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Abstract

During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially bio-
fuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes �Wray) were eval-
uated in three trials. Single-nucleotide polymorphisms (SNPs) derived from genotyping by sequencing of 272 RILs were used to build a
high-density genetic map comprising 3,767 SNPs spanning 1,368.83 cM. Multitrait multiple interval mapping (MT-MIM) was carried out to
map quantitative trait loci (QTL) for eight bioenergy traits. A total of 33 QTLs were identified for flowering time, plant height, total soluble
solids and sucrose (five QTLs each), fibers (four QTLs), and fresh biomass yield, juice extraction yield, and reducing sugars (three QTLs
each). QTL hotspots were found on chromosomes 1, 3, 6, 9, and 10, in addition to other QTLs detected on chromosomes 4 and 8. We ob-
served that 14 out of the 33 mapped QTLs were found in all three trials. Upon further development and validation in other crosses, the
results provided by the present study have a great potential to be used in marker-assisted selection in sorghum breeding programs for bio-
fuel production.
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Introduction

Sorghum (Sorghum bicolor Moench L.) is a diverse crop, which has
contributed to the development of cultivars for different pur-
poses and products, such as fodder, grains, and biofuels. Sweet
sorghum cultivars have succulent stalks rich in sugars, similar to
its close relative, sugarcane (Saccharum spp.). Moreover, sorghum
is a versatile crop adapted to diverse soil and climate conditions,
making it a promising alternative for energy production around
the world (Ahmad Dar et al. 2018). In Brazil, the use of sweet sor-
ghum as a complementary bioenergy feedstock could increase
ethanol production efficiency not only by reducing the idle capac-
ity of sugarcane mills during their off-season but also by increas-
ing bioelectricity production from residual biomass (Jonker et al.
2015). The most important target traits in sorghum breeding pro-
grams focusing on biofuel production include shortening crop cy-
cle duration, and increasing plant height, total biomass yield, and
sugar or fiber contents (Regassa and Wortmann 2014). Such traits
are quantitative in nature, controlled by many quantitative trait
loci (QTL) (Mace et al. 2019), most of which might show a varied
degree of genotype-by-environment (G�E) interactions.

Several QTL mapping studies for bioenergy traits involving
sweet sorghum have already been reported (see Mathur et al.,
2017). However, these previous studies have generally relied on
recombinant inbred line (RIL) populations generated from crosses
between sweet and nonsweet sorghum lines genotyped with a
rather low number of markers. Modern genotyping technologies
based on next-generation sequencing (NGS), such as genotyping
by sequencing (GBS) (Elshire et al. 2011), can generate thousands
of markers and help to increase genome saturation. Based on ei-
ther single marker analysis (SMA) or single-QTL models, such as
simple (IM) and composite (CIM) interval mapping, these studies
applied univariate methods for single environments or jointly ad-
justed means across multiple environments. In contrast, multi-
trait multiple interval mapping (MT-MIM) (Silva et al. 2012) is
expected to simultaneously search for multiple QTLs while con-
sidering the correlated phenotypic structure of multiple environ-
ment trial (MET) data. Such multivariate QTL models are usually
more powerful when detecting QTLs and can provide insights on
QTL by environment (Q�E) interactions (El-Soda et al. 2014), and
have been successfully applied in several studies (e.g., Sabadin
et al., 2012; Liu et al., 2016).
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The present study aimed to assess the genetic architecture of
bioenergy traits in a RIL population derived from a cross between
two sweet sorghum cultivars. In order to do so, a GBS-based high-
density linkage map was constructed, eight bioenergy traits were
evaluated in three field trials, and multitrait QTL mapping was
carried out. We were able to observe that the presence of Q�E
interactions was either due to different size effects across all tri-
als or due to nonsignificant effects in one or two trials. Finally,
we investigated putative genes within QTL regions that might
further the understanding of the genetic basis of bioenergy traits
and facilitate the development of marker-assisted selection.

