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Abstract

How should we approach trial design when we can get some, but not all, of the way to the numbers required for a
randomised phase Il trial?

We present an ordered framework for designing randomised trials to address the problem when the ideal sample size
is considered larger than the number of participants that can be recruited in a reasonable time frame. Staying with the
frequentist approach that is well accepted and understood in large trials, we propose a framework that includes small
alterations to the design parameters. These aim to increase the numbers achievable and also potentially reduce the
sample size target. The first step should always be to attempt to extend collaborations, consider broadening eligibility
criteria and increase the accrual time or follow-up time. The second set of ordered considerations are the choice of
research arm, outcome measures, power and target effect. If the revised design is still not feasible, in the third step we
propose moving from two- to one-sided significance tests, changing the type | error rate, using covariate information

at the design stage, re-randomising patients and borrowing external information.

We discuss the benefits of some of these possible changes and warn against others. We illustrate, with a worked
example based on the Euramos-1 trial, the application of this framework in designing a trial that is feasible, while still
providing a good evidence base to evaluate a research treatment.

This framework would allow appropriate evaluation of treatments when large-scale phase Il trials are not possible, but
where the need for high-quality randomised data is as pressing as it is for common diseases.
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Introduction

The design of phase III randomised controlled trials
(RCTs) requires some estimate of the number of patients
needed to answer a question of principal substantive inter-
est. Sometimes there may be a discrepancy between this
number and the number of patients who can be recruited
in a reasonable time frame. This discrepancy may be small
or very large. It may because the condition is uncom-
mon, because the focus is on an uncommon subset of a
common condition (e.g. through genetic stratification) or
because outcomes for the patient group are already very
good, meaning that events are uncommon and new treat-
ments can only plausibly offer a small improvement. With
increasing stratification of diseases into subdiseases, this
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problem of too few patients for the feasible time will only
increase and there is a pressing need for high-quality trials
to be run in these smaller populations.

How should we approach the design of high-quality
RCTs in such settings? This paper provides a systematic
approach to clinical trial design. We outline a frame-
work that sets out a series of considerations for the team
designing a trial. It encourages a period of constructive
deliberation about the various design elements, each of
which is carefully reconsidered. A simple depiction of the
framework is given in Fig. 1. Some approaches aim to
make the target sample size more achievable; others aim
to make the target sample size smaller. Arguably any one
of the alterations to the working design will change the
character of the trial somewhat. Having considered all ele-
ments, it is up to the trial designer to decide whether this
is preferable to not conducting a randomised trial.

This framework represents a systematic and structured
approach to attacking this problem. It is not exhaustive
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Fig. 1 The framework for designing trials in smaller populations. Readers should use the corresponding subheadings in the text to understand the
considerations for each element, particularly regarding context
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or definitive and the elements considered are not new,
though some of the contextual arguments are novel. This
is intentional to ensure that the ideas are widely known
and accepted. We also stress that changing some aspects
of the design may alter the research question to a small
or large extent. This will be made clear as each element
is discussed. The extent to which the research question
is changed will depend on the element and the disease
context.

Case study: the EURAMOS-1 trial

Osteosarcoma is a rare disease by any definition [1], with
150-200 new cases per year in the UK. The EURAMOS-
1 protocol consisted of two RCTs designed to assess
the effect of post-operative therapy on care. All patients
underwent a three-drug induction regimen, consisting
of two cycles of cisplatin and doxorubicin along with
four cycles of methotrexate (MAP), before proceeding to
surgical resection. After an assessment of the histological
response of the tumour to chemotherapy at the time
of surgery, one randomised comparison was conducted
in ‘poor responders’ and another in ‘good responders’
(an example of subsetting referred to in the introduc-
tion). Here, we focus on the good responders, who were
randomised between further MAP chemotherapy and
MAPifn (which involved adding pegylated interferon o-2b
as maintenance therapy for approximately 18 months after
MAP).

