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Transcriptional regulator PrqR 
plays a negative role in glucose 
metabolism and oxidative stress 
acclimation in Synechocystis  
sp. PCC 6803
Rezaul Islam Khan1, Yushu Wang1, Shajia Afrin1, Bing Wang2, Yumin Liu3, Xiaoqing Zhang4,5, 
Lei Chen4,5, Weiwen Zhang4,5, Lin He1 & Gang Ma1

Plant and cyanobacteria can perceive signals from soluble sugar and reactive oxygen species (ROS) 
and then coordinate gene expression under stress acclimation, but the underlying mechanism 
remains unclear. In this study, we found that the transcriptional factor PrqR (Slr0895) in 
Synechocystis can perceive signals from ROS generated after shifting from prolonged darkness with 
glucose into high-light. The deletion mutant (DprqR) showed increased growth rate and decreased 
ROS content, whereas the complementary strain (CprqR) restored the growth characteristics, 
phenotypes and ROS status of WT, thereby establishing PrqR as a negative regulator of ROS. 
LC/GC-MS-based metabolic profiling also showed active ROS mitigation in DprqR mutant. Further 
study by qRT-PCR, ChIP-PCR and deletion of both prqR and prqA (DprqR-DprqA mutant) revealed 
that PrqR exerts this negative regulation of ROS removal by controlling the expression of sodB 
and prqA (slr0896). Furthermore, PrqR also found to control glucose metabolism by regulating a 
positive regulator of glucose metabolism, sigE, and its regulons. Results suggest that PrqR was 
involved in perceiving signals from ROS under physiological condition, as well as in regulating 
stress removal and glucose metabolism.

Aquatic environments with regular light dark cycle are typical for cyanobacteria. However, cyanobacteria are also 
living under adverse ecological conditions with prolonged darkness; for example, cyanobacteria can be found 
self-shadowing in dense planktonic and benthic communities, lake sedimentation, and soil water or dense aquatic 
accumulation produced at surface1,2. Thus, cyanobacteria could be a good model to understand metabolism and 
signaling network in adverse condition. In addition, as an evolutionary ancestor of plant photosynthetic machin-
eries, cyanobacteria can also be a model platform to understand metabolism under similar prolonged dark con-
ditions, which occurs in non-green organs of plants, such as roots, stems, and flowers3. Cyanobacteria respond 
to adverse conditions by generating reactive oxygen species (ROS) that can modulate transcription of genes in a 
genetic network and connect an appropriate riposte to the conditions4,5. But, how do cyanobacteria and plants 
perceive signals from ROS, coordinate signals from different sources, and reprogram metabolism under adverse 
physiological conditions is largely unknown.

In photosynthetic organisms, glucose can cause an accelerated ROS production6–8 or mitigate by generating 
NADPH by using the OPP pathway6,9. The addition of excess sugar can force plant cells into auto-heterotrophic 
condition, thereby suppressing photosynthesis and the Calvin cycle6. Under such conditions, NADPH production 
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diminishes, eventually favoring ROS production6,10,11. To avoid this situation, signals exerted by light, sugar, and/or  
oxidative stress must be connected to balance sugar metabolism and ROS generation, as well as photosynthetic 
activity12,13. Signaling network of this kind has been started to be revealed. In plants, stress signals have been 
found interacting with glucose signaling through the hexokinase independent pathway6. For instance, the psbA 
gene, which encodes the D1 protein of photosystem II, converges signals from light, ROS and sugar6. By con-
trast, cytosolic glucose-6-phosphate dehydrogenase (G6PDH) of the OPP pathway mediates signals from both 
light and sugar14. Moreover, genes involved in ROS defense in cyanobacteria, such as chalcone synthase (CHS), 
glutathione-S-transferase (GST), and biosynthetic genes of ascorbate and carotenoid are also responding signals 
from sugar and light6,15–18. For example, genes of the carotenoid biosynthetic pathway, such as phytoene synthase 
(crtB), phytoene desaturase (crtP), ζ -carotene desaturase (crtQ), and β -carotene hydroxylase (crtR), were upreg-
ulated under high light, which is the ROS generating condition, but downregulated in the dark19. The expression 
of these genes can also be restored in the dark by adding glucose suggesting that the genes can perceive signal 
from ROS and glucose20. Similarly, sigE, a type 2 sigma factor with its positive role in glucose metabolism21,22, 
can respond to ROS23. However, previous studies are lacked to find appropriate experimental conditions that can 
provide platform to understand the genetic network in ROS mitigation and its relation with glucose metabolism 
under stress condition.

The model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter Synechocystis) contains transcriptional fac-
tor that sense signals of stress from the environment and transduce the signals to coordinate the gene expression 
accordingly24. In Synechocystis, the mutant (prq20) of the transcriptional factor PrqR was previously shown to be 
adaptive resistance to an externally added methyl viologen (Paraquat)25. Additionally, the photosynthetic appara-
tus was found less affected in the prq20 mutant than in the wild type (WT), as indicated by the damage generated 
by two strong-oxidative-stress producing compounds, namely, methyl viologen and benzyl viologen26. PrqR was 
found to contain a cis-acting regulatory sequence for auto-repression, and the frameshift mutation C134fs in the 
C-terminus DNA binding domain of PrqR inhibited this autoregulation25. Nevertheless, no information is avail-
able on the putative PrqR regulatory network under stress generating conditions.

With an initial goal to discover a response regulator that coordinate signals from both glucose and ROS, we 
established a unique nutritional condition, that is, GLC(+ )DARK-LIGHT. In this condition, Synechocystis cul-
tures were grown autotrophically (under illumination of 25 μ mol m−2 s−2 ) until they reach exponential phase 
(OD730 ~ 0.40–0.45) in BG-11 media, with the addition of 5 mM glucose, samples were placed in the darkness 
for 72 h for GLC(+ )DARK growth and then shifted back to grow under high light (80 μ mol m−2 s−2 ) [ GLC(+ )
DARK-LIGHT]. The results showed that oxidative stress was generated under GLC(+ )DARK-LIGHT condition, 
and PrqR can be involved in perceiving ROS signals by repressing its downstream prqA gene, which encodes a 
putative multidrug-resistance protein. Furthermore, PrqR negatively regulated glucose metabolism by controlling 
the regulator of glucose metabolism. Overall, this study revealed that prqR plays a negative role in both glucose 
metabolism and ROS mitigation in Synechocystis under stress conditions.