Materials and methods
Plant material and experimental design
A RIL population consisting of 272 individuals was obtained from a
cross between the inbred lines Brandes and Wray by single-seed de-
scent (Brim 1966). Both sweet sorghum parents are photoperiod in-
sensitive, i.e., flowering occurs regardless of day length, and show
high total sugar content. However, they contrast in the quantity and
composition of specific sugars. Wray has high sucrose and low re-
ducing sugar content (RSU), while Brandes has low sucrose and high
RSU, which is one of the reasons it has traditionally been used for
syrup production in North America (Monk et al. 1984; Silva et al.
2017). These cultivars are also contrasting to aluminum toxicity re-
sponse, where Brandes is tolerant, and Wray is susceptible (R. E.
Schaffert, personal communication).

In three field trials (designated as environment henceforth),
223 RILs plus the two parents were evaluated at F2:6 generation,
using a 15� 15 lattice design with three replicates, totaling 675
plots each trial. The plots were composed of two 5-m rows,
spaced by 0.70 m. RIL parents were used as checks in all trials,
which were conducted in three crop seasons in Sete Lagoas, MG,
Brazil. Trial 1 (T1; 2011) and 2 (T2; 2011/2012) were sown on
February 3, 2011, and December 13, 2011, respectively, in the
same experimental area (geographic coordinates –19.449760, –
44.176479). Trial 3 (T3; 2013/2014) was sown on October 17, 2013,
in a different experimental area (geographic coordinates
�19.473939, �44.174442). Climatic data related to each trial
(Supplementary Figure S1) have shown that T1 had shorter pho-
toperiod, lower temperatures, and more irregular rainfall when
compared to the other trials. From soil analysis data from the
two experimental areas (Supplementary Table S2), we noticed
that T1 and T2 were in acid subsoil with high levels of aluminum
toxicity, whereas T3 was in alluvial soil with no subsoil acidity
and aluminum toxicity. Sowing was done in a no-tillage system
and plants received supplemental irrigation throughout the cy-
cle. Before sowing, 400 kg . ha�1 of fertilizer 8-28-16 (NPK) were
applied to the soil, and 200 kg . ha�1 of surface-applied urea fertil-
izer was applied 20 days after sowing.

The evaluated traits were days to flowering (FLW), plant
height (HGH) in cm, fresh biomass yield (FBY) in t � ha�1, juice ex-
traction yield (JUC) in %, total soluble solids (BRX) in �Brix, su-
crose content (SUC) in % of juice, RSC (RSU) in % of juice, and
fibers (FIB) in %. FLW was the number of days after sowing to 50%
of plants of the whole plot with 50% of panicle shedding pollen.
HGH was taken at harvest and consisted of the average of the
whole plot. FBY was measured in kilograms per plot and con-
verted into tons per hectare (t � ha�1). JUC extraction was carried
out in a hydraulic press with a minimum and constant pressure
of 250 kgf � cm�2 for 1 minute, using 0.5 kg of fresh biomass from
eight plants without panicles sampled randomly per plot. BRX,
FIB, SUC, and RSU were obtained from the JUC extraction (i.e.,

eight pooled plants per plot). BRX was measured in a digital re-
fractometer (�Brix). FIB was estimated by Tanimoto’s method
(1964). In T1, SUC and RSU were evaluated, respectively, in a po-
larimeter after clarification of the juice with an aluminum-based
mixture, and distillation with Fehling A and B, according to Lane
and Eynon’s method (1934). The results were used to develop a
calibration curve for a near-infrared spectroscopy (NIRS) method,
using a Büchi NIRFlex N-500 FT-NIR spectrometer (Flawil,
Switzerland), equipped with a diffuse reflectance accessory.
Subsequent trials (T2 and T3) were analyzed using the validated
model for SUC and RSU via NIRS, adapted from Guimar~aes et al.
(2014, 2016).