The sample size calculation used event-free survival as
the primary outcome. It was assumed that about 70 % of
good responders would experience events on the control
arm by 3 years, and looked to detect a hazard ratio of 0.63
(a 10 % absolute improvement) with 80 % power, using a
two-sided 5 % significance level. This required 147 events
across the two arms, which would necessitate accrual of
576 good responders over 3.5 years for an answer after 5
years in total.

After outlining the framework, we will consider how
it could have been applied to the design and analysis of
EURAMOS-1.

Methods: The framework

The first step of the framework (Fig. 1) is to work out an
ideal sample size and consider whether it is feasible. If it
is not, the following sections describe how to apply dif-
ferent elements of the framework and how to approach
evaluating them.

Reviewers, funders, collaborators, patients and regu-
lators at the beginning, and regulators, journal editors,
readers and patients at the end, will all need to be per-
suaded that the chosen design was the best approach
and any unusual features were necessary. All these parties
need to be persuaded of the key problem that the condi-
tion is not common enough to deliver the trial that would
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traditionally be expected, and that all efforts were made to
maximise the number of patients available and the infor-
mation obtained from them. Trials often take many years
to design and deliver. Putting in many months to get the
design right from the outset should not be considered
disproportionate in terms of time or effort.

An important premise is to understand what we term a
societal perspective: the view from the society affected by
a specific disease. The aim of RCTs should be to find a way
to improve outcomes for future patients.

Step 1: Increasing what is feasible

If the trial was originally envisaged as enrolling patients
from a single centre, city, region or country, with specific
eligibility criteria, and following patients up for a specific
period, it is important to consider how broadening the col-
laboration, making the eligibility criteria more inclusive
and extending the follow-up could help to make the trial
feasible.

Increasing accrual time and/or follow-up time

Extending the follow-up time typically can increase the
information content from a randomised trial and is par-
ticularly relevant for time-to-event data, where the sample
size is determined by the number of events, rather than
the number of patients.

Broadening eligibility criteria

Investigators should reconsider eligibility criteria, treat-
ments etc. to see if more participants can be entered
into the trial. If eligibility criteria can be broadened while
retaining patient safety and applicability of the plausible
effect, then doing so is a good step. The research question
of the trial itself may be altered by doing so: the patient
group for whom the RCT provides an internal result is
broadened. This may impact in a number of ways on how
the result generalises outside of a RCT.

Extending collaboration nationally and internationally
We propose thinking about extended collaboration in two
steps. First, considering national collaboration, and sec-
ond international collaboration. National collaboration
may prove challenging owing to differences in opinion
with other potential investigators, for example regarding
the current standard care and research question. These
are important to overcome, and the earlier the better. If a
new intervention shows a benefit, these investigators may
be the people who need to be persuaded to adopt it, so
their involvement in the trial could be important. Such
investigators will also provide a critical sounding board
and may input to improve the design.

International collaboration can pose even more logis-
tical difficulties, as funding and regulations governing
research vary greatly across countries and continents.
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Further, conceptual difficulties may arise if the standard
of care is different across countries, as this makes ‘control’
a difficult concept. This may alter the research ques-
tion, from comparison with a specific and well-defined
standard of care, to comparison with a broader and less
well-defined group.

In some situations, this may be logistically complicated,
leading to designing trials for a meta-analysis, such as
MRC OV05 and EORTC 55955 [2], which were opera-
tionally separate trials but were analysed together as one
throughout—including at interim analyses. We note that
collaboration is still necessary, but slight differences to
protocols may lead to more heterogeneity and so this
should be considered a second option to collaboration
under one protocol.

Some disease areas have acknowledged the difficul-
ties with doing large-scale, high-quality academic and
commercial randomised trials and have formed collab-
orative research networks. UK examples at the national
level include the UK Dermatology Clinical Trials Network
and the National Cancer Research Network; international
examples are the Tuberculosis Trials Consortium, the
International Rare Cancers Initiative [3] and the European
Networks of Reference for Rare Diseases. These resources
make it easier to approach collaborators and centres,
which may increase recruitment.