Results
Phenotypic analysis of Synechocystis wild type and prqR mutants. A previous study found that the 
Synechocystis mutant Prq20 (L17Q in prqR transcription factor) was resistant to methyl viologen, a strong ROS-
generating chemical26,27. In the current study, to further determine the roles of the prqR gene in ROS removal 
and glucose metabolism at the molecular level, a prqR-disrupted mutant (DprqR) was generated by inserting 
a kanamycin cassette under cpcB promoter into the Synechocystis (glucose-intolerant strain) chromosome. For 
complementation, a strain with prqR gene overexpressed under a psbA2 promoter along with the streptomycin 
cassette was also created in the DprqR mutant (CprqR) (the vectors and strains generated in this study are pre-
sented in Supplementary Fig. S1A). DprqR and CprqR were completely segregated on BG-11 plate supplemented 
with kanamycin and kanamycin +  streptomycin (up to 100 μ g/mL), respectively. The segregation was confirmed 
by PCR (Supplementary Figs S1B and S1C). WT, DprqR and CprqR showed normal growth in BG-11 liquid 
media in the presence of light at 25 μ mol m−2 s−2, with shaking at 130 rpm and temperature of 30 °C (Fig. 1A). To 
assess glucose-dependent growth, we added 5 mM D-glucose into the culture when its OD730 was around 0.4 and 
then placed the culture into complete darkness [GLC(+ )DARK] with shaking for different durations. Through 
the growth courses, the DprqR mutant grew almost similarly to WT and CprqR under GLC(+ )DARK ; with 
subsequent placement of the cultures into high light, GLC(+ )DARK-LIGHT(at 80 μ mol m−2 s−2) led to approx-
imately twofold increased growth of the DprqR mutant, whereas WT and CprqR showed significantly decreased 
growth as well as decolorization (Fig. 1B–D). To determine whether the phenotype attributed to the osmotic 
stress exerted by D-glucose, we repeated the experiments with D-sorbitol, which can produce an osmotic pressure 
similar to that D-glucose. However, all these strains grew equally normal (Supplementary Fig. S2), suggesting that 
the phenotype was not ascribed to osmotic stress. To determine whether the cells are dying under GLC(+ )DARK 
and GLC(+ )DARK-LIGHT conditions, we monitored the percentages of dead cells at two time points: at third 
day under GLC(+ )DARK (72 h) condition and first day (24 h) under GLC(+ )DARK-LIGHT condition. However, 
the results showed no significant changes in terms of cell death rates between WT and DprqR (Supplementary 
Fig. S3). Notably, the growth and chlorophyll content were found remarkably different in between DprqR and WT 
(and CprqR) after shifting from GLC(+ )DARK to the GLC(+ )DARK-LIGHT conditions (Fig. 1D,E).

ROS decreased in DprqR mutant. Assuming that a sudden change of metabolism from glucose-dependent 
[GLC(+ )DARK] condition to both glucose- and light-dependent [GLC(+ )DARK-LIGHT] conditions would 
generate ROS, we determined the total ROS contents at three time points: before placement under GLC(+ )DARK 
condition (normal cells), after 72 h under GLC(+ )DARK and after 48 h in GLC(+ )DARK-LIGHT condition. The 
total ROS contents were measured using membrane-permeant fluorescence indicator 5-(and-6)-chloromethyl-2′ ,  
7′ -dichlorodihydro fluorescein diacetate, CM-H2DCFDA (Invitrogen, Life technology). The results showed that 
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under normal and GLC(+ )DARK conditions, the ROS contents of WT, DprqR and CprqR were at similar levels 
(Fig. 1F,G), although a slightly higher accumulation of ROS in CprqR under normal condition was found and may 
be ascribed to the stronger psbA2 promoter. However, significantly (more than twofold) higher ROS contents in 
WT and CprqR were found than those in DprqR under GLC(+ )DARK-LIGHT condition after 48 h (Fig. 1H). In 
addition, no significant ROS accumulation difference was detected in WT, CprqR and DprqR in similar dark-light 
regime in the absence of glucose, that is, GLC(− )DARK and GLC(− )DARK-LIGHT (Supplementary Fig. S4). 
This finding suggests that GLC(+ )DARK-LIGHT can cause ROS accumulation in Synechocystis cells, whereas the 
deletion of the prqR gene affected ROS mitigation.

Cyanobacteria exhibit diverse defense systems against oxidative stress, such as superoxide dismutase, which 
can remove superoxide radicals4. Synechocystis encompasses only one type of dismutase, that is, iron superoxide 
dismutase (FeSOD). Considering the role of FeSOD in ROS removal, we determined the expression order of sodB 
by qRT-PCR. The results showed that the sodB expression was upregulated in DprqR compared with WT at 24 
and 48 h but equalized at 72 h under GLC(+ )DARK condition. Subsequent shifting of the culture under GLC(+ ) 
DARK-LIGHT condition caused about 100-fold increase of sodB in DprqR strain compared with WT (Fig. 2A). 
To ensure that this fluctuation of the sodB expression in DprqR was ascribed to glucose rather than only high 
light, we maintained the GLC(− )DARK and GLC(− )DARK-LIGHT conditions but no significant upregulation 
or downregulation was observed (Fig. 2B).

PrqR binds to the promoter of prqA and negatively regulates the expression of prqA. In the 
Synechocystis chromosome, prqA located downstream of prqR encodes a hypothetical protein belonging to the 
multidrug resistance protein of the MATE family. Analysis of gene expression showed that prqA was upregu-
lated in DprqR by threefold and fourfold than the WT under GLC(+ )DARK and GLC(+ )DARK-LIGHT condi-
tions, respectively (Fig. 2C). However, these differential expressions was not obtained in the absence of glucose 
(Fig. 2D). To determine whether prqA was the regulatory target of PrqR, we overexpressed prqR with a His-tag 
at its C-terminus under cpcB promoter in the WT. The expression of prqR-6xHis was confirmed by Western 
blot (Supplementary Fig. S1E). Chromatin Immunoprecipitation (ChIP) was conducted in accordance with the 
manufacturer’s manual (Beyotime, China). Before primers were designed for PCR, the 1000 bp upstream of the 

Figure 1. ROS generation and its effect under physiological condition and negative role of prqR in ROS 
mitigation in Synechocystis. Culture of WT, DprqR and CprqR under normal (A); 72 h under GLC(+ )DARK 
(B); and 48 h under GLC(+ )DARK-LIGHT (C) conditions; (D), growth characteristics of WT, DprqR and 
CprqR under normal, GLC(+ )DARK, and GLC(+ )DARK-LIGHT cultural conditions in different durations; 
(E), Chlorophyll content of WT, DprqR and CprqR under normal, GLC(+ )DARK, and GLC(+ )DARK-LIGHT 
cultural conditions in different durations; total ROS content of WT, DprqR and CprqR corresponding at normal 
growth condition before adding glucose (F); 72 h under GLC(+ )DARK (G); and 48 h under GLC(+ )DARK-
LIGHT (H) conditions. In (D,E), the number represent the incubation time in hours and N =  5 ±  SEM. In 
(F–H), N =  5 ±  SEM and “*” represents statistical significance as indicated by Student’s t-test with maximum 
p-value of P <  0.05.
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start codon of prqA was subjected to analysis with BDGP online software and BPROM28 for the transcription 
start site and transcription factor binding sites (Fig. 2E). Primers were then designed spanning the predicted 
binding site for an amplicon of 150 bp to 200 bp. After ChIP, DNA was used for PCR and the relative enrichment 
of DNA was analyzed against 1% input and IgG. The results showed that the putative prqA promoter was able to 
enrich approximately 50 and 10 fold of DNA, relative to control IgG, by primers 2 and primer 3, correspondingly 
(Fig. 2F). Furthermore, semi-quantitative PCR also found that primers 2 and 3 were able to amplify more DNA 
in the sample with anti-His antibody compared with the IgG control (Fig. 2G). This finding demonstrates that 
PrqR can bind directly with the promoter of prqA, which is immediately downstream of prqR. Similar analysis 
was performed on gap2, sigE and sodB genes (data are not shown). However, no significant binding was observed, 
suggesting that these genes were not regulated directly by PrqR.