Phenotypic analyses
Mixed model phenotypic analyses were performed separately for
each trial. Parameter estimates were obtained via the restricted
maximum-likelihood method using GenStat software (v16.1)
(VSN International 2014), considering the following model for
each trait:

yijk ¼ lþ rk þ bjðkÞ þ ti þ siðjkÞ þ eijk

where yijk is the observed phenotypic value for individual i in
block j and replicate k; l is the overall mean; rk is the fixed effect
of the kth replicate (k ¼ 1; . . . ;K; K ¼ 3); bj kð Þ is the random effect
of the jth block (j ¼ 1; . . . ; J; J ¼ 15) at replicate k, with
bj kð Þ � N ð0;r2

bÞ; ti is the fixed effect of the ith individual
(i ¼ 1; . . . ; n; n ¼ 225); si jkð Þ is the fixed effect of the covariate num-
ber of plants of genotype i in block j at replicate k; and eijk is the
residual random effect, with eijk � Nð0;r2Þ. Residual plots were
visually inspected in order to evaluate model assumptions, espe-
cially normal distribution and the presence of outliers. Genotype
adjusted means were estimated via best linear unbiased predic-
tion (BLUP) and used for QTL mapping, as described later.

In order to compute heritability values, we separate the ti ef-
fect in the model above into the random effects gi of the RIL geno-
types (i ¼ 1; . . . ; ng; ng ¼ 223), with gi � Nð0;r2

gÞ, and the fixed
effects ci of parental genotypes (i ¼ ng þ 1; . . . ; ng þ nc; nc ¼ 2).
Block (r2

b), genetic (r2
g), and residual (r2) variance components

were then estimated from this model. The coefficient of variation
(CV) and the generalized heritability (h2) (Cullis et al. 2006) were
computed for each trial following the respective equations:

CV ¼
ffiffiffiffiffiffi
r2
p

y � 100 h2 ¼ 1� vBLUP
2r2

g

where �y is the phenotypic mean, and �vBLUP is the average var-
iance of the difference between two BLUPs.

The investigation of G�E interactions for each trait involved
the study of genetic covariances across trials. We extended the
single-trial model above (with genotypes as random) to a multi-
trial model:

yijkl ¼ lþ hl þ rkðlÞ þ bjðklÞ þ ci þ hcil þ gil þ siðjklÞ þ eijkl

where hl is the fixed effect of the lth trial (l ¼ 1; . . . ; L; L ¼ 3) and
all the other design effects were nested within trials, except for
gil, which represents both the main genotype effect and the inter-
action term between genotypes and trials. Again, checks (ci) and
check-by-trial interactions (chil) were treated as fixed effects,
whereas RIL genotypes within trials were treated as random
effects, with g � Nð0;GL � Ing Þ, where g ¼ ½g11; . . . ; gngL�0 and GL is
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the L� L matrix of genetic variance–covariances between geno-
type performances in different trials. The GL matrix can be as-
sumed as having identical or heterogeneous variances and
covariances (Supplementary Table S3), which provides indica-
tions for G�E interactions. Matrix structures were selected for
each trait by looking for the smallest values of Akaike (AIC)
(Akaike 1974) and Bayesian (BIC) (Schwarz 1978) information cri-
teria.

Additionally, in order to examine the pattern of genotypic
mean responses across trials, the BLUEs from each trial were
evaluated based on the genotype plus genotype-by-environment
(GGE) interaction biplot method (Yan and Kang 2002) using the R
package GGEBiplotGUI v1.0-9 (Frutos et al. 2014). This method
based on single value decomposition allows studying genotype-
by-environment (G�E) interactions from the correlation between
variables given by the angles between their vectors in a biplot.
Positively correlated traits will show vectors with angles between
0 and 90�, while negatively correlated traits will show vectors
with angles greater than 90�. No correlation is observed when
vectors form angles equal to 90� (orthogonal). Therefore, changes
in vector orientations for the same trait across trials indicate
G�E.