Step 2: Exploring commonly considered
approaches to reducing sample size

Once the trial has been broadened as far as it can
be, the next step must be to demonstrate to relevant
stakeholders that the sample size requirement remains
unachievable.

At this stage, several statistical aspects of the working
design can be examined and potentially changed or
adapted within the standard frequentist RCT paradigm.
It is important to consider the implications for each trial
individually. Any of these adaptations may be used in cer-
tain trials, but some come at a cost, or would only be
useful or justified in some settings. The consequences of
changes to the working design need to be thought through
with care and clearly understood.

Identifying a different experimental arm that differs from
the control in more ways

The more similar the research and control treatments are,
the less likely it is that the trial will show a difference in
disease outcomes between arms. To quote from Peto et al.
[4]: ‘Treatments must be sufficiently different from each
other for it to be medically plausible that the death rate
(or the rate of whatever type of event is of chief interest)
on one could well be very substantially lower than on
the other! If there are two or more candidate research
treatments and only one can reasonably be tested, the
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treatment chosen for testing should be as different as pos-
sible to the standard to maximise the chance of showing
a difference. Furthermore, it would be inefficient or even
wasteful to spend time looking at small differences or non-
inferiority questions in settings where there are very few
opportunities to improve outcomes.

Changing the experimental arm in this way can mean
that the research question is changed. This may be
regarded as justifiable from a societal perspective when
there is no commitment to a specific treatment; only
a commitment to pursue the one which offers the best
opportunity to improve outcomes.

When a candidate intervention is made up of multiple
components and the context means a factorial design is
infeasible, this advice suggests changing multiple compo-
nents at once for the intervention arm. This, of course,
carries a risk of being unable to identify which compo-
nents are effective. However, failing to make the interven-
tion arm different enough to the control—and thus failing
to improve outcomes for patients—is arguably a bigger
risk.

Changing the primary outcome to something more
information heavy

Statistically speaking, the best primary outcome to use
is the one with the greatest information content; that is,
the one which minimises the variance of the treatment
effect relative to the magnitude of the treatment effect.
In terms of information content, there is generally a hier-
archy for outcome measures with continuous outcomes
tending to hold most information, followed by, in order,
time-to-event, ordinal and finally binary outcome mea-
sures. From a statistical perspective, it is, thus, sensible
to use the most information-rich primary outcome avail-
able. It is always costly in terms of sample size to split
continuous or ordered outcome data into two categories.

Clearly the primary outcome measure must be impor-
tant from the perspective of both patients and treating
clinicians: the practical convenience of needing fewer
patients should not determine the choice of outcome
unless candidate outcome measures are considered rele-
vant for decision-making for all interested parties, includ-
ing patients, clinicians, relevant health authorities and,
potentially, regulators.

It is also important to consider any other studies in the
field or closely related areas, so that common outcome
measures might be measured in all studies to facilitate the
synthesis of evidence.

Defining a target difference that is realistic and worthwhile
The target difference between groups is often selected as
being both (1) realistic and (2) large enough that it is to be
likely to be important to the patient and the clinician. If
such a target difference cannot be agreed upon, then the
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value of the research treatment as a trial candidate should
be questioned.

Methods for specifying a target difference and guidance
for doing so are given in [5]. How can a realistic differ-
ence be identified? In looking for answers, judicious use of
existing data can be very helpful. It is worth looking at as
many related trials as possible for information. In partic-
ular, one might consider, in an approximately hierarchical
order:

The same therapy in other diseases
Related therapies in the same disease
Studies with this therapy in different disease stages
(and possibly earlier phases) in the same disease
(acknowledging the potential for over-optimism)

® More generally, previous studies of other therapies in
the same and other diseases

Earlier phase trials need more care, as they often include
continuous outcome measures that can be assessed
quickly but in most diseases these measures may have less
direct relevance to the long-term outcomes. Additional
information is then needed on the association between
this early-phase outcome and the proposed outcome for
the trial at hand to identify plausible target differences for
the proposed outcome.