We further deleted both prqR and prqA genes, resulting in the DprqR-DprqA mutant (Supplementary  
Fig. S1D). The DprqR-DprqA mutant exhibited similar growth of WT and DprqR under normal condition but we 
found significant growth retardation under GLC(+ )DARK-LIGHT condition (Fig. 2H), similar to that observed 
for WT. Thus, prqA may be negatively controlled by PrqR, which can be essential for the survival under high ROS 
conditions, such as GLC(+ )DARK-LIGHT.

Figure 2. PrqR negatively regulates ROS-removing genes, sodB and prqA, in the presence of glucose. 
Expression of sodB at different time points of GLC(+ )DARK and GLC(+ )DARK-LIGHT (A); sodB expression 
in the absence of glucose, GLC(− )DARK (after 72 h) and GLC(− )DARK-LIGHT (after 24 h) (B,C), expression 
of prqA at GLC(+ )DARK (after 72 h) and GLC(+ )DARK-LIGHT (24 h); (D), expression of prqA in the absence 
of glucose, GLC(− )DARK (after 72 h) and GLC(− )DARK-LIGHT (after 24 h). In all the cases from (A–D), 
N =  5 ±  SEM, and p-value P <  0.05, and were normalized by rnpB expression level. In (E), the designed primer 
sets (listed in Supplementary table S4) surrounded the predicted binding site of prqA (ATTTGTTTTTTCATA) 
promoter. ATG is the start codon of prqA; the bold “T” is the start site of transcription. The prqR-His was 
expressed in OEprqR strain. After ChIP, samples were assessed by quantitative PCR, and the relative enrichment 
was calculated against 1% input and IgG (F). For clarity, normal PCR with those primer sets were performed 
with 25 cycles (G). The picture in (G) was cropped from the gel run under similar condition in electrophoresis 
(400 V, 125 amps) with the sample from 25 cycle of PCR. The experiment was repeated twice and found similar 
results. The deletion of prqR and prqA from WT (DprqR-DprqA) restored the phenotype of WT and CprqR 
(H). The culture was taken in after 48 h under GLC(+ )DARK-LIGHT condition.
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Glucose uptake and glycogen content varied in DprqR mutant. The mutant DprqR showed remark-
able difference from WT and CprqR in both glucose uptake and glycogen content in the entire course of GLC(+ ) 
DARK and subsequent GLC(+ )DARK-LIGHT condition. The glucose uptake in the first 24 h was found similar 
for WT, CprqR and DprqR mutants but declined more in WT and CprqR than in DprqR under GLC(+ )DARK 
condition. After shifting from GLC(+ )DARK to GLC(+ )DARK-LIGHT both WT and CprqR showed a sharp 
increase in glucose uptake compared with DprqR (Fig. 3A) and after 48 h, DprqR consumed all the glucose added 
in the media, whereas WT stopped up-taking despite glucose remained in the media (Supplementary Fig. S5). 
This result suggests that DprqR continues glucose catabolism under the GLC(+ )DARK condition, and more 
actively under GLC(+ )DARK-LIGHT condition, until all the glucose is consumed. Glycogen aggregation was 
found to follow similar trends in the first 48 h under GLC(+ )DARK but increased within 72 h in the WT, CprqR 
and DprqR mutants (Fig. 3B). The succeeding shift into the GLC(+ )DARK-LIGHT condition led to a decreased 
glycogen content in the DprqR mutant, whereas the WT and CprqR maintained the same amount as those under 
the GLC(+ )DARK condition.

Dynamic expression of glucose metabolism regulators in DprqR mutant under GLC(+)DARK 
and GLC(+)DARK-LIGHT conditions. D-sorbitol did not affect cell growth under the D-SORBITOL(+ )
DARK-LIGHT condition ( Supplementary Fig. S2 ). The possibility of osmotic stress was excluded. In addition, 
we washed the WT cells after 24 h under GLC(+ )DARK-LIGHT. Afterward, we placed the cells into fresh media 
without glucose and found the cells resumed growth normally. These results led us to investigate the differential 
glucose metabolism abnormalities between WT and DprqR. Hence, we first targeted the following known regu-
lators of the glucose metabolic pathway in Synechocystis through real-time qRT-PCR: a two-response regulatory 
protein Rre37 (sll1330) with HTH domain, which was previously found to control the expression of genes in 
glucose metabolic pathways in the presence of light and glucose29; Hik31 (sll0790) with regulatory role in glucose 
metabolism under heterotrophic growth30; a histidine kinase Hik8 (sll0750) involved in circadian rhythm and 
a regulator of glucose metabolism31; and a group 2 sigma factor SigE, which regulates the expression of several 
genes in glucose metabolic pathways under normal growth condition21,22. The results showed no significant dif-
ference among the expression of hik8, hik31 and rre37 between WT and DprqR under GLC(+ )DARK condi-
tion (Fig. 3C). Under GLC(+ )DARK-LIGHT condition, hik8 and hik31 exhibited a similar expression pattern 
in WT and DprqR, whereas rre37 displayed a relatively higher expression in DprqR than that in WT (Fig. 3C); 
this finding is consistent with a previous report29. Moreover, sigE had been found with differential expression in 
DprqR compared with WT (Fig. 3D ) under GLC(+ )DARK (24 and 48 h ) and GLC(+ )DARK-LIGHT (24 and 
48 h) conditions. Interestingly, the expression levels of sigE in WT and DprqR were similar at 72 h under GLC(+ ) 
DARK but differed after shifting into GLC(+ )DARK-LIGHT (Fig. 3D); this finding suggest that the above time 
point is crucial for the expression of sigE. To determine whether the change is attributed to dark-to-high light or 
from glucose-dark [i.e., GLC(+ )DARK] to glucose-high light [i.e., GLC(+ )DARK-LIGHT], we incubated both 
WT and DprqR in GLC(− )DARK for 72 h and then shifted into GLC(− )DARK-LIGHT condition. RNA was iso-
lated from the samples after 72 h in GLC(− )DARK and 24 h in GLC(− )DARK-LIGHT and real-time qRT-PCR 
was performed for analysis. The results showed no significant change of sigE expression in DprqR at the two time 
points (Fig. 3E); this finding suggests that glucose not high light alone caused the elevated sigE expression in 
DprqR.