GBS and linkage map construction
GBS was performed on the HiSeqTM 2000 platform (Illumina, Inc.)
by the Genomic Diversity Facility of Cornell University (Ithaca
NY, USA) according to the protocol described by Elshire et al.
(2011). The ApeKI restriction enzyme was used for the construc-
tion of genomic DNA libraries including 272 RILs and three repli-
cates of each parent. Single-nucleotide polymorphisms (SNPs)
calling was performed using the Tassel-GBS pipeline (Glaubitz
et al. 2014), implemented in the Tassel software v4.3.8 (Bradbury
et al. 2007). For this, 64-bp tags were aligned against the sorghum
reference genome v2.1 (Paterson et al. 2009) and SNPs were
recorded in HapMap files, resulting in a total of 461,241 markers
(Supplementary Table S4). Heterozygous genotypes were set to
missing.

We ran QTL analyses (as described next) based on genotype
probabilities from imputed and nonimputed markers, with the
latter reconciled into a genetic map. On the one hand, the com-
putation of genotype probabilities from imputed markers relies
on each single marker information alone. On the other hand, a
genetic map takes the marker dependencies into account, using a
multipoint approach based on a hidden Markov model (Lander
and Green, 1987; Jiang and Zeng, 1997). In the first analysis, miss-
ing data from the HapMap files were imputed using the NPUTE
software (Roberts et al. 2007). We tested imputation window sizes
ranging from 5 to 150 markers, and those showing the highest
imputation accuracy were selected. The selected imputation win-
dow sizes ranged from 12 (chromosome 7) to 18 (chromosome 4)
markers, with an average accuracy of 98.4%. The imputed
markers were filtered at a 40% minor allele frequency and redun-
dant markers were also excluded, resulting in 66,007 markers,
ranging from 2,790 (chromosome 8) to 9,489 (chromosome 2)
(Supplementary Table S4).

In the second analysis, a genetic map was estimated using the
R package Onemap v2.1.2 (Margarido et al. 2007). From the raw
HapMap files (nonimputed markers), we filtered out those
markers with more than 25% missing data, noninformative
parents (either missing or inconsistent with population geno-
types), redundant information, or high segregation distortion
(a ¼ 0:05, Bonferroni corrected). Pairwise recombination fractions
were calculated among the remaining markers and used to group

them considering recombination fraction < 0.35 and log of the
odds (LOD) score > 8. Markers in disagreement with the chromo-
some origin of the majority of linked markers were considered
false positives and filtered out. The final multi-point estimation
was performed according to the marker order from each chromo-
some. A hidden Markov model probability error of 1% was
adopted in order to accommodate GBS-related errors as similarly
done by Bilton et al. (2018).

QTL mapping and gene search
The genotype adjusted means for each trial were used separately
in univariate MIM analyses (Kao et al. 1999) and jointly in multi-
variate MT-MIM analyses (Silva et al. 2012). While MIM models
would map QTLs for each independent trial, MT-MIM models al-
low for the detection of QTLs based on the information of all tri-
als simultaneously. In order to distinguish between MIM and MT-
MIM results, we added the respective suffixes to QTL names for
trial-specific (T1, T2, or T3) and multiple-trial (MT) analyses.
QTLs were numbered sequentially within the trait-analysis com-
bination according to the genome order (e.g., FLW-T1.1 and FLW-
MT.1 are the first QTLs for FLW from T1-MIM and MT-MIM analy-
ses, respectively).