It is possible to reduce the required sample size by
increasing the targeted treatment effect and sometimes
this process leads to targeting an effect that can be
detected given the numbers that can be recruited [6]. An
increased targeted treatment difference must have plausi-
bility and, if possible, a clinical evidence base. If there is
no such basis, designers should be aware that the power
to detect a more realistic effect that might still be deemed
worthwhile is low and unclear (although it should always
be explicitly calculated). Specifying a large, unrealistic dif-
ference is effectively low power for a realistic difference in
disguise.

Relaxing power by a small amount to the lower end of
traditional values

Researchers should consider the question: “What are the
consequences of [erroneously] deciding not to use a new
treatment that is truly better?’

For some treatments and diseases, the cost (not just eco-
nomic) of missing a good treatment may be quite high.
We will argue that answers may be rather different in
smaller population settings, compared to very common
diseases.

To understand our arguments, consider the societal per-
spective when we are looking for a randomised trial to
improve outcomes. Whether or not this is through the spe-
cific intervention under study in a given trial or some
other intervention is of little interest. When a disease is
experienced by very many patients, there may be many
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trials evaluating many different interventions. However,
in diseases affecting smaller populations, from which it is
hard to recruit patients, although there may be many new
interventions appearing, opportunities to evaluate all, or
indeed many, will not be possible.

To illustrate this point, we searched through PubMed
and ClinicalTrials.gov (the search was made on 10
December 2015) for registered trials in arbitrarily chosen
diseases with many potential patients for trials (breast,
lung and colorectal cancers, and asthma), and in diseases
we would expect to have a shortage of available patients
for trials at any one time (osteosarcoma and muscular
dystrophy). The search was for phase III RCTs added (clin-
icaltrials.gov) or published (PubMed) after 1 January 2015.
The specific search terms and results are included as
supplementary material.

The results of our search are given in Table 1. It
is clear that in breast, lung and colorectal cancer, and
in asthma, there are many trials and, therefore, many
potential chances to improve outcomes. Reducing power
means that fewer patients are required, but makes discov-
ery of an effective treatment less likely. Trials typically opt
for 90, 85 or, at the lowest, 80 % power, the latter giving a
11in 5 chance of missing that a treatment really works (this
relates to the arguments of Ioannidis [7]).

Consider the societal perspective relating to studies in a
particular disease. The chance of improving outcomes for
future patients increases quickly when there are more tri-
als running. If three trials each achieve just 50 % power to
detect a difference when testing truly effective interven-
tions, the power to detect a difference in one or more of
these trials (and thus achieve the societal aim of improving
future patients’ outcomes) is 87.5 %. If three trials each
have 80 % power individually, the joint power becomes
99.2 %. However, with just one trial with 80 % power,
this represents all the power to improve outcomes in
an area.

Table 1 Number of trials published or added between 1 January
2012 and 15 December 2015

Expected hypothetical
false positives®

Category Disease PMC ctgov (PMC | ct.gov)
40% 10% 70%
Larger Asthma 216 110 4]2 1)1 6]3
Populations  Breast cancer 632 897 13|18 3|4 19|27
Colorectal cancer 470 122 9|2 2|1 14|4
Lung cancer 380 149 8|3 2|1 11]4
Smaller Muscular dystrophy 9 1 0|0 0|0 0]0
Populations Osteosarcoma 8 2 0|0 0|0 0]0

PMC PubMed Central, ct.gov ClinicalTrials.gov
@Assuming 40 %, 10 % and 70 % positive results in each area and a 5 % type | error
rate
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When the trial being designed may be the only chance
of improving outcomes in 5 or 10 years, a single trial may
form most or all of the evidence base. It is paradoxically
more important to have good power in this individual trial
in a smaller population than in conditions where mul-
tiple randomised trials can be run simultaneously. The
opportunity cost of a false negative is greater because the
opportunity to interested parties is more precious. We
advise researchers to avoid compromising on power in
these smaller population settings, because other trials that
can improve outcomes for this patient group are unlikely
to emerge.