In a previous study, the sigE mutant was found defective in glucose catabolism with decreased expression of 
phosphofructokinase, pfkB1 (sll1196), glyceraldehyde-3-phosphate dehydrogenase (gap1) and pyruvate kinase 
(pyk1)21. To investigate role of sigE in terms of regulating genes of glucose metabolism under prqR-deficient back-
ground, we investigated the expression of three genes in the glycolytic pathway via real-time qRT-PCR, including 
two target genes of sigE (i.e., pfkB1 and gap1). Although the results showed no significant change between WT 
and DprqR under either GLC(+ )DARK or GLC(+ )DARK-LIGHT conditions for two sigE target genes, except a 
slight increase of gap1 expression in DprqR under GLC(+ )DARK-LIGHT condition (Fig. 3F), the results showed 
upregulation of gap2, the gene encodes enzyme glyceraldyhyde-3-phosphate dehydrogenase in DprqR com-
pared WT grown under GLC(+ )DARK. In addition, we determined the expression pattern of gap2 at different 
durations of GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions (Fig. 3G). The results showed that the gap2 
expression in DprqR was more than 10 fold higher than that in WT throughout the GLC(+ )DARK and GLC(+ )
DARK-LIGHT conditions. However, when we maintained a similar condition without glucose GLC(− )DARK for 
72 h and then shifted to GLC(− )DARK-LIGHT for 24 h, no significant change of gap2 expression between DprqR 
and WT was found (Fig. 3H). This finding suggests that glucose caused the remarkable change of gap2 expression 
in D9prqR mutant under GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions.

The OPP pathway is considered as the main route of carbon catabolism in Synechocystis and both zwf 
(slr1843 encoded enzyme glucose-6-phosphate-1 dehydrogenase, G6PDH) and gnd (sll0329 encoded enzyme 
6-phosphogluconate dehydrogenase, 6PGD) play important roles in controlling the carbon flow regulated by 
sigE21,22. RT-PCR analysis showed that both zwf and gnd were slightly upregulated in DprqR under GLC(+ )
DARK condition compared with those in WT; a significant increase of zwf expression in DprqR was also observed 
under GLC(+ )DARK-LIGHT condition (Fig. 3F), and this finding was consistent with the increased glucose and 
glycogen metabolism immediately after shifting from GLC(+ )DARK to GLC(+ )DARK-LIGHT.

Metabolite abundance of central metabolic pathways in WT and DprqR mutant under GLC(+)
DARK and GLC(+)DARK-LIGHT conditions. Metabolites were analyzed by both LC-MS and GC-MS in 
accordance with previously established protocols32,33. LC-MS-based analysis detected 23 targeted metabolites, 
mostly in glucose metabolic pathways, pyrimidine nucleotides, amino acid biosynthesis and energy-containing 
adenylated phosphate. GC-MS-based non-targeted metabolomics identified around 600 peaks, among which 183 
compounds were selected after reproducibility analysis through repeated experiments. The abundance of each 



www.nature.com/scientificreports/

6Scientific RepoRts | 6:32507 | DOI: 10.1038/srep32507

Figure 3. PrqR negatively regulates glucose metabolism by controlling the expression of individual and 
regulator genes. (A) Glucose uptake ability of WT, DprqR and CprqR under GLC(+ )DARK and GLC(+ 
)DARK-LIGHT conditions; (B) Glycogen content of WT, DprqR and CprqR under GLC(+ )DARK and GLC(+ ) 
DARK-LIGHT conditions. The expression levels of three common regulators, hik8 (sll0750 ), rre37 (sll1330 )  
and hik31 (sll0790 ), of glucose metabolism under GLC(+ )DARK (after 72 h) and GLC(+ )DARK-LIGHT 
(after 24 h) conditions (C,D), represents the expression of sigE in different durations under GLC(+ )DARK and 
GLC(+ )DARK-LIGHT conditions, the number represents duration in hours; (E) is the expression of sigE in the 
absence of glucose, GLC(− )DARK and GLC(− )DARK-LIGHT conditions; (F) the expression level of regulons 
of sigE, two genes each in the glycolytic pathway (pfkB1 and gap1 ) and the OPP pathway (slr1843 and gnd ) at 
GLC(+ )DARK (after 72 h ) and GLC(+ )DARK-LIGHT (after 24 h ) conditions; (G) gap2 expression in different 
durations under GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions; and (H) expression of gap2 in the 
absence of glucose, GLC(− )DARK and GLC(− )DARK-LIGHT conditions. In (A,B), N =  3 ±  SEM with three 
technical replications. “*” represents statistical significance, as shown by Student’s t-test with maximum  
p-value of <  0.05. From (C–H), N =  5 ±  SEM, with maximum p-value <  0.05.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:32507 | DOI: 10.1038/srep32507

metabolite at GLC(+ )DARK (72 h in dark) and GLC(+ )DARK-LIGHT (24 h) was compared between DprqR and 
WT, and the significance of the changes between WT and DprqR was statistically evaluated by t-test (p <  0.05) 
(Supplementary Table S1 and S2). DprqR was significantly different from WT, thereby suggesting different metab-
olite profiles between GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions. In addition, PCA analyses based on 
23 metabolites detected by LC-MS (Fig. 4A) and 183 metabolites detected by GC-MS (Fig. 4B) showed a distinct 
separation between WT and DprqR under both GLC(+ )DARK and GLC(+ )DARK-LIGHT, suggesting that the 
deletion of prqR reprogrammed cellular metabolism significantly.

Significant differences between WT and DprqR were observed for metabolites of the glycolytic path-
way, OPP pathway, and TCA cycle under GLC(+ )DARK condition (Fig. 5A). For the glycolytic pathway, 
fructose-1,6-bisphosphate (FBP), glyceraldehyde-3-phosphate (GAP), 3-phosphoglycerate (3PG), and phos-
phoenolpyruvate (PEP), significantly increased in DprqR under GLC(+ )DARK condition. Metabolites of glu-
coneogenesis (ADP-glucose), Calvin cycle [glyceraldehyde-3-phosphate (GAP), ribose-5-phosphate (R5P), 
and 3-phosphate glycerate (3PG)], TCA cycle (oxaloacetate) and oxidative pentose phosphate pathways 
[ribulose-5-phosphate (R5P)] were also found upregulated in DprqR compared with those in WT under GLC(+ ) 
DARK condition. The abundant changes of individual metabolites aligned in the metabolic pathway showed 
a sequential increase intermediate of the glycolytic pathway in DprqR, suggesting more glucose catabolism 
in GLC(+ )DARK (Fig. 6A). Upon shifting from GLC(+ )DARK to GLC(+ )DARK-LIGHT, intermediates of 
the OPP pathway (R5P) (Figs 5B and 6B), as well as D-gluconic acid, a derivatization degradation product of 
6-phosphogluconate, increased by twofold in DprqR (Supplementary Table S1); this finding suggests the active 
role of the OPP pathway in DprqR under the above mentioned condition. By contrast, the intermediates of the 
TCA cycle, namely, alpha-ketoglutarate and acetyl-CoA, decreased in DprqR.