QTL identification was based on the following model as imple-
mented in an under-development R package called OneQTL
(Silva et al. 2012):

yei ¼ le þ
XR

r¼1

ðaerxairÞ þ eei

where yei is the adjusted mean for individual i (i ¼ 1; 2; . . . ; I;
I ¼ 223) in the environment e (e ¼ 1; . . . ; E; E ¼ 3 for MT-MIM or
E ¼ 1 for MIM); le is the intercept for each environment e; aer is
the additive genetic effect of the QTL r (r ¼ 1; 2; . . . ;R) in the envi-
ronment e; xair is an indicator variable for the additive genetic ef-
fect a of QTL r in individual i, and assumes values –1 and 1 for
genotypes referring to parents Wray and Brandes, respectively;
and ei � Nð0;REÞ is the residual error, where RE is the variance-
covariance matrix of E environments. The Haley–Knott
Regression method (Haley and Knott 1992) was used for model
fitting and the maximum-likelihood method to estimate the
parameters.

Multiple QTL models were built based on a forward–backward
procedure, testing the significance of a putative QTL effect based
on the conditional probabilities estimated either at each imputed
marker from the physical map or at every centiMorgan (cM) inter-
val along the genetic map. We used two window sizes of 100 and
200 kb in the analyses based on the physical map, while a win-
dow size of 10 cM was adopted in the analyses based on the ge-
netic map. These window sizes comprise high linkage
disequilibrium (LD) regions neighboring QTLs already in the
model. Genome-wide significance levels of 5% and 1% were con-
sidered for the forward-selection and backward-elimination pro-
cedures, respectively, based on the score statistics (Zou and Zeng
2008).

For genetic map-based analyses, �95% support intervals were
obtained as the region around the highest LOD score (QTL peak)
with a drop of 1.5, i.e., LOD� 1:5 (Silva et al. 2012). In multivariate
models, nonsignificant QTL effects were removed based on the
seemingly unrelated regression coefficient method (Zellner 1962).
In other words, if a QTL had a significant effect on a specific envi-
ronment, then only this environment-specific QTL effect was
kept in the model. LOD score values of MIM and MT-MIM final
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models and comparison of QTL effects among traits were plotted
using the R package ggplot2 (Wickham 2016).

Using the genetic map-based MT-MIM results, we searched for
candidate genes within a 10-kbp window on both sides of each
QTL peak on the sorghum genome using PhytoMine tool by
Phytozome (https://phytozome.jgi.doe.gov/phytomine)
(Accessed: 2021 May 31). In order to focus our search into
bioenergy-related traits, we also looked into 150 differentially
expressed genes (DEGs) in three tissues (top 50 genes each) of
sweet sorghum and 50 known sucrose-related genes identified as
such by Cooper et al. (2019), to see whether they were within our
QTL support intervals. As our SNPs were mapped against a previ-
ous sorghum genome (v2.1), we converted their coordinates to
the current release (v3.1.1) using the CrossMap software (Zhao
et al. 2014) as implemented in the Assembly Converter (http://
ensembl.gramene.org/Sorghum_bicolor/Tools/
AssemblyConverter) (Accessed: 2021 May 31) by Gramene (Tello-
Ruiz et al. 2018).

Results
Phenotypic analyses and G 3 E interactions
Heritability for FLW, HGH, BRX, and SUC ranged from moderate
to high (h2 > 0:74), while relatively lower heritability was consis-
tently observed within trials for FBY, JUC, RSU, and FIB
(h2 < 0:68) (Table 1). Coefficients of variation (CV) were found to
be as low as 2.07 for FLW-T1 and as high as 25.70 for FBY-T1.
Transgressive segregation was detected in the mapping popula-
tion for all traits (Figure 1). BRX and SUC were the most pheno-
typically contrasting traits among the parents, resulting in a
broad variation among individuals across trials. Great parental
phenotypic divergence was also observed for FBY-T3 and RSU-T1.
On the other hand, FLW, JUC, and FIB did not present such
marked contrast between the parents, even though great vari-
ability for FLW was observed among RILs for T2 and T3. In fact,
FLW was similar for both parents in T1 (74 days) and T2 (96 days),
with shorter photoperiods, but slightly different in T3 (88 and
82 days for Brandes and Wray, respectively), with longer photope-
riod (Supplementary Figure S1). T3 exhibited the highest varia-
tion for FLW and consistently resulted in higher adjusted means
for HGH, FBY, JUC, BRX, and SUC (Figure 1). T1 had more unfavor-
able environmental conditions overall (Supplementary Figure
S1), namely lower temperature and no rainfall on the second half
of that season, which added up to shorter photoperiod to explain
lower yield-related traits, such as HGH and FBY.