Exploring less common approaches to reducing
sample size

We now consider some less standard approaches to bring-
ing the sample size requirements closer to the numbers it
is feasible to recruit in a reasonable time frame.

Step 3: Relaxing « by a small amount, beyond traditional
values

The much-criticised 5 % significance level is used widely
in much applied scientific research, but is an arbitrary
figure. It is extremely rare for clinical trials to use any
other level. It may be argued that this convention has been
adopted as a compromise between erroneously conclud-
ing a new treatment is more efficacious and undertaking
a trial of an achievable size and length. Settings where
traditionally sized trials are not possible may be just the
area where researchers start to break this convention, for
good reason.

In considering the type I error, it is critical to consider
the question: “What are the consequences of erroneously
deciding to use a new treatment routinely if it is truly not
better?’

Taking the societal perspective as before, we might
consider the probability of making a type I error, thus erro-
neously burdening patients with treatments that do not
improve outcomes, or even worsen them, while poten-
tially imposing unnecessary toxicity.

First, for conditions where there are only enough
patients available to run one modestly sized randomised
trial in a reasonable time frame, research progress will be
relatively slow, and making a type I error may be less of a
concern than a type II error. In contrast, making several
type I errors in a common disease could lead in practice
to patients taking several ineffective treatments; for a dis-
ease area where only one trial can run at any given time,
the overall burden on patients is potentially taking one
ineffective treatment that does not work.

Thus, if we take the societal perspective with the trials in
Table 1 then, if each trial was analysed with @ = 0.05 and
we see (hypothetically) 40 % positive results [8], then the
expected number of false positive trials is given in the final
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column. We also assumed 10 % and 70 % positive results,
with qualitatively similar conclusions.

It is worth viewing this as a consideration of the joint
type I error rate of these trials. If there are ¢ trials pub-
lished claiming a positive result, each specifying « = 0.05,
then the chance that a type I error will be made equals
1 — (1 —0.05). If t = 1 as we are considering, the type
I error rate equals 5 %. This increases to 14.3 % if three
trials return a positive result. From a societal perspective,
such an error rate may be more important than the 5 %
levels specified in individual trials, a rarely acknowledged
consideration.

When a new intervention has some toxicity, this argu-
ment requires even greater consideration. Assume the
intervention is in truth not better (possibly worse) than
the control arm and returns a high but tolerable level of
toxicity. If it is falsely judged to be superior in a trial (i.e.
a type I error is made), there are implications for future
research. Patients will already be experiencing some In,
narrowing the path for future treatment options, par-
ticularly if a future RCT is one of adding a treatment
rather than substituting: any further toxicity may make the
total toxicity unacceptable. In this case, significance lev-
els (and target differences) should be chosen with a clear
consideration of the likely toxicity.

We note recent work that highlights the importance of
considering long-term aims or research in context [9].
Rather than simply setting error rates for a single trial,
one might consider a long-term horizon and the aims by
that point. For example, running several smaller trials with
relaxed o levels may lead to improved expected survival
in the long term vs. fewer large trials with more strin-
gent o, though more type I errors will be made (see [9] for
details).

Moving from two- to one-sided significance tests
Two-sided tests look for a difference between groups, but
are technically agnostic about the direction of this differ-
ence. So-called superiority randomised trials aim to show
that one treatment is superior to another on major dis-
ease outcomes. Two-sided testing is a ritual that involves
careful neglect of the substantive hypothesis and it could
be argued that it should be abandoned in most superiority
RCTs [10].