Changes of metabolites involved in oxidative stress mitigation. The metabolomics under oxida-
tive stress in Synechocystis are not so available till now. Given that Cyanobacteria is evolutionary ancestor of 
plant and they share similar environmental habitat, we compared changed of metabolites in our work with some 
well-studied metabolic profile of plant under stress. Among many of such studies, Noctor et al.34 recently summa-
rized a list of metabolites detected by GC/LC-MS that is more stably considered as marker to trace ROS status in 
Arabidopsis and Rice. The role and mechanism of many of these metabolites such as gluthathione, NADPH etc. 
in ROS acclimation are well-established. We compared the change of metabolites in our work with this informa-
tion and listed. We found that under GLC(+ )DARK condition, 2-monopalmitin, cadaverine, and L-rhamnose 
increased by more than twofold, whereas sorbitol and trehalose decreased more than twofold in DprqR than 
in WT (Supplementary Table S2). The most distinct change of metabolites involved in oxidative stress removal 

Figure 4. PCA analysis of targeted and non-targeted metabolites under two different conditions GLC(+)
DARK (72 h) and GLC(+)DARK-LIGHT (24 h). (A) PCA analysis using SIMCA 12.0 software of non-targeted 
metabolites identified by GC-TOF-MS and (B) targeted metabolites detected by LC-MS. PC1 and PC2 referred 
as scores in principal components 1 and 2, respectively.
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was observed under GLC(+ )DARK-LIGHT condition. Myo-inositol, a sugar alcohol and signaling compound, 
decreased by approximately twofold in DprqR under GLC(+ )DARK-LIGHT condition. Sugars such as lactose, 
maltose, L-sorbose and D-ribose were found to accumulate more than 1.5 fold in GLC(+ )DARK-LIGHT condi-
tion in DprqR than in WT (Supplementary Table S1).

Glutathione (GSH) is considered as the most important defense metabolite against ROS damage in cells. 
GSH scavenges ROS and oxidize them to form glutathione disulfide (GSSG) by combining two GSH molecules 
with a sulfide bond. We were able to detect GSH by GC-TOF-MS, and the results showed that GSH was 1.75 fold 
higher in DprqR than in WT under GLC(+ )DARK-LIGHT condition; however, no such difference was detected 
under GLC(+ )DARK condition (Supplementary Table S1 ), and this finding was consistent with a previous report 
indicating that under the condition of oxidative stress, GSH declined and the redox state become more oxidized, 
thereby disrupting the cellular metabolic system35.

LC-MS based metabolite analyses revealed differential abundance of pyridine nucleotide and co-factors. 
Under GLC(+ )DARK condition, ATP, AMP, NAD+, NADH, NADPH and CoA significantly decreased in 
DprqR mutant compared with those in WT. By contrast, ADP and NADP+ were remained unchanged (Fig. 7A). 
An almost similar trend was followed under GLC(+ )DARK-LIGHT condition, in which ATP, AMP, NAD+, 
NADH, NADPH, Co-A, ADP and NADP+ decreased in DprqR mutant, compared with those in WT (Fig. 7B). 
The NADPH: NADP+ ratio decreased by ~42% and ~26% when shifted from GLC(+ )DARK to GLC(+ )
DARK-LIGHT condition for WT and DprqR, respectively (Supplementary Table S5). Although the ratios of 
ATP:NADPH in WT and DprqR were similar under GLC(+ )DARK condition, the ratio was relatively higher 

Figure 5. Comparison of metabolites identified. Statistical comparison of metabolites detected by LC-MS 
under GLC(+ )DARK (after 72 h) (A) and GLC(+ )DARK-LIGHT (B) condition (after 24 h). F6P, fructose-
6-phosphate; FBP, fructose-1,6-bisphosphte; DHP, dihydroxyacetone phosphate; GAP, glyceraldehyde-3-
phosphate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; AcCoA, acetyl-CoA; ADP-GCS, ADP-
glucose; R5P, Ribose-5-phosphate; AKG, alpha-ketoglutarate; OXA, oxaloacetate; and Glu, glutamate. The star 
(*) indicates the level of significance, as shown by Student t-tests. The p-value of <  0.05 is considered significant 
with four independent replications. The error bar represents ±  SEM.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:32507 | DOI: 10.1038/srep32507

(1.90 unit) in the DprqR mutant than in WT under GLC(+ )DARK-LIGHT condition (1.56 unit). This finding 
was consistent with a previous report indicating that changes in the ATP:NADPH ratio can lead to reponse in 
ROS generation4.

Discussion
Studies have progressively elucidated that soluble sugars, such as glucose and sucrose, are strongly related to 
stress-induced ROS signaling in plants, cyanobacteria, Saccharomyces, and even mammals7,9,36,37. Unlike the 
known pro-oxidants and antioxidants which are only involved in ROS removal, soluble sugars such as glu-
cose play a role in both ROS production and ROS-induced signal for scavenging. To clarify the mechanisms 
controlling ROS signaling pathways under environmental stress and their interplay with glucose metabolism, 
the focus should be shifted from studying signals under single stress to a combination of abiotic stresses in the 
presence of glucose to accurately represent the natural habitat. In contrast to previous studies, that focused on 
glucose metabolism under different trophic conditions, as well as cellular regulation of glucose uptake and metab-
olism21,22,38–40, the present study focused on GLC(+ )DARK-LIGHT condition, which generates ROS (Fig. 1C,H), 
and provided a platform to investigate the complicated interaction of glucose and ROS as well as the signaling 
network.