Regarding the selection of genetic variance–covariance matrix
GL, we have found evidence toward structures with heteroge-
neous variances across trials for all traits expect SUC
(Supplementary Table S3). In addition, heterogeneous covarian-
ces between trials were also found in the selected matrix struc-
tures for five traits (FLW, FBY, JUC, RSU, and FIB), whereas the
structures with homogeneous covariances were selected for the
three remaining traits (HGH, BRX, and SUC). Despite the need for
the estimation of additional parameters, the selection of more
complex structures when compared to the simplest, naı̈ve as-
sumption of identical homogeneous genetic variance across trials
and no covariance between them is an indication that G�E inter-
actions were relevant for all traits.

G�E interactions were also assessed using GGE biplot
(Supplementary Figure S2). Adjusted means from different trials
were more positively correlated for FLW, HGH, FBY, and RSU in
general, indicating low G�E interaction. Implying greater G�E
interaction, the adjusted means for JUC and FIB revealed smaller
positive correlations, especially from T1 in respect to T2 and T3,
and for BRX and SUC, especially from T3 in respect to T1 and T2.
Together with Pearson correlations (Supplementary Figure S3),
the GGE biplot indicated three groups of highly positively corre-
lated traits: JUC and RSU (forth quadrant), FLW, HGH, and FBY
(third quadrant), and BRX and SUC (second quadrant). FIB from
T1 and T2 (first quadrant) exhibited a high negative correlation
with the traits on the third quadrant, while FIB-T3 was negatively
correlated with those on the forth quadrant. In addition, traits on
the forth quadrant, which includes RSU, showed a negative corre-
lation with those on the second quadrant, which contains SUC
and BRX.

Physical map vs genetic map-based QTL analyses
MT-MIM physical map-based analyses resulted in 52 and 51 QTLs
when adopting the respective mapping window sizes of 100 and
200 kb. All chromosomes harbored at least one QTL, except chro-
mosomes 2 and 7. Chromosomes 1, 3, 6, and 9 harbored most
QTLs (40 and 37 when using the respective 100 and 200-kb win-
dows). Six regions (on chromosome 3 for SUC and RSU, on chro-
mosome 6 for FLW, and on chromosome 9 for JUC, BRX, and SUC)
appeared to have two closely linked QTLs under 100-kbp window
(Supplementary Figure S4), which were resolved into only one
QTL under 200-kb window (Supplementary Figure S5), as a result
of a better false positive control. LOD scores greater than 10 were
observed in 21 and 22 QTLs for the respective 100 and 200-kb win-
dows, with the highest for FLW on chromosome 6 (LOD ¼ 50:41).
However, such high LOD scores are very unlikely to appear in our

Table 1 Genetic (r2
g) and residual (r2) variance components, coefficient of variation (CV), generalized heritability (h2) for Brandes �Wray

sweet sorghum recombinant inbred lines evaluated in three trials (T1, T2, and T3)

