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Protein kinase A and fungal virulence
A sinister side to a conserved nutrient sensing pathway
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Diverse fungal species are the cause of devastating agricultural
and human diseases. As successful pathogenesis is dependent
upon the ability of the fungus to adapt to the nutritional and
chemical environment of the host, the understanding of
signaling pathways required for such adaptation will provide
insights into the virulence of these pathogens and the
potential identification of novel targets for antifungal inter-
vention. The cAMP-PKA signaling pathway is well conserved
across eukaryotes. In the nonpathogenic yeast, S. cerevisiae,
PKA is activated in response to extracellular nutrients and
subsequently regulates metabolism and growth. Importantly,
this pathway is also a regulator of pathogenesis, as defects in
PKA signaling lead to an attenuation of virulence in diverse
plant and human pathogenic fungi. This review will compare
and contrast PKA signaling in S. cerevisiae vs. various patho-
genic species and provide a framework for the role of this
pathway in regulating fungal virulence.

Introduction

Species representing the major divisions of the fungal kingdom are
responsible for devastating diseases of both plants and animals.
Though pathogenic species may be highly diverged in terms of
phylogeny or lifestyle, each must execute morphogenic and stress
responsive programs that facilitate their invasion into host tissue
and survival against host defenses. Accordingly, the fungal
signaling pathways that promote growth and cellular homeostasis
in response to environmental cues represent important determi-
nants of pathogenesis and may prove to be ideal targets for the
development of antifungals. The involvement of the cAMP-
dependent protein kinase (PKA) pathway in regulating fungal
virulence, through both conserved and species-specific mecha-
nisms, will be the focus of this review.

The PKA holoenzyme exists as a heterotetramer consisting of
two regulatory subunits that bind and inactivate two catalytic
subunits. PKA becomes activated when the second messenger,

cyclic adenosine 3',5' monophosphate (cAMP), binds to the
regulatory subunits and induces a conformational change that
releases the active kinases.1 The intracellular concentration of
cAMP is regulated by the relative activities of two enzymes:
adenylate cyclase (AC), which synthesizes the cyclic nucleotide
from ATP, and phosphodiesterases, which catalyze cAMP
hydrolysis. Although environmental signaling inputs and down-
stream effectors of the cAMP-PKA pathway may differ among
species, the core canonical pathway is maintained from yeast
to humans.

In mammals, AC activity is primarily regulated by hetero-
trimeric G-proteins, which consist of an a, β and c subunit.
When an extracellular ligand binds to a seven-transmembrane
receptor at the plasma membrane, a conformational change of the
receptor promotes dissociation of the Ga subunit, which then
activates AC.2 Whereas growth factors, for example, hormones,
serve as the extracellular initiator of the cAMP-PKA pathway in
mammals, cumulative data suggest that environmental nutrients
play an analogous role in lower eukaryotes. The most detailed
analysis of PKA input and output among fungal organisms has
been performed in the budding yeast Saccharomyces cerevisiae,
a discussion of which will be provided as a reference for the
evolution of the pathway across pathogenic fungal species.

PKA and S. cerevisiae:
A Paradigm for Environmental Nutrient Signaling

When grown on a non-fermentable carbon source, e.g., glycerol
or ethanol, the cells of S. cerevisiae arrest at the cell cycle start
and subsequently enter stationary phase (G0). The addition of a
readily fermentable carbon, such as glucose or fructose, to those
de-repressed cells leads to cell cycle reactivation and the resump-
tion of growth. Classical genetics and biochemical studies over the
past several decades have shown that the cAMP-PKA pathway
serves as the major intermediate by which glucose, as well as
multiple nutrient inputs, regulates cell cycle progression.

Two G-protein modules are involved in the glucose-induced
activation of AC in S. cerevisiae. The first is Gpa2, which is a
homolog of the G-as subunits of mammalian heterotrimeric
G-proteins.3,4 In this pathway, glucose itself appears to be a ligand
for the seven-transmembrane receptor, Gpr1p.5 Upon glucose
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binding, Gpr1 activates Gpa2, which then associates with, and
activates yeast AC, Cdc35. Interestingly, Gpa2 differs from
mammalian G-a proteins, as it does not appear to form a
heterotrimeric complex with a β or c subunit. Instead, two
proteins with kelch repeat domains (Krh1/Krh2) have been
shown to interact with Gpa2 and were initially believed to serve as
G-β mimics.6 Subsequent studies revealed, however, that Krh1/2
are direct inhibitors of PKA by strengthening the interaction
between the regulatory and catalytic subunits: activated Gpa2
blocks this action by Krh1/2.7,8 Therefore, Gpa2 promotes the
activation of PKA in S. cervisiae in two ways: (1) activating
Cdc35 to produce cAMP and (2) inhibiting Krh1/2, thereby
sensitizing the PKA holoenzyme to the activity of cAMP.

The second G-protein module involved in AC activation
involves the small GTPases, Ras1 and Ras2. In mammalian
systems, the small GTPase superfamily is not involved in cAMP
signaling. The role of these Ras proteins in glucose signaling in
S. cerevisiae is still enigmatic, as the mechanism by which Ras
responds to glucose is not well understood. However, both basal
Cdc35 activity and its glucose-induced activation are dependent
upon a functional Ras protein, thereby underscoring the impor-
tance of these proteins in the pathway.9 It has been demonstrated
that glucose phosphorylation is required for the increase in GTP-
bound Ras (active state), suggesting that Ras may serve as an
indicator of proper glucose transport and metabolism.10 A current
model proposes that low level sugar-phosphorylation serves as a
trigger for a Ras-mediated localization of Cdc35 to the plasma
membrane, where the cyclase would be accessible for activation by
the membrane anchored Gpr1-Gap2 pathway described above.3

In addition to the glucose induction pathway, intracellular
acidification also stimulates Ras-dependent Cdc35 activation.9 It
is thought that under starvation conditions, the ATP-ADP ratio
drops within the cell, resulting in higher levels of free phosphate
and, as a result, lower intracellular pH. Consequently, the Ras-
cAMP pathway leads to activation of PKA and subsequent
catabolism of storage carbohydrates, such as glycogen. Glycolytic
activity then restores ATP levels, which leads to a rise in intra-
cellular pH and a consequent downregulation of the pathway.3,11

In this way, the Ras-PKA pathway may serve to maintain internal
energy homeostasis under starvation conditions in S. cerevisiae.