In a trial looking to detect superiority of one treat-
ment over another, a two-sided hypothesis test says we
will reject Hyp: difference = zero if the new treatment is
better or worse. However, if a two-sided test returns a
p value of 0.0001 and the new treatment is worse, the
decision would be not to use that treatment. The same
decision would be made if the p value were 1 and the
difference between treatments 0. There is, thus, a dis-
connect between the statistical hypothesis tests and the
operational hypothesis interpretation. Note that a trial
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that finishes with a highly statistically significant value
against the research arm is wasteful and harmful; pre-
planned interim analyses should have been used to get out
early, and to focus the limited resources into a randomised
trial that tested something that might make a difference.
Operationally, for superiority trials, both the hypothesis
we are primarily interested in and its interpretation are
very one-sided (‘harm’ and ‘no-effect’ lead to one deci-
sion, while ‘benefit’ leads to another). Researchers using a
nominally two-sided, 5 % significance level are effectively
using a one-sided, 2.5 % significance level. To improve
efficiency, the statistical design could better reflect this
behaviour, and employ one-sided testing procedures and
intervals.

In many sequential or adaptive designs, it is already
common to design and analyse with one-sided signifi-
cance levels because decisions may otherwise be non-
sensical, for example in designs that aim to stop for
futility [11].

Note that this argument is not related to the societal
perspective adopted in arguing for high power and higher
type I error rates than conventionally used.

Figure 2 shows how the target number of patients for
EURAMOS-1 depends on the sidedness of tests and on the
significance level chosen, with all other design parameters
held constant.

Including covariate information in design

Covariates are patient characteristics measured at base-
line. In observational studies, adjusting for covariates can
reduce bias due to confounding. In randomised trials,

800
600
Two-sided
n 400
One-sided
200
0
0.00 0.05 0.10 0.15 0.20
Significance level
Fig. 2 Dependence of required number of patients on sidedness of
tests and desired type | error rate
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accounting for covariates has a different aim: to increase
precision, and thus gain power [12, 13].

Adjusting the treatment effect estimate for covariates
that affect the outcome measure has been shown to
lead to substantial increases in power [14]; adjusting for
covariates that do not affect the outcome measure leads
to a slight loss, but this is very small [14]. There are
several alternative methods of accounting for covariates
[13, 15, 16].

When trying to compute sample size requirements, it is
possible in principle to allow for covariates. For continu-
ous outcome measures, this may be through reducing the
standard deviation in sample size calculations (because
covariate effects will explain some of the variation away).
However, it is not clear how best to approach this for cate-
gorical or time-to-event outcome measures, and is an area
worthy of methodological research.

Previous work based on 12 different outcomes taken
from eight studies demonstrated that the effects of
covariates seen in real trials could increase power from
80 % without covariate adjustment to between 81 and 99 %
with planned covariate adjustment [14]. Without formally
incorporating covariate effects in the sample size calcula-
tions, planning to adjust the analysis may be viewed as a
method of reclaiming some power. Compared to the sam-
ple size calculations, we may expect this to be in the region
of about 5 % (and hope it is more). This may be a way of
strengthening the design if power has been relaxed further
than we would wish.

Re-randomising patients

Historically, the only context in which patients are per-
mitted to participate in the same trial more than once is
in crossover designs, which involve patients being ran-
domly assigned to a sequence of treatments and having
outcomes measured after each period, with some or all
patients receiving different treatments in different periods
(crossing over) [17]. A predefined number of treatment
periods is set out for each patient.

However, re-randomising patients who have completed
their predefined follow-up from a previous randomisation
in the trial and who continue to meet the trial’s eligibil-
ity criteria an arbitrary number of times can still result
in valid statistical inference about treatment effectiveness
[18]. Unlike crossover trials, patients do not have a pre-
defined number of treatment periods and the treatment
assignments in the sequence do not depend on previous
or subsequent assignments.

The design will be suitable for diseases for which treat-
ments are given repeatedly and follow-up is not long
term. For example, it has been used for the treatment
of febrile neutropenia and sickle-cell crises. It will be
unsuitable in some settings: where long-term follow-up
is required (particularly for economic evaluations), where
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the effectiveness of treatment depends on whether and
how much it has previously been received (such as where
the intervention is educational) or where a period of treat-
ment and follow-up would mean patients are no longer
eligible (for example where the primary outcome mea-
sure represents a move into a different disease state).
Re-randomisation would be unsuitable for treatment of
cancers when prolonged follow-up is required or when a
procedure can only occur once, such as appendicectomy.