Traits T1 T2 T3

r2
g r2 CV h2

r2
g r2 CV h2

r2
g r2 CV h2

FLW 8.55 2.31 2.07 0.89 60.24 56.48 7.57 0.76 68.32 8.17 3.15 0.93
HGH 476.10 168.80 5.70 0.88 790.10 381.10 7.74 0.85 577.30 222.60 4.81 0.84
FBY 21.73 39.69 25.70 0.60 48.37 53.84 22.92 0.68 77.30 147.00 21.91 0.56
JUC 7.76 10.37 6.31 0.64 3.44 5.03 3.79 0.63 5.43 5.15 3.40 0.65
BRX 3.40 2.18 12.67 0.79 2.38 2.11 10.88 0.76 3.05 1.68 9.02 0.82
SUC 3.02 2.07 24.50 0.79 2.22 2.22 18.70 0.74 3.09 1.69 12.91 0.82
RSU 0.08 0.16 17.46 0.55 0.01 0.14 18.76 0.18 0.02 0.03 13.20 0.65
FIB 1.90 2.26 9.02 0.68 0.54 0.95 8.63 0.54 0.63 0.60 6.62 0.73

Traits: days to flowering (FLW), plant height (HGH, in cm), fresh biomass yield (FBY, in t � ha�1), juice extraction yield (JUC, in %), total soluble solids (BRX, in �Brix),
sucrose (SUC, in %), reducing sugar content (RSU, in %), and fibers (FIB, in %).
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dataset, with a sample size of 223, and were regarded as statisti-
cal artifacts. Flat peaks were observed on chromosomes 3 (BRX,
SUC, and RSU), 6 (FLW, HGH, FBY, BRX, SUC, and FIB), and 10
(FLW, HGH, FBY, and JUC), making it harder to clearly define QTL
peaks (Supplementary Figures S4 and S5). These chromosomes
have shown broad regions of high LD as measured by squared
correlation coefficients (r2) (Supplementary Figure S6).

In order to construct a genetic map from nonimputed HapMap
files, 97.5% of markers were filtered out, mostly due to the high
rate of GBS-derived missing data. Out of the 11,417 remaining
markers, 4,194 were nonredundant and, out of these, 3,876 did
not show segregation distortion. The final map consisted of 3767
markers, spanning 1368.83 cM, with a density of 2.75 SNPs per cM
(Supplementary Files S4 and S5). The number of markers per
chromosome ranged from 212 (chromosome 8) to 594 (chromo-
some 1), which were also the shortest (102.28 cM) and the longest
(207.67 cM) groups, respectively (Supplementary Table S4). Using
such a genetic map, MT-MIM analyses detected a total of 33 QTLs
(Table 2 and Figure 2). Five chromosomes (1, 3, 6, 9, and 10) har-
bored 31 QTLs for several traits, with additional QTLs on other
two chromosomes, 4 (RSU) and 8 (FIB). LOD scores ranged from
2.35 (for RSU on chromosome 1) to 18.74 (for FLW on chromo-
some 6). The QTLs with the highest LOD scores were located on
chromosome 3 for BRX (8.56), SUC (10.54) and RSU (9.02), chromo-
some 6 for FLW (18.87 and 10.00), HGH (9.57), and FBY (7.99), and
chromosome 9 for HGH (8.09).

Support intervals could not be computed from physical map-
based analyses, as LOD scores from individual marker tests are

not continuous along the chromosomes, neither LOD� 1:5

seemed appropriate due to the high LOD scores. Despite these

statistical artifacts, several physical map-based QTL were in-

cluded within QTL regions from genetic map-based analyses

(Supplementary File S9). It is worth mentioning that LD has been

effectively considered when reconciling linked markers into a ge-

netic map (Supplementary Figure S6), leading to a better false

positive control and statistical sounding LOD scores. Therefore,

large physical regions without clear peaks for QTLs from physical

map-based analyses (Supplementary Figures S4 and S5) have

been resolved in the context of genetic map-based analyses

(Figure 2).

Genetic architecture of bioenergy traits
From genetic map-based analyses, we detected five QTLs for

FLW: two on chromosome 1, two on chromosome 6, and one on

chromosome 10. The two QTLs on chromosome 6 explained to-

gether most of the trait variation from each trial (57.91%, 84.49%,

and 62.75%, respectively), with favorable alleles coming from dif-

ferent parents each (FLW-MT.3 from Wray and FLW-MT.4 from

Brandes). Although effects for