Although the presence of a fermentable carbon source is
sufficient to activate PKA via the cAMP pathway, PKA activity
is not maintained in S. cerevisiae unless a full complement of
essential nutrients is present in the environment. Rather, nitro-
gen or phosphate starvation, even in the presence of glucose, will
result in an inactivated PKA pathway and arrest in G1 of the cell
cycle. However, the addition of the limiting nutrient to the
glucose medium will lead to the rapid activation of PKA by a
cAMP- and regulatory subunit-independent mechanism. This
mode of PKA regulation has been termed the “fermentable-
growth medium” (FGM) pathway.12 The involvement of specific
nitrogen and phosphate permeases that play dual roles as receptors
have been reported as important upstream elements in the FGM
pathway, though the mechanisms by which they ultimately
regulate PKA remain unclear.4 In summary, the PKA pathway in
S. cerevisiae is centrally positioned to signal multiple nutritional

cues from the environment, via both classical G-protein cascades
that mimic mammalian hormonal pathways, as well as through
Ras or cAMP-independent mechanisms. Once activated, the
effector functions of the pathway may be performed by any, or all,
of three PKA catalytic subunits encoded by the yeast genome;
Tpk1, Tpk2 and Tpk3. Each isoform is constitutively expressed
and displays both partially redundant and unique functionalities
with one another.13-16

S. cerevisiae is unique among most eukaryotes as it preferenti-
ally ferments glucose to ethanol, even in the presence of sufficient
oxygen levels. Despite the substantially lower net ATP generated
during fermentation compared with respiration, it is believed that
this is beneficial to the organism because (1) ATP generation
through the fermentative pathway is faster than respiration,
allowing for a more rapid utilization of the glucose and (2) the
ethanol produced can inhibit the growth of competing orga-
nisms.17 Upon its activation by glucose, PKA plays a major role in
regulating this fermentative growth program by phosphorylating
and activating a variety of glycolytic enzymes, such as phospho-
fructokinase, while concurrently inhibiting the activity of various
proteins involved in the TCA cycle and oxidative phosphoryla-
tion. Moreover, PKA is a major mediator of carbon catabolite
repression, in which pathways involved in alternative carbon
assimilation, e.g., ethanol utilization by alcohol dehydrogenase
or acetate via the glyoxylate pathway, are downregulated in the
presence of glucose.3

PKA regulates other aspects of cellular physiology upon its
activation, beyond carbon catabolism. For instance, yeast cells
grown in the presence of glucose display increased sensitivity to
various stresses, including oxidative stress and heat shock. PKA
is a major regulator of this phenomenon, largely through its
antagonistic influence on stress responsive transcription factors.
The Msn2 and Msn4 transcription factors, for example, induce
expression of genes with stress response elements (STREs) in their
promoters, and deletion of Msn2/4 leads to a hypersensitivity to
oxidative stress.18 PKA phosphorylation of Msn2/4 blocks their
nuclear translocation, thereby reducing the expression of STRE
genes.19,20 Similarly, PKA inhibits the activity of the protein
kinase, Rim15, which also regulates STRE genes, promotes high
temperature resistance and is required for entry into stationary
phase.21 The deletion of Msn2/4 or Rim15 overcomes the growth
arrest caused by PKA inactivation, indicating that PKA’s influence
on cell physiology is largely mediated through these proteins.

Depending upon the complement of environmental nutrients,
PKA may also promote or inhibit developmental programs, such
as sexual development or filamentation.15,22 Filamentation occurs
in S. cerevisiae when diploid cells are starved for nitrogen; the cells
become elongated and divide in a polarized manner, leading to
the formation of cells connected end-on-end, called pseudo-
hyphae. The function of pseudohyphal formation is analogous
to that of true hyphal extension of filamentous fungi, as both
allow the organism to grow into unexplored substrates. The
observation that expressing a constitutively active GPA2 allele
leads to pseudohyphal growth, even in the presence of nitrogen
concentrations that are normally repressive of filamentation,
provided the first line of evidence that the cAMP pathway is
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involved with morphogenesis.23 Subsequent studies have revealed
that the three PKA isoforms of S. cerevisiae play disparate roles in
filamentation. Tpk2, has a specific role in positively regulating
this process, whereas the other isoforms, Tpk1 and Tpk3, have a
repressive role.15,16 Tpk2 participates in morphogenesis, in part,
through positively regulating the transcription factor Flo8. Flo8
positively regulates the expression of the flocculin protein Flo11,
which is required for cell-cell adhesion.2,24,25 Further studies will
be required to describe how Tpk2 activity is maintained during
nitrogen starvation conditions.

To summarize in S. cerevisiae, PKA is activated within a favor-
able nutrient environment, determined largely by the presence
of glucose. Under such conditions, PKA facilitates the down-
regulation of stress responsive and reproductive pathways and
re-directs its energy expenditure toward the rapid assimilation
of an important, but potentially transient nutrient. Additional
nutritional inputs, such as the presence or absence of nitrogen,
also regulate PKA activity by cAMP-independent mechanisms
(summarized in Fig. 1A). These non-glucose signaling inputs
likely influence the PKA-dependent control of pseudohyphal
growth, thereby promoting the acquisition of limiting nutrients.
The role of PKA in relaying environmental nutritional cues to
various physiological processes appears to be a unifying theme
across diverse fungal species. These parallels, as well as how this
conserved signaling pathway regulates virulence among patho-
genic fungi will be discussed next.