When patients require regular repeated treatments and
outcomes are relatively short term, re-randomisation may
inject extra numbers without having to compromise on
other aspects of the design. If the majority of patients are
randomised on multiple occasions then the analysis can be
based on within-patient comparisons, potentially gaining
much efficiency [18].

Using external information

A treatment that works in one category of a broadly
defined disease may work in related categories. That is, it
is plausible that a treatment that works well in one specific
disease category would have similar effects in another,
even if it is unlikely that the effect will be exactly the
same. Chemoradiotherapy is effective in three squamous
cell carcinomas: head and neck, cervical and anal. It is
therefore plausible that it would be effective in penile and
vulval cancer, which are also squamous cell cancers but
have far smaller patient populations. This may bolster the
choice to relax « in that there is a precedent for the treat-
ment working in closely related conditions, as it would
be unlikely to have seen false positives in head and neck,
cervical and anal cancer.

The notion of borrowed external information is par-
ticularly relevant for considering adverse events that are
rare or only appear in the long term. Trials are rarely
sized to specifically assess adverse events but it is criti-
cal that they are considered. If a treatment is indicated for
other conditions then its adverse effects may already be
reasonable well characterised, unless there are expected
interactions with this specific patient group or another
treatment with which the treatment under scrutiny has
not previously been combined. In such a setting, a trial
may be regarded as verifying the adverse-effect profile of
treatment rather than demonstrating them for the first
time.

External information on covariate effects can be partic-
ularly useful if the sample size will be calculated allowing
for covariate effects.

Using external information does not impact on the
research question, rather the information that will be
brought to bear on that question. We do not aim here
to prescribe how external information should be bor-
rowed. However, Bayesian approaches lend themselves
naturally to this problem and have been well explored
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[19]; formal frequentist approaches have been less well
explored.

Results: Applying the framework to EURAMOS-1
Following our framework, we can reconsider the design of
EURAMOS-1.

Recall that the trial design required many hundreds of
patients. No countries or single collaborative group could
reasonably undertake such a trial alone within a decade.
Therefore, the lead investigators spent many years devel-
oping a collaboration to run a joint protocol between
four co-operative osteosarcoma groups across Europe and
North America. This international collaboration consid-
ered it feasible to recruit 567 good responders over 3.5
years. This broad collaboration, which included discus-
sion and compromise on key aspects, allowed a phase III
trial to be undertaken [20, 21].

The trial maximised its collaboration and eligibility cri-
teria, and investigated a research treatment quite different
from the standard. The follow-up time could potentially
be increased. The primary outcome measure was the
most relevant and appropriate compared to all those that
could have been used and no relevant alternative would
provide more information. The target hazard ratio (HR)
of 0.63 may be regarded as optimistic as we rarely see
new treatments displaying this level of benefit in oncology
(in surgically treated patients); we would begin by alter-
ing it to 0.7, which is probably more realistic and still
worthwhile.

The two-sided 5 % significance level could be relaxed
and changed to one-sided. Power was 80 % and we would
avoid going any lower. Re-randomisation could not have
been employed in EURAMOS-1 because only newly diag-
nosed patients were eligible; the relapse disease state,
which might have been the point of re-randomisation, is
different, thus such patients were not eligible to join at that
point in their journey.

Table 2 shows the number of patients and events needed
for sequential changes to the design. The actual design
used is given in the first row. The second row changes
the target HR to 0.7, and is the comparator when other
changes are applied. First, one-sided tests are used. Sec-
ond, the follow-up time is increased by 6 months. Finally,
«a is relaxed to 0.06, 0.07 and 0.08. By choosing the latter,
these three changes alone mean we require 527 patients
and 161 events, savings of 402 patients and 89 events
compared with row 2.