Given that PrqR is a negative regulator of ROS26, the knockout mutant of prqR (DprqR mutant) differed 
from WT and CprqR for its lower ROS content was found with an increased glucose metabolism under GLC(+ ) 
DARK-LIGHT condition (Figs 1H and 3A,B, Supplementary Fig. S5); these findings reflect the ROS removal 
capacity is functional in DprqR under above-mentioned condition which can be related to glucose metabolism. 
In this study, we will discuss first how PrqR plays a role in ROS mitigation followed by glucose metabolism. PCA 
analysis of metabolites identified by LC-MS and GC-MS (Fig. 4A,B) showed reprogramming of metabolism in 
DprqR, whereas metabolic profiling revealed several key marker metabolite changes, which further indicated an 
increased ROS removal in DprqR. First, DprqR showed superiority of breaking down glucose following the glyco-
lytic pathway under GLC(+ )DARK condition (Figs 5A and 6A). This finding is in line with the ability of DprqR to 
enhance glucose uptake under GLC(+ )DARK condition (Fig. 3A). In addition, major changes in shifting the glu-
cose metabolism from the glycolytic pathway into the OPP pathway were observed under GLC(+ )DARK-LIGHT 
condition (Fig. 6A,B). This switch is supposed to increase cellular NADPH given that the OPP pathway breaks 
down glucose to produce NADPH. On the contrary, we found decreased NADPH in DprqR cells under GLC(+ ) 
DARK-LIGHT condition (Fig. 7B). This finding explained that NADPH was used to reduce ROS-removing 
metabolites such as GSH. This NADPH-demand basis acceleration of the OPP pathway was also observed in 
photoheterotrophic condition in which NADPH production from photosynthesis was blocked and solely depend-
ent on the OPP pathway41. Moreover, this re-routing of the central carbon metabolism, in favor of the OPP 
pathway to produce more NADPH, was previously reported in rice and yeast under oxidative stress removing 
cellular status42,43. Takahashi et al. found increased accumulation of glycolytic pathway intermediates such as 
fructose-6-phosphate, 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate in mixotrophic 

Figure 6. Change of metabolites in pathway. (A) under GLC(+ )DARK condition and (B) under GLC(+ ) 
'DARK-LIGHT condition. “Green” represents increased abundance of the metabolites in DprqR compared with 
WT, “red” for decreased abundance and “black” was not significantly changed. The shadow is the pathway found 
to follow in particular conditions.
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condition in Synechocystis, similar to GLC(+ )DARK-LIGHT in current study, except the prior extension of 
GLC(+ )DARK incubation38. Overall, this study38 suggested an active mode of glycolytic pathway under mix-
otrophic condition which is sharply contrasting with our findings obtained under GLC(+ )DARK-LIGHT con-
dition. Thus, this particular information agrees with the understanding that glucose and ROS reprogrammed the 
central metabolic pathway favoring ROS removal in DprqR under GLC(+ )DARK-LIGHT condition. Second, 
the reduced GSH increased in DprqR under GLC(+ )DARK-LIGHT condition ( Supplementary Table S1). This 
observation is similar to previous report indicating that the response of GSH to ROS acclimation is a time-series 
event and a successful acclimation accumulate reduced GSH with unsuccessful acclimation increased GSSG/
GSH ratio35. Third, myo-inositol, a sugar alcohol which is a strong scavenger of ROS, was found with a sharply 
decreased concentration in DprqR mutant (Supplementary Table S1); this finding was consistent with a previous 
study in a Arabidopsis cat2 mutant, in which the ROS scavenger metabolites decreased in concentration dur-
ing stress acclimation44,45. Finally, the results showed that the TCA cycle was perturbed in cells under GLC(+ )
DARK-LIGHT condition (Fig. 6B), which is within the expectation as a number of enzymes, including aconitase 
and 2-oxogluterate, are known to be affected during acclimation of oxidative stress34,46. Overall, metabolomics 
analysis demonstrated that the decreased ROS content and active ROS removal mechanism in DprqR mutant cell 
under GLC(+ )DARK-LIGHT condition confirmed the negative regulation of ROS by PrqR (Fig. 8).

These properties of the DprqR mutant led to the assumption that PrqR functions as a regulatory protein for 
ROS removal. Therefore, a search for possible targets of PrqR ended up establishing PrqR as a negative regulator 
of prqA and sodB; qRT-PCR showed an upsurge of the prqA and sodB expression in DprqR under both GLC(+ ) 
DARK and GLC(+ )DARK-LIGHT conditions (Fig. 2A,C). Although very limited information is available 
about sodB regulation by sugars in cyanobacteria, the participation of glucose in antioxidant induction has been 
reported20. Studies suggested that sugar-regulated genes involved in anti-oxidative systems are under control of 
sugar sensors14, leading to a hypothesis that both sodB and prqA may be regulated directly by PrqR. In contrast 
to this initial expectation, the ChIP results showed that PrqR bound only to the prqA but not sodB promoter 
(Fig. 2F,G); thus the result suggests that PrqR regulates prqA directly and sodB indirectly. PrqA is a putative 

Figure 7. Comparison of abundance of pyridine nucleotide between WT and DprqR. Series (A) represents 
the relative abundance of pyridine nucleotide detected by LC-MS under GLC(+ )DARK (after 72 h) and 
(B) under GLC(+ )DARK-LIGHT condition (24 h). The data were developed by t-test of means from four 
independent replications. The star (*) indicates the level of significance by Student t-tests. The p-value <  0.05 is 
considered significant with four independent replications. The error bar represents ±  SEM.
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multidrug resistance efflux protein previously shown to respond to methyl viologen along with PrqR47. Phenotype 
of DprqR-DprqA mutant under GLC(+ )DARK-LIGHT condition (Fig. 2H), which was similar to WT, suggesting 
that prqA expression in DprqR mutant was crucial in ROS mitigation. However, the exact mechanism of how does 
prqA expression mitigate ROS is yet to be known. Altogether, the lower ROS content and elevated expression of 
ROS removing genes in DprqR implies that PrqR is a negative regulator of ROS under GLC(+ )DARK-LIGHT 
condition (Fig. 8).

Instead of feeding the OPP pathway by glucose and replenishing NADPH that helps to scavenge ROS in 
plants under stress48,49, glucose was observed to generate ROS and impaired its metabolism under GLC(+ )
DARK-LIGHT condition in WT and CprqR (Fig. 1C,H). The enhanced glucose metabolism is understandable 
with overexpression of sigE, which is the positive regulator of glucose metabolism in Synechocystis21 (Fig. 3D), 
and its regulon in OPP pathway (i.e., zwf and gnd) (Fig. 3F)21,50. However, Chip-PCR measurement confirmed 
that PrqR does not regulate sigE directly (data not shown). Thus, an alternative explanation of glucose metabolism 
regulation in DprqR mutant through sigE expression under GLC(+ )DARK-LIGHT condition implies that DprqR 
mutant mitigated ROS under GLC(+ )DARK-LIGHT condition, thereby avoiding a negative consequence of ROS 
on sigE allowing sigE expression in the presence of glucose. Similarly, our result indicating that gap2 is overex-
pressed in DprqR under GLC(+ )DARK-LIGHT condition (Fig. 3G,H), can be fit with the suggestion relevent to 
a previous study51. Together, this suggestion justifyes our hypothesis that DprqR helps to remove stress from cells 
grown under high light at GLC(+ )DARK-LIGHT condition (Fig. 8). However, this suggestion cannot explain the 
increased expression of gap2 in DprqR at GLC(+ )DARK condition, during which no significant accumulation 
of ROS occured.