PKA and Fungal Pathogenesis

The involvement of cAMP-PKA signaling in environmental
sensing and growth is well conserved across the fungal kingdom.
However, a wide range of environmental niches and lifestyles of
fungal pathogens has allowed for the evolution of organism-
specific PKA contributions to pathogenesis. In the following
sections, a conceptual framework for PKA-mediated virulence
attributes will be presented and important parallels and distinc-
tions between cAMP signaling in S. cerevisiae will be suggested.
The primary focus will be on three major human pathogens
Candida albicans, Cryptococcus neoformans and Aspergillus fumiga-
tus, but examples among plant pathogenic species will be included
when informative.

Control of morphogenesis. Morphogenesis (the change in cell
shape) is a pervasive fungal process. Even fungi that maintain a
single growth pattern, e.g., budding yeast or hyphae, may undergo
morphological transitions in the form of germination (all molds)
or titan cell formation (Cryptococcus). Changing morphological
forms facilitates tissue invasion or host immune evasion and is,
consequently, a crucial pathogenic process subject to a high
degree of regulation.26 Just as the cAMP-PKA pathway is a key
regulator of filamentation in S. cerevisiae, PKA similarly con-
tributes to regulation of cell shape transitions in diverse plant
and human pathogens.

Candida albicans is the predominant human fungal pathogen,
causing a spectrum of disease states ranging from superficial
mucosal infections to life-threatening systemic disease, primarily
in immunocompromised patients.27,28C. albicans is polymorphic,

capable of growing as budding yeast or as filaments, the latter
of which may include pseudohyphae or true, septate hyphae.
Filamentous growth has long been considered an important
pathogenicity determinant by promoting tissue invasion and
escape from phagocytic cells.29,30 Indeed, C. albicans mutants
locked in the yeast morphology are routinely hypovirulent.31,32

Conversely, data concerning hyperfilamentous mutants have
been conflicting, with such strains displaying phenotypes rang-
ing from avirulent to hypervirulent.33-36 Though many of the
mutants referenced may have defects that affect growth programs
beyond morphogenesis, the data cumulatively support the view
that regulated morphological transitions are more important than
any particular morphology alone. As such, signaling pathways
involved in such transitions are likely crucial for virulence.

The cAMP-PKA pathway positively regulates filamentation
in C. albicans, at least partly through its direct influence on the
transcription factors, Efg1 and Flo8.37,38 Consequently, reduced
AC or PKA activity leads to an inability to grow in the hyphal
form.39-43 Both PKA isoforms, Tpk1 and Tpk2, are involved in
hyphal growth, whereas Tpk2 appears to uniquely promote
pseudohyphal elongation, similar to what is seen in S. cerevisiae.44

Importantly, attenuated PKA signaling is associated with reduced
virulence, a finding that may be strongly related to the loss in
morphogenic flexibility. For example, a strain lacking CaTPK2 is
defective in invasive growth on epithelial cells and is attenuated
for virulence in a model of oropharyngeal candidiasis.45 Con-
versely, a histone deacetylase null mutant displays increased PKA
activity, and is thus hypersensitive to hypha inducing signals.
The mutant displays increased hyphal growth in vivo and is
attenuated for virulence in a systemic model, again underscoring
the importance of tight morphogenic control in vivo.34

The yeast-to-hypha transition is induced by a variety of
environmental stimuli in vitro; including serum, glucose, amino
acids, changes in pH, growth at 37°C, physiologic levels of CO2

and certain modified sugars, such as N-acetylglucosamine.46,47

C. albicans is a major commensal of human mucosal surfaces,
primarily the gut, where the fungus likely encounters many of
these stimuli regularly without incidence of infection. Therefore,
it is likely a shift in the balance of these signals within the
appropriate host context (e.g., immune deficiency or specific
peptide or hormonal influences) that promotes tissue invasion. As
will be outlined, cyclase is responsive to many of the above
mentioned in vitro inducers in C. albicans, implicating a role for
PKA as a key regulator in the morphogenic “decision making”
in vivo.

Given the drastically different niches of S. cerevisiae (surface of
fruits) and C. albicans (a human commensal), it may be anti-
cipated that disparate environmental cues induce PKA in these
respective organisms. Interestingly then, glucose induces AC in
both species via a Ras1 sensing mechanism.48 However, although
the signaling elements are largely conserved in the two species,
the biological relevance of glucose itself may be highly diverged.
In C. albicans for instance, the major in vitro inducer of hyphal
growth is serum, in which glucose concentrations are high rela-
tive to other body tissues. In this way, the in vivo detection of
glucose by C. albicans may serve as a signal that it has entered the
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Figure 1. For figure lenged, see page 113.
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bloodstream (e.g., as a consequence of intravenous catheteriza-
tion), rather than a strict indicator of the nutritional status of its
niche environment, as is likely the case for S. cerevisiae. Slight
differences in the genetic pathway do exist, however, as the
Gpr1-Gpa2 module in C. albicans is not involved in glucose
sensing, but rather amino acid sensing.48

Beyond nutrients, C. albicans may have developed novel AC
activation mechanisms that may reflect a specific adaptation to
its host niche. For instance, muramyl dipeptides (MDPs)
originating from bacterial peptidoglycan can also activate AC,
in this case, through a direct interaction with the cyclase leucine-
rich repeat domains.49 Given the abundance of bacteria in the
gut, this additional mechanism for PKA activation may serve as
an important microbial interaction response. A well-known risk
factor for candidiasis is the administration of broad-spectrum
antibiotics.50 Therefore, it is tempting to speculate that certain
anti-bacterial agents lead to the release of MDPs into the gut
lumen and trigger hyphal growth via PKA. In addition, the
C. albicans AC respond directly to physiological levels of carbon
dioxide. CO2 is hydrated by carbonic anhydrase to form
bicarbonate, which then activates AC.51 As one would predict,
C. albicans carbonic anhydrase mutants are defective for both
CO2 induced filamentation and virulence.51 While these AC
activation mechanisms may have evolved independently in
C. albicans, there are currently no reports of them being tested
in S. cerevisiae.