This is like the original target and would be achievable
through the international collaboration, with a robust and
defensible design. For the primary analysis of EURAMOS-
1, it was planned to use a Cox model adjusted for
stratification factors (trial group, location of tumour and
presence of metastases), which should increase the true
power to 85 % or more.
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Table 2 Using the framework to change the working design of EURAMOS-1
Scenario Number to recruit Events required Time for:
(change vs. row 2) (change vs. row 2) recruitment — follow-up

(Actual) 576 147 3.5 years -5 years
Increase target HR to 0.7 929 (0) 250 (0) 3.5 years — 5.0 years
Extend follow-up by 6 months 820 (-109) 250(0) 3.5 years — 5.5 years
Move to one-sided tests 646 (—283) 197 (-53) 3.5 years — 5.5 years
Relax alpha to:

6 % 600 (-329) 183 (-67) 3.5 years - 5.5 years

7% 561 (-368) 171 (=79) 3.5 years - 5.5 years

8% 527 (-402) 161 (-89) 3.5 years - 5.5 years

Discussion

The framework we have outlined represents an approach
to systematic and structured thought about clinical trial
design in settings where very large-scale trials are not fea-
sible and is based on the frequentist paradigm that dom-
inates in phase III RCTs. We advocate using approaches
in Fig. 1 iteratively, making one change at a time through
detailed discussions, and assessing whether the trial
design is defensible and provides meaningful answers to a
relevant research question.

This may result in one of four general paths:

1. Using a traditional trial with a broader scope than
first envisaged

2. Using a traditional design with one or several of the
alterations we have suggested considering

3. Opting for Bayesian designs for very rare diseases [22]

4. Deciding not to do a trial

Our proposed framework is based on pursuing (1) and
(2) as far as possible. Some elements of our framework
may alter the character of a given trial to the extent that
the original research question is somewhat changed. It is
important to be aware of this. If this is not desired, then
the alternatives are (3) or (4). We reiterate the societal per-
spective that a trial should aim to improve outcomes for
the patients affected. Alterations to elements of the design
that are consistent with this aim should be considered,
which may open the design to considerations.

The arguments for some elements are not unique to
smaller populations and would also be worth considering
in larger populations (for example, including covariates
and re-randomising patients).

Because of the iterative nature of our approach to
design, discussions with interested parties may take many
months. This may appear to be a significant barrier to
designing the trial. However, in our opinion, not enough
time is generally devoted to designing individual trials.
Forging ahead with a design that does not offer a proper
opportunity to improve outcomes is failing the patients
it aims to help, and the price is paid by the public

and patients rather than the researchers. Therefore, we
reiterate that adequate time should be set aside to get the
design right.

Important work is ongoing on trials in extremely small
populations where only very few individuals may fea-
sibly be recruited [22, 23]. The EU have funded three
projects to develop and improve design and analysis in
these settings: Inspire: FP7 health 2013-602144; Ideal:
FP7 health 2013-602552; and Asterix: FP7 health 2013—
603160. Here, trial design and analysis necessarily requires
a paradigm shift to less familiar designs, where the sam-
ple size target may be many times larger than the entire
patient population; see for example [23, 24]. Bayesian
methods may be used through necessity rather than
choice and important design ideas, such as concur-
rent control groups and power, sometimes diminish or
disappear.

We chose to adhere to the frequentist paradigm and
retain the central concept or randomisation, which is
most familiar to researchers, review bodies and regula-
tors, because the majority of phase III trials employ a fre-
quentist design and analyses. If Bayesian designs are being
considered only because the frequentist design gives inad-
missible numbers, then much of the information expected
from a Bayesian design must be based on a prior. Explor-
ing frequentist designs with this framework may thus offer
a more satisfactory solution.

We have stressed throughout that the design elements
researchers choose to alter will vary according to disease
setting and the context of the trial. We regard account-
ing for covariates at the design stage as being an obvious
choice with almost no cost. However, there is little practi-
cal guidance on how to do this, particularly in the context
of survival data, and this is a topic worthy of research and
guidance. Conversely, it is practically very simple to alter
the target effect, power and type I error, but each of these
comes with a clear cost.

Our aim in producing this framework is to bring sys-
tematic and structured thought to the design. We hope
current and future methodology research will produce
more elements to include in such structured thinking.
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