In summary, the established GLC(+ )DARK-LIGHT condition provides a platform to determine the ROS 
signaling and glucose metabolism in Synechocystis. Our results, as well as physiological analyses from a previous 
study26, demonstrated that the response regulator PrqR is involved in the regulation of glucose metabolism and 
oxidative stress acclimation in Synechocystis (Fig. 8).

Materials and Methods
Conditions of growth and maintenance for cyanobacteria. The Synechocystis sp. PCC 6803 strain 
used in this study was kindly provided by Prof. Weiwen Zhang (Tianjin University, China). Synechocystis was 
cultivated in BG-11 media (both solid and liquid)52. For normal growth, the culture was maintained in a shaker 
photo-incubator under continuous illumination at 25 μ mol m−2 s−2, with shaking at 130 rpm and temperature of 
30 °C. The mutant culture was supplemented with various antibiotics at different concentrations, as mentioned 
in the text (for DprqR mutant line, up to 100 μ g/mL kanamycin; for CprqR, 100 μ g/mL kanamycin +  100 mg/mL 
spectinomycin; for OEprqR, 100 μ g/mL kanamycin; and for DprqR-DprqA, 100 μ g/mL kanamycin). For heter-
otrophic [GLC(+ )DARK] growth, 5 mM glucose was added into the culture which was then maintained in the 
dark by wrapping with aluminum foil while shaking at 130 rpm and temperature of 30 °C. In this study, we main-
tained a special condition called GLC(+ )DARK-LIGHT in which cells were inoculated in liquid BG-11 media 
and kept for normal culture until the OD730 was around 0.4; we then added 5 mM glucose and placed the samples 
under GLC(+ )DARK condition for 3 days with subsequent shifting into high light (at 80 μ mol m−2 s−2) for 2 or 
3 days. For plate culture, the solid BG-11 on plate was always maintained in photo-incubator with continuous 
illumination at 25 μ mol m−2 s−2 and temperature of 30 °C. Antibiotics had been used during maintenance or 
selection of mutant strains but not when comparative study was conducted between WT and different mutants.

Cloning strategies, transformation and generation of stable strains. The constructed vectors and 
strains developed by transforming those vectors are listed in Fig. S1A. The vectors were constructed by combin-
ing the normal restriction-digestion-ligation system and fusion system, as described by Zhang et al.53. The two 

Figure 8. Network PrqR follows to control glucose metabolism and oxidative stress at GLC(+)DARK-
LIGHT condition. PrqR negatively regulates prqA directly, and sodB indirectly; the two genes which expression 
is crucial for ROS removal from cells under GLC(+ )DARK-LIGHT condition. The elevated oxidative stress 
(ROS) may have been suppressing glucose catabolism and downregulating sigE and gap2 expression which 
together caused to develop the phenotype in WT and CprqR. The deleted prqR resulted upregulation of prqA  
as well as sodB, which helped to remove ROS. Thus, the cells with less ROS favored glucose metabolism through 
sigE and gap2 upregulation, which eventually helped DprqR to grow faster in GLC(+ )DARK-LIGHT condition. 
The “solid black” arrow represents the direct relation in contrast to the “interrupted” arrow is not. Overall, 
the prqR acts as a regulator and control oxidative stress and glucose metabolism in GLC(+ )DARK-LIGHT 
condition.
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vector’s backbones, namely, pUC19 and pBluescript KS (+ ), were used to construct all other vectors. The prim-
ers used in these constructions are listed in Supplementary Table S3. The constructed vectors transformed into 
Synechocystis following the method described by Liu et al.54. Colonies that appeared on the plate were streaked 
several times (at least 10 times) to obtain complete segregation. The mutant was confirmed by PCR, and positive 
clones were set in liquid culture supplemented with appropriate antibiotics.

In DprqR mutant (“D” stands for deletion), 245 bp out of 645 bp of prqR gene was deleted and a kanamycin 
cassette was inserted. The CprqR strain (“C” represents complementation) was generated by expressing the prqR 
gene under psbA2 promoter and spectinomycin under cpcB promoter in DprqR mutant by inserting in a neutral 
site (NS) at slr1311. For ChIP assay, we attached a 6XHis Tag at the C-terminus of the prqR gene, which was 
expressed under psbA2 promoter in WT strain at NS site of slr1311. To delete the two neighboring gene prqR and 
prqA, vector was designed using an upstream fragment of prqR and a downstream fragment of prqA flanked with 
kanamycin cassette under cpcB promoter.

ChIP-PCR. Chip-PCR was conducted using all reagents and protocols provided by Beyotime (Shanghai, 
China). Briefly, 40 mL of cell culture was collected from the normal culture of OEprqR strain, crosslinked using 
1% formaldehyde and stabilized using 125 mM (final concentration) glycine. Sonication was performed as  
follows: 1 s ON, 2 s OFF for 18 min with 25% amplitude, to achieve the DNA fragment length of 400 bp to 800 bp.  
After centrifugation, the supernatant was transferred (about 0.2 mL) into a 2 mL ice-bathed tube. ChIP was per-
formed in accordance with the protocol given by Beyotime (Shanghai, China).

The real time q-PCR was set with a 25 μ L system (12.5 μ L of SYBR GreeN, 0.5 ×  2 Primers, 1 μ L of sample, 1 μ L 
of 1% input, 9.5 μ L of ddH2O). Three pairs of primers were used for each targeted set (Supplementary Table S4). 
The DNA sample eluted with normal unconjugated mouse IgG was used as control.

Semi-quantitative PCR was set using Taq 2X Master Mix Kit (New England Biolabs Inc). The reaction was set 
in a 25 μ L system (12.5 Taq 2X Master Mix, 0.5 ×  2 Primers, 1 μ L each of sample and 1% input, and 10.5 ddH2O) 
for 25 cycles.