The ability of serum, pH and CO2 to serve as inducers of
filamentation is dependent on physiologic temperature (37°C),
a requirement that was recently shown to be dependent on
the molecular chaperone, Hsp90.52,53 Interestingly, the authors
showed that Hsp90 functions through an interaction with a
component of the Ras1-cAMP-PKA pathway.52 More specifically,
Hsp90 interacts with and inhibits an upstream pathway com-
ponent, possibly Ras1 itself, at lower temperatures and releases
the client at physiologic temperatures. This represents a potenti-
ally novel mechanism by which the cAMP pathway may also
integrate temperature cues from the environment to induce fila-
mentation in vivo. In summary, both S. cerevisiae and C. albicans
share conserved nutrient sensing pathways that activate PKA.
However, C. albicans may have evolved novel signaling mechan-
isms that facilitate its lifestyle as a human commensal and
pathogen. For further reading on the role of PKA in C. albicans
virulence, the reader is also referred to a recent review.54

The formation of specialized morphologic structures during
pathogenesis is well illustrated by phytopathogenic fungi. Plant
leaves are comprised of a waxy outer layer, called the cuticle,
which offers protection from physical and chemical assaults from
the environment. To bypass this plant defense, many plant
pathogenic fungi form a specialized infective structure on the

plant leaf called the appressorium. In the appressorium, a large
amount of turgor pressure is generated, which is then used to
propel a small infection peg through the cuticle and epidermis
of the leaf and into the underlying host tissue.55 Signaling
through cAMP-PKA plays a critical role in this early infectious
process in many species.56 In the rice blast fungus, Magnaporthe
oryzae (previouslyM. grisea), for example, appressorium formation
is induced upon physical contact with a hydrophobic surface, such
as polystyrene in vitro or the cuticle in the wild. Deletion of the
G-a encoding gene, MAGB, leads to a loss in contact-induced
appressorium formation, as does loss of a surface hydrophobin,
Mpg1, or a transmembrane protein, Pth11.57-59 The surface-
induced appressorium defect in all three deletion mutants can be
bypassed by the addition of cAMP, suggesting that failure to
activate AC in response to a physical interaction with a substrate
underlies the mutant phenotypes. This is notably different than
the previously discussed cyclase activation pathways in S. cerevisiae
and C. albicans, in which chemical cues predominate as the
environmental stimulants. Although the loss of the major PKA
catalytic subunit gene in M. oryzae, CPKA, does not result in the
inability of the organism to produce appressoria, appressorial
development in the DcpkA mutant is delayed and they are smaller
than those produced by the wild-type organism. The DcpkA
mutant is only capable of infecting rice leaves with prior physical
damage, suggesting that the virulence phenotype is, indeed, due
to defective host penetration.60 PKA activity is known to play a
major role in the breakdown of storage carbohydrates, e.g.,
glycogen or trehalose, in both yeast cells and fungal spores.61-63

Therefore, it seems likely that the involvement of PKA in
appressorium development and function is largely at the level of
glycogen breakdown, which is required for the increase in intra-
cellular glycerol concentration and the subsequent generation of
the turgor pressure.64 This reinforces the concept that a con-
served role for PKA in carbohydrate metabolism can be utilized
for the purpose of host invasion during pathogenesis, similar to
what has been discussed in C. albicans. The involvement of PKA
signaling in appressorium development is conserved in the phyto-
pathogenic Colletotrichum spp and Erisyphie graminis as well as the
entomopathogenic fungus Metarhizium anisopliae.65-67

Before host invasion can begin, all filamentous fungi must
initiate growth from the dormant spore in the process of germi-
nation. Defects in cAMP-PKA signaling are associated with
abnormal conidial germination phenotypes in a number of
species, with Fusarium solani and A. fumigatus serving as examples.
F. solani fsp pisi is a legume pathogen and germination is
stimulated by flavenoid compounds released by the host plant.
Interestingly, the flavenoids appear to increase intracellular cAMP
levels through inhibition of phosphodiesterase activity, rather
than by stimulating AC through a G-protein module.68 This

Figure 1 (See opposite page). (A) Schematic of various signaling inputs and regulatory pathways that govern PKA activity in S. cerevisiae. The
cAMP-independent activation of PKA by ammonium (NH4

+
), amino acids and phosphate (Pi) make up the “fermentable-growth medium (FGM)” pathway.

(B) Left: Signaling inputs that activate PKA in the human fungal pathogen, C. albicans (top). Following activation, PKA induces the yeast-to-hypha
transition that promotes invasion of the gut epithelium (bottom). MDPs, muramyl dipeptides. Right: novel signaling inputs and regulatory mechanisms in
the plant pathogenic species F. solani (blue pathway) and M. oryzae (red pathway) (top). In M. oryzae, the activation of PKA leads to the formation of the
appressorium (AP), which promotes penetration through the outer plant cuticle into the underlying tissue (bottom).
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flavenoid-mediated influence on cAMP levels may represent
another unique mechanism by which the PKA pathway responds
to niche specific environmental cues in order to regulate
development and virulence.

A. fumigatus is the most common mold pathogen of immuno-
compromised hosts, causing both pulmonary and systemic
infections with mortality rates between 50–90%.69,70 The
importance of PKA in the germination of A. fumigatus has been
demonstrated via several mutants in the PKA holoenzyme.
Deletion of the PKA regulatory-subunit, leading to constitutive
PKA activity, results in precocious germination in the absence of
environmental nutrients.71 A. fumigatus encodes two divergently
related PKA isoforms, pkaC1 and pkaC2 and recently it was
reported that both isoforms work cooperatively to regulate
conidial germination, as a germination defect was only observed
upon deletion of both genes. The delay in germination of the
DpkaC1DpkaC2 mutant correlated with a reduced onset of
fungal burden and reduced cumulative mortality in mice infected
with the mutant.71 These data indicate that the proper onset of
germination, mediated by PKA, is important for virulence,
although the pleiotropic nature of the pathway must be
considered.

