on day 28; and red line for a nonsurvivor who died on day 5.

Figure 3. The mortality risk profile that highlights the relative contribution 
of each time-varying biological indicator (TVBI) to the risk of dying. The top 
shows the separate effects of day 1 and change variables of each TVBI for a 
sample patient in terms of his difference in log of hazard from the benchmark, 
with black bars for day 1 effects and white bars for change effects. Relative 
to the benchmark, the patient had a higher risk of death that is mainly 
attributable to unfavorable values of Glasgow Coma Scale (GCS) (contributing 
0.77 to the difference), protein C (0.65), lactate (0.52), cell-free DNA 
(cfDNA) (0.34), and platelets (0.28) on day 1. However, the improvements 
in GCS, lactate, and cfDNA between day 1 and day 28 helped to reduce the 
difference in log of hazard markedly by –0.41 for GCS, –0.38 for lactate, and 
–0.36 for cfDNA, although these were offset by some worsening attributable 
to changes in creatinine (0.27), platelets (0.14), and protein C (0.08) relative 
to the benchmark. The middle shows the combined effect of the day 1 and 
change variables for each TVBI (i.e., the middle is the sum of the “day 1 
variable” bar and the “change variable” bar in the top). Since GCS and lactate 
improved markedly, their combined effects (0.37 and 0.14) became much 
less than that of protein C (0.73). After translating the information in the 
middle into the familiar measures of hazard ratios (HRs) by exponentiation, 
the bottom shows HR-1 for each TVBI, because HR = 1 (no effect) should 
be represented by a bar of zero length. The three highest HRs between the 
patient and the benchmark were 2.09 for protein C, 1.51 for platelets, and 
1.44 for GCS. The pattern suggests that abnormalities in protein C, platelets, 
and GCS are the major contributors to this patient’s risk of dying.
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As shown in Supplemental Text 14 (Supplemental Digital 
Content 1, http://links.lww.com/CCX/A76), our CLOGLOG 
model is indeed a versatile version of the Cox model that is bet-
ter than its two conventional versions for achieving longitudinal 
insights. For users of logit and probit models, Supplemental Text 
15 (Supplemental Digital Content 1, http://links.lww.com/CCX/
A76) provides a concrete guide to applying our novel approach to 
formulating a “longitudinal logit model” or a “longitudinal probit 
model” for achieving similar longitudinal insights and creating 
MRPs.

Our findings have the following limitations: 1) the stepwise 
nature of our variable selection tends to inflate the predictive 
power; 2) the small sample size of the validation group constrains 
generalizability; 3) the nonrandom pattern of missing values may 
distort estimation results; and 4) the exclusion of patients who 
were expected to die within 72 hours of ICU admission resulted 
in some loss of valuable information and required the use of a 
flexible time function to prevent the resulting selection bias from 
distorting the estimated coefficients. Applying our novel longitu-
dinal modeling to a larger sample, researchers are likely to find a 
stronger predictive model that includes more preconditions (e.g., 
congestive heart failure) and more TVBIs (e.g., bilirubin and Pao2/
Fio2 ratio).

CONCLUSIONS
Using a novel version of the Cox model, we created a prognostic 
tool for septic patients that yields not only a predicted probability 
of dying but also an MRP that reveals how six TVBIs differentially 
and longitudinally account for the patient’s overall daily mortality 
risk. This tool is based on a CLOGLOG model that takes advan-
tage of the changing values of cfDNA, protein C, platelet count, 
creatinine, GCS, and lactate to achieve a high predictive power.
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