GC/LC-MS based metabolic profiling. For GC-MS, approximately 3 ×  109 cells were collected from 
the culture under GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions and placed into − 80 °C for at least 
2 min to stop further metabolic activity. Cells were collected by centrifugation, washed twice with ice-cold NaCl 
(0.9%) and placed in tubes in the presence of liquid nitrogen. Up to 1.5 mL of methanol-ddH2O (1:1 v/v) was 
added along with 10 μ L of L-2-chlorophenylalanine (0.3 mg/mL in dH2O). Sonication was conducted as follows:  
5 s ON, 10 s OFF for 15 min at 90% amplitude, and then repeated thrice. The supernatant was dried up completely 
by freeze drying with continuous flow of nitrogen. Samples were derivatized and run under GC-TOF-MS follow-
ing the method reported by Liu et al.32. The data were acquired in full-scan mode with the m/z range of 30–550 
at a rate of 20 spectra per second following a solvent delay of 360 s. The acquired data were processed and ana-
lyzed as previously described32,55. Metabolite identification was performed by Chroma TOF linked with spectral 
library databases of National Institute of Standards and Technology (NIST) (2005). Other original standards were 
used to further validate the data. The dataset extracted in MS files from GC/TOFMS analysis was exported into 
NetCDF format by ChromaTOF software (v3.30, Leco Co., CA). CDF files were processed using custom scripts 
(revised MATLAB toolbox, hierarchical multivariate curve resolution (H-MCR), developed by Jonsson et al.56,57 
in MATLAB 7.0 (The Math Works). Principal component analysis (PCA) was performed with SIMCA-P_12.0 
software package (Umetrics, Umeå, Sweden) and GraphPad Prism version 5.01.

For LC-MS analysis, samples with equal cells number were collected at two time points: 72 h under GLC(+ )
DARK and 24 h under GLC(+ )DARK-LIGHT condition. The pellet was centrifuged and collected quickly, frozen 
in liquid nitrogen and then preserved it at − 80 °C before further use. Metabolites were extracted by quenching 
following the protocol described by Su et. al.33. In quenching metabolites, the frozen pellet was dissolved in 500 μ L  
of 100% LC-MS grade methanol and placed for thawing on dry ice. The supernatant was collected and stored 
at − 80 °C. The LC-MS experiment was conducted using an Agilent 1260 series binary HPLC system (Agilent 
Technologies, Waldbronn, Germany) attached with an Agilent 6410 triple quadrupole mass analyzer equipped 
with an electronic spray ion (ESI) source. Aqueous 10 mM tributylamine (pH 4.95, adjusted with acetic acid) 
and 100% HPLC-grade methanol were used as Mobile Phase A (MPA) and Mobile Phase B (MPB), respectively. 
Agilent Mass Hunter workstation LC/QQQ acquisition software (version B.04.01) was applied for data processing 
and Agilent Mass Hunter workstation qualitative analysis software version (B.04.00) applied for statistical analysis.  
The data obtained were analyzed using SIMCA 12.0 software (for PCA analysis), MeV4_9_0 (for Heat Map), and 
GraphPad Prism version 5.01 (t-test and others).

Growth and chlorophyll content measurements. The growth models of WT, DprqR and CprqR were 
studied under normal, GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions by detecting the optical density 
(OD) at different wavelengths by using a spectrophotometer (METASH). OD730 was used to determine growth 
curve. OD678, OD720 and OD750 were also measured, and the total chlorophyll content was quantified using follow-
ing formula; 14.94 (OD678–OD750)−0.616 (OD720–OD750), described by58.

RNA isolation, cDNA synthesis, and qRT-PCR. Total RNA from 50 mL of culture had been isolated 
using TRIzol (Invitrogen) following the modified method described by Schwarzkopf et al.59. The collected RNA 
was then treated with DNase1 (RNase free), deactivated DNase1 to remove contaminated DNA following the 
provided protocol. Thus, the DNA-free RNA was subjected to convert cDNA applying kits, SuperScript®  III 
First-Strand Synthesis System (Invitrogen). qRT-PCR was performed by applying FastStart Universal SYBER 
Green (ROX) ( Roche) reagent in Applied Biosystems 7500 RealTime PCR System. The RNA subunit of 
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ribonuclease P subunit B (rnpB) served as an internal control. The primers used to quantify gene expression are 
listed in Supplementary Table S4.

ROS measurement. We measured the total ROS by using membrane-permeant fluorescence indicator 
5-(and-6)-chloromethyl-2′ , 7′ -dichlorodihydro fluorescein diacetate, CM-H2DCFDA (Invitrogen, Life technol-
ogy), following the protocols described by Hakkila, et al.23 and provided by Life Technology. Samples from nor-
mal culture, GLC(+ )DARK culture (72 h) and GLC(+ )DARK-LIGHT (24 h) were taken to estimate the total ROS 
content. Up to 25 mM CM-H2DCFDA was added to 1 mL of culture in 2 mL tube and then mixed. About 1 mL 
of culture was also obtained without adding any CM-H2DCFDA and considered as control (auto-fluorescence). 
Samples were then incubated for 90 min. in complete dark at 32 °C. Cells were washed with BG-11 media and sus-
pended with BG-11 media to reach the final volume of 0.5 mL. Up to 200 μ L of cell suspension was pipetted to a 
white 96-well microtiter plate. Fluorescence from CM-H2DCFDA treated and untreated cell (auto-fluorescence) 
was measured using Synergy Multi-Mode Reader (BioTek). The data measured immediately after dark incubation 
were considered as “Initial Reading” and then incubated in the corresponding condition for 1 h and measured the 
fluorescence for “Final Reading.” The strategy was followed both for treated and untreated (auto-fluorescence) 
samples. The ROS content was then calculated following the equation, ROS content =  (IRT-FRT)-(IRUT-FRUT) 
where IRT, Initial Reading of Treated sample; FRT, Final Reading of Treated sample; IRUT, Initial Reading of 
Un-treated sample; and FRUT, Final Reading of Un-treated sample.

The excitation and detection emission had been set to 485/20 nm and 535/20 nm respectively with sensitivity 
at 50, optic position in bottom and normal read speed. BioTek’s Gen5™  1.10 Reader Control and Data Analysis 
Software were used to set and analyze the data.

Glucose (extracellular) and glycogen measurements. Both glycogen and glucose were measured 
described elsewhere60. For glycogen quantification, 3 mL sample was obtained and centrifuged; the pellet was 
collected and washed with sterile ddH2O and then freeze dried. The weight of the dried cell was recorded. The cell 
was then suspended in 30% w/v KOH, mixed and incubated at 97 °C for 2 h. Ice-cold ethanol was added to the 
final concentration of 70% to 75% and incubated on ice for at least 2 h. The mixture was centrifuged, the superna-
tant was removed, and the pellet was washed with 98% ethanol. The glycogen pellet was dried at 60 °C for 10 min 
and then dissolved in 100 mM sodium acetate (pH 4.5). The dissolved glycogen was hydrolyzed enzymatically, by 
treating with 2 mg/mL amyloglucosidase (Sigma) at 60 °C for 2 h, into glucose. The glucose obtained from glyco-
gen and extracellular (in media added externally) was measured using a Glucose (GO) Assay kit (Sigma-Aldrich) 
in accordance with the manufacture’s protocol. For glycogen measurement, data were normalized by cell dry 
weight. To understand the glucose uptake ability of the cell, kinetics of the decrease of the glucose content in the 
growth medium under GLC(+ )DARK and GLC(+ )DARK-LIGHT conditions were calculated. The data was 
normalized by OD730 according to time duration.
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