The environmental basidiomycetous yeast Cryptococcus neofor-
mans is an important human pathogen that causes a life-
threatening meningoencephalitis among immunocompromised
patients.73 Though the fungus grows solely as budding yeast in the
host, C. neoformans can form an enlarged cell morphotype within
the lung, called titan cells. Titan cells are 5–10 times the diameter
of normal yeast and may account for 20% of the population in
vivo. They are resistant to phagocytosis by host immune cells as
well as to both oxidative and nitrosative stresses.74,75 Titan cell
formation was found to be under the control of two G-protein
coupled receptors, Gpr5 and the Ste3 pheromone receptor. Once
activated, both of these pathways activate PKA, which then
promotes titan cell formation through the transcription factor
Rim101.76

Taken together, PKA signaling is involved in relaying specific
environmental cues to the morphogenic machinery in many
human and plant pathogenic fungi. Many of the PKA activation
systems described are conserved nutrient detection pathways that
may have been co-opted by the fungus to detect such stimuli as
indicators of the host milieu, for example glucose activation in
C. albicans. However, others appear to be novel host detection
pathways that lack a known analog in S. cerevisiae, as in the case
of flavonoid detection in F. solani (Fig. 1B).

Regulation of resistance to host defenses. A successful
pathogen must adapt to a variety of stresses encountered within
the host. In S. cerevisiae, PKA activity leads to a generalized
downregulation of various stress responses, including oxidative,
osmotic and starvation related responses. In contrast, PKA
signaling in other fungal organisms, including various pathogenic
species, may actually facilitate resistance to environmental and/or
host derived assaults.

In addition to cell gigantism, PKA regulates at least two
additional aspects of C. neoformans physiology that promote host
cell invasion and stress resistance. First is the polysaccharide

capsule, which has both anti-phagocytic and immunosuppressive
properties.77 Mutants that are acapsular generally display a
marked attenuation of virulence in murine infection models.
Moreover, mutants with defects in cAMP signaling or PKA
activity display reduced capsule formation and are hypovirulent.
Conversely, loss of the PKA regulatory subunit leads to an
enlarged capsule and a hypervirulent phenotype.78 Transcriptional
profiling of cAMP-PKA mutants has also revealed a number of
capsule biosynthetic genes that are under the positive influence
of PKA.79

Given the in vitro data described, it seems likely that PKA is
positioned to regulate capsule formation in the host. For example,
capsule biosynthesis is induced upon phagocytosis by macro-
phages, and strains deficient in PKA or the upstream G-a protein,
Gpa1, are defective in this response.80 Interestingly though, the
gene expression profile of C. neoformans isolated from macro-
phages is suggestive of nutrient starvation, an environment in
which PKA activity is low in most fungal species.80 Therefore, the
exact upstream signal that induces G-protein signaling within
the macrophage remains to be identified.

Iron limitation is another inducer of capsule formation.
Rim101 is a conserved transcription factor in many fungi that
serves as a pH sensor and plays the predominant role in regulating
growth under conditions of alkaline pH and iron limitation.81

Recent reports have demonstrated that PKA regulates capsule
biosynthesis in response to iron limitation by activating Rim101
in C. neoformans.82 This appears to be a novel interaction between
two conserved signaling pathways that ultimately promotes
fitness within the acidic and iron poor microenvironment of the
phagosome.82

Of note, physiologic levels of CO2 also represent a potent
capsule inducer. Similarly to C. albicans, CO2 can activate AC
in C. neoformans via the formation of bicarbonate by carbonic
anhydrase.51 Although required for growth ex vivo, the
C. neoformans carbonic anhydrases are not required for capsule
formation or growth under CO2 concentrations found within
the host and are, therefore, dispensable for virulence.83 There-
fore, the activation of AC by bicarbonate is conserved in two
diverged fungal pathogens, C. albicans and C. neoformans,
although the contribution of this signaling mechanism during
infection is distinct.

The second important virulence factor of C. neoformans to
be discussed is melanin, which is believed to impart resistance
to UV stress ex vivo, while scavenging reactive oxygen species
(ROS) and promoting survival within macrophages in the host.
Melanin has also been demonstrated to inhibit phagocytosis,
interfere with the activity of antimicrobial peptides and drugs,
and inhibit pro-inflammatory cytokine production during infec-
tion.84 PKA positively regulates the expression of several genes
involved in the melanin biosynthetic pathway, including two
genes encoding the enzyme laccase, LAC1 and LAC2.85 Accord-
ingly, a pka1 mutant defective in a PKA catalytic subunit displays
a hypo-melanized phenotype under melanin inducing condi-
tions.86 Interestingly, upstream elements of the cAMP pathway
involved in melanin production appear to be distinct from those
involved in capsule biosynthesis. For example, deletion of GPA1
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leads to both capsule and melanin defects; however, loss of the
G-protein-coupled receptor (GPCR) that signals upstream of
Gpa1, Gpr4, leads only to a reduction in capsule size, with no
defect in melanization.86,87 Similarly, the glucose-induced activa-
tion of AC is dependent on Gpa1, but not Gpr4.81 Therefore,
Gpa1 appears to interact with multiple, distinct sensory mole-
cules, perhaps undiscovered GPCRs, which detect diverse
external cues.

It is known that the Gpr4-Gpa1 module is responsive to
amino acid stimulation, similar to the Gpr1-Gpa2 pathway of
C. albicans.87 However and in contrast to S. cerevisiae and
C. albicans, Ras does not appear to influence the cAMP pathway
in C. neoformans.88 Moreover, unlike S. cerevisiae, C. neoformans
does not contain PKA inhibitory kelch repeat proteins; instead, it
contains a more mammalian-like G-β protein, Gib2, which
interacts with Gpa1 and serves as a positive regulator of AC.89 In
this way, the C. neoformans AC activation pathway more closely
resembles that of mammalian cells. Notably, functional G-β
proteins have been characterized in filamentous fungi, but their
involvement in AC regulation is not well described.90-92

The involvement of PKA in melanin production appears to
be conserved across diverse fungal species, including A. fumigatus
and the plant pathogenic fungi, M. oryzae and Ustilago hordei.93,94

The effect of stimulation of the pathway differs among these
organisms, however, as increased cAMP reduces melanization
in U. hordei.94 Conidia of A. fumigatus contain a green melanin
pigment that imparts resistance to oxidative stress. Mutants
lacking an important melanin biosynthetic enzyme, polyketide
synthase (PksP), are hypersensitive to ROS and are killed more
readily by human monocyte-derived macrophages.95,96 Likewise,
A. fumigatus deletion mutants of AC (acyA), G-a (gpaB), or a PKA
catalytic subunit (pkaC1) each display reduced pksP expression
and enhanced killing by macrophages.97,98 Conversely, deletion
of the PKA regulatory subunit gene, pkaR, leads to aberrant
melanization of the hyphal wall and a slight increase in resistance
to hydrogen peroxide treatment.99 However, in each of the
cAMP-PKA mutants described, melanin-independent basis for
the phenotypes cannot be excluded.

The two isoforms of PKA in C. albicans, Tpk1 and Tpk2,
appear to play opposite roles in regulating stress responses.
Deletion of TPK1 leads to decreased resistance to osmotic, heat
and oxidative stresses, whereas deletion of TPK2 either results in
unchanged or increased levels of resistance.100 Transcriptional
profiling of C. albicans following growth in vivo has indicated
that the fungus is experiencing both heat and oxidative stress,
suggesting that a Tpk1 mediated stress response may be operative
in the host.101 Future studies will be needed to reveal how these
two PKA subunits are differentially regulated in vivo to balance
morphogenic and stress response related processes. Nevertheless,
the positive role for a PKA isoform in heat, osmotic or oxidative
stress response is in apparent contrast to S. cerevisiae and may
reflect divergent evolution of conserved orthologs.

In summary, the cumulative data support a conserved role in
cAMP-PKA signaling in the adaptation of fungal pathogens to
host-associated stresses. Many of these stress responses appear to
be conserved across divergent species, such as the regulation of

melanization. Moreover, those processes controlled by PKA that
are important for the stress response may be highly connected to
the morphogenic processes described previously. For example,
PKA-dependent melanization is also an important aspect of
proper appressorium development in M. oryzae, while filamenta-
tion may be an important survival response for C. albicans upon
phagocytosis.

Metabolic adaptation. All pathogenic microbes must employ
the appropriate metabolic pathways for the rapid acquisition
and utilization of host derived nutrients. As discussed, the PKA
pathway plays a predominant role in carbon metabolism in
S. cerevisiae. Therefore, while most studies involving PKA in
fungal pathogens have focused on morphogenesis or “virulence
factor” production, a major contribution of the pathway to
virulence may be related to bioenergetics. In this section, the
metabolic output of the PKA pathway in some pathogenic fungi
will be briefly reviewed. Moreover, the relevance of PKA in this
context will be discussed in light of the emerging in vivo data that
addresses the metabolic programs used by fungi during infection.

In S. cerevisiae, PKA is activated in response to glucose and
promotes glycolysis and fermentation, while concurrently inhibit-
ing the use of alternative carbon sources. This appears to be well
conserved in those organisms in which it has been investigated.
In C. albicans, for instance, glucose is known to activate AC
via the Ras1 pathway. Upon activation, both Tpk1 and Tpk2
influence the breakdown of the glucose monomer, glycogen.100

In A. fumigatus, measurable activity of PKA is higher when the
fungus is grown in the presence of glucose compared with glycerol
and artificially inducing PKA signaling through the addition of
exogenous cAMP reduces growth of the organism on glycerol.102

Similarly, overexpression of pkaC1 leads to an inability to grow
on acetate as the sole carbon source.103 The loss of PKA activity
in A. fumigatus, conversely, leads to the reduced capacity to grow
on reduced sugar concentrations and a reduced expression of at
least one ethanol fermentation gene, pyruvate dehydrogenase.72

Together, these data suggest that PKA activity promotes
glycolysis/fermentation while negatively regulating the metabo-
lism of alternative carbon sources in A. fumigatus, similar to the
carbon catabolite repression pathway of S. cerevisiae. Additional
studies will be needed to identify the signaling components that
lie both upstream and downstream of PKA within the glucose
sensing pathway.

While the influence of PKA on metabolic pathways remains
to be described in many fungi, the ability of glucose to activate
the pathway is highly conserved and is, therefore, likely a con-
served function. Accordingly, if glucose utilization is a require-
ment during host infection, PKA may be central to metabolic
adaptation. What data support such a view?

Transcriptional profiling of fungi isolated from host tissue
has implicated the importance of glucose catabolism in vivo. For
example, A. fumigatus germlings isolated from bronchoalveolar
lavage fluid of infected mice revealed an upregulation of several
high-affinity hexose transporters.104 The pkaC1/pkaC2 deletion
mutant of A. fumigatus is unable to grow on glucose media
containing reduced glucose concentrations, which was correlated
with reduced fungal burden and avirulence in vivo.72 Again,
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though, PKA could be affecting other processes to influence a
complex phenotype such as virulence. Moreover, the transcrip-
tional upregulation of sugar transporters may reflect a generalized
response to sugar starvation, rather than a specific requirement for
glucose utilization in vivo. Indeed, tissue glucose concentrations
may be below 0.05 mM (lung), compared with the relatively
glucose-rich blood (6–8 mM).105 In C. neoformans, a similar
upregulation of a hexose transporter was observed following
growth in the lung, but so too were several genes involved in
acetate uptake and metabolism.106 Seemingly contradictory
findings were also observed in C. albicans: fungus isolated from
murine liver demonstrated an upregulation of genes involved
in glycolysis, acetyl-CoA biosynthesis and the TCA cycle.107 In
contrast, there was a reported downregulation of glycolytic genes
in C. albicans isolated from the murine kidney, which was
associated with a concomitant increase in the level of the
glyoxylate pathway genes, consistent with glucose starvation.101

However, upon single cell analysis, a heterogeneous population
within kidney tissue was observed; some organisms appeared to
be undergoing glycolysis, while others were utilizing the glyoxy-
late cycle and gluconeogenesis.108 These findings support a view
in which individual cells of the infecting fungus experience
unique microenvironments in the host, even in the same organ.
Importantly, defects in the glycolytic pathways of both C. albicans
and C. neoformans leads to reduced virulence in their respective
animal models.109-111

Though glucose may be a limiting substrate in vivo, additional
environmental factors may accentuate the need to metabolize
sugar. For example, most fungi are obligate or facultative aerobes
and generate most of their ATP via the respiratory pathway.
However, oxygen levels within host tissue are considerably lower
than atmospheric levers (21%) and may not be sufficient to
support a respiratory mode of growth. Within the perenchyma
of healthy lungs, for example, the oxygen level is around 14%.
However, following diffusion to surrounding tissues, levels may
drop to 2–4%.112 Emerging evidence suggests that fungal organ-
isms are under hypoxic stress in vivo and may, therefore, require
the use of a fermentative mode of metabolism for sustained energy
production.

Several lines of evidence support the sensing of hypoxia by the
infecting fungus and the subsequent need for fermentation
in vivo. For instance, sterol-response element binding proteins
(SREBs) are a conserved family of transcription factors involved
in sterol biosynthesis and the hypoxic response. The deletion of
the SREB homolog in either A. fumigatus or C. neoformans leads
to attenuated growth under hypoxia as well as a reduction in
virulence in pulmonary and systemic model, respectively.113-115

This indirectly suggests that both organisms are under hypoxic
stress, as the SREB proteins regulate a myriad of processes that
could affect virulence. A hypoxic tissue stain was recently used to
directly detect hypoxic microenvironments within A. fumigatus
lesions in the lung, supporting the hypothesis that oxygen may
become drastically reduced during infection due to tissue necrosis
and/or extensive inflammation.116 Moreover, the same group
detected ethanol within the lung of infected mice and the deletion
of an alcohol dehydrogenase gene, alcC, led to reduced fungal

burden in a murine model, demonstrating the importance of
ethanol fermentation for A. fumigatus in vivo. Additional studies
will be required to specifically determine the importance of
fermentation in other fungal pathogens.

Along with reduced oxygen, there is also a higher concentration
of CO2 in the host, relative to those found in the atmosphere.
The activation of AC by CO2 has been described for C. albicans
and C. neoformans, but remains to be tested in other pathogenic
fungi. It is tempting to speculate that the bicarbonate pathway
would be the mechanism by which the PKA pathway could
indirectly sense a hypoxic microenvironment. In this model, PKA
would become activated to influence glucose utilization, even
if glucose levels themselves were insufficiently high to activate
fermentation.

In addition to carbon metabolism, PKA signaling may also
play a role in micronutrient metabolism during infection. For
example, iron is an essential nutrient that is highly limiting in
the host environment.117 Therefore, pathogenic microorganisms
must employ a variety of iron uptake pathways to sustain growth
in the host, including expression of ferrous and ferric transporters
and the secretion of high-affinity iron siderophores that can
compete for host-bound iron.118 In response to low iron condi-
tions, C. neoformans PKA regulates capsule biosynthesis and also
induces the expression of various iron permeases and reductases.79

The latter appears to be a conserved function for PKA, as the
positive regulation of high-affinity iron transporters by the
pathway in S. cerevisiae has also been described.

In summary, emerging in vivo data from a variety of fungal
pathogens has implicated the importance of glycolysis and
fermentation during infection, the requirement for which is likely
accentuated by the reduced oxygen levels found in most
mammalian tissues. Accordingly, the highly conserved role for
PKA in positively regulating glucose transport and catabolism
likely makes the pathway important in the metabolic response
in vivo. In addition, the involvement of PKA in integrating
multiple stresses, including iron limitation and physiologic levels
of CO2, might allow the cAMP pathway to respond to multiple
host signals. Therefore, the virulence defect associated with loss
of PKA signaling among fungal pathogens could largely be due
to its role in facilitating nutrient acquisition and energy
production in the host.

PKA: a pleiotropic regulator of virulence. Thus far, the con-
tributions of PKA to fungal virulence have been categorized as
distinct processes for the sake of exposition. However, PKA is
a pleiotropic regulator of fungal cell physiology and its role in
promoting pathogenesis must be seen in a broader, inter-
connected context. The involvement of PKA and cell wall
homeostasis provides a good example of the interrelatedness
between morphogenesis, stress response and metabolism.

The cell wall plays a vital role in the interaction between the
fungus and the environment. It provides a rigid scaffold that
protects the cell from various chemical and physical stresses and
enables the organism to penetrate or invade insoluble sub-
strates.119 Not surprisingly, proper cell wall homeostasis is a
critical determinant of fungal pathogenesis. The infecting fungus
must constantly remodel its cell wall to facilitate morphogenesis
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and growth, and must be able to respond properly to cell wall
stresses encountered within the host. For example, secreted
chitinases that degrade the fungal cell wall are important anti-
fungal defenses of both plants and mammals.120 Additionally,
echinocandins are a major class of antifungals that inhibit the
synthesis of cell wall glucans. Important fungal resistance
mechanisms to these drugs may include the induction of salvage
pathways that promote chitin synthesis to preserve cell wall
stability.121,122 The major conserved cell wall-integrity pathway in
fungi is the Protein Kinase C-MAP Kinase (MAPK) pathway, and
defects in MAPK signaling lead to hypersensitivity to osmotic
stress and cell wall modulating agents, including Congo red,
sodium dodecyl sulfate and cell wall targeting antifungals.123

Mutations in the cell wall integrity pathway lead to attenuation of
virulence in numerous pathogens, including C. albicans,
C. neoformans and Magnaporthe oryzae.124-126

Beyond the MAPK pathway, PKA also contributes to cell wall
integrity in various species. For example, deletion of S. cerevisiae
PDE2, encoding a high affinity phosphodiesterase, leads to
elevated cAMP levels and constitutive PKA activity. The pde2D
mutant displays altered expression of genes involved in both cell
wall biogenesis and the cell wall stress response. These transcrip-
tional differences likely contribute to the mutant’s phenotype
of increased sensitivity to cell wall perturbation.127 Deletion of
the PDE2 ortholog of C. albicans leads to similar transcriptional
and cell wall sensitivity profiles, thereby demonstrating a
conserved role for the pathway.128 Interestingly, the C. albicans
Tpk1 and Tpk2 isoforms appear to play opposite roles in cell
wall homeostasis; tpk1 null mutants are hypersusceptible to the
echinocandin caspofungin, and to osmotic stress, whereas tpk2
mutants display increased resistance to these stresses.100,129

The composition of the fungal cell wall is greater than 90%
carbohydrate, consisting of interconnecting chains of modified
glucose (glucan) or amino-glucose (chitin) polymers.119 The
proper synthesis and maintenance of the cell wall is, therefore,
dependent upon a continual flow of glucose monomers to the
site of cell wall assembly. Accordingly, those pathways that con-
trol glucose uptake and utilization are not only important to
support cellular bioenergetics, but they also play a central role
in cell wall biogenesis. The initial steps in glucose utilization
are its uptake and activation to a sugar-phosphate. Recently, an
A. fumigatus mutant deficient in the glucose phosphorylating
enzymes, glucokinase and hexokinase, was shown to be hyper-
sensitive to cell wall perturbation, which underscores the relation-
ship between glucose utilization and the cell wall.130 Furthermore,
the DpkaC1 mutant of A. fumigatus displays increased sensiti-
vity to both Congo red and SDS. This hypersensitivity phenotype
is recovered by elevating the glucose concentrations of the
medium, suggesting that the defect is, in part, due to reduced
flow of glucose monomers into the cell wall biosynthetic
pathway.72

Conclusions and Future Perspectives

The contribution of the cAMP-PKA pathway to fungal virulence
cannot likely be attributed to its involvement in a single, isolated

process. Rather, PKA centrally coordinates multiple, inter-
connected processes that cumulatively promote overall fitness of
the organism in the host environment. Although the pleiotropic
nature of the pathway may complicate basic research on PKA-
mediated processes (e.g., dissecting cell wall regulation from
carbon metabolism), it is the pleiotropy that makes this and other
signaling pathways ideal candidates for antifungal intervention.
For example, it is the potential to simultaneously inhibit
multiple physiological processes through a single target that has
made the calcineurin pathway one of recent interest as an
antifungal target.

Like PKA, calcineurin is a highly conserved eukaryotic
signaling protein that regulates growth and virulence in numerous
fungal pathogens, including A. fumigatus, C. neoformans and
C. albicans.131 Due to its high conservation, the fungal homolog
can be targeted with mammalian calcineurin inhibitors that
are already utilized clinically as immunosuppressants. Although
it is perhaps paradoxical that an immunosuppressant drug
would be used as an anti-infective, patients specifically taking
calcineurin inhibitors were found to have reduced incidence
of both cryptococcosis and aspergillosis.132,133 Calcineurin con-
trols the transcription of cell wall biosynthetic genes in response
to cell wall perturbation and, consequently, pathway mutants
are hypersensitive to cell wall targeting drugs, including the
echinocandins.134,135 Similarly, calcineurin inhibitors display
a synergistic activity with both the echinocandins and the
azoles, both in vitro and in in vivo animal models. This sug-
gests that combination therapy could be a valuable treatment
strategy, particularly against species that are partially refractory
to certain antifungal classes (e.g., C. neoformans and the
echinocandins).

As the attenuation of PKA signaling affects a multitude of
cellular processes required for a full virulence phenotype in many
species, the pharmacological inhibition of the pathway also
seems to be a promising approach for antifungal therapy.
Moreover, because PKA mutants demonstrate hypersensitivity
to cell wall modulating agents, PKA pathway inhibitors could be
used to augment echinocandin efficacy, as has been suggested
with calcineurin. The high conservation of the PKA pathway
will likely allow such studies to be performed with PKA inhibi-
tors already used for mammalian research. Indeed, the inhibitor
MyrPKI, which directly targets the PKA enzyme, has been
shown to inhibit the C. albicans pathway.136 Such PKA inhibitors
negatively influence mammalian cell proliferation and, as a result,
have been pursued as treatment for many cancers.137 Accordingly,
a major concern for their usage in antifungal therapy would be
the potential for adverse effects on healthy host tissue. As such,
further detailed analyses will be needed to identify more fungal-
specific targets that lie up- or down-stream of PKA itself. This
will ultimately require a greater integration of systems-based
methodologies (e.g., comparative transcriptomics and proteomics)
into studies that look at PKA mutants grown in vitro and in
association with the host. Such work promises to enhance our
knowledge of both fungal physiology and pathobiology, while
potentially identifying novel therapeutic targets that could be
exploited for clinical or agricultural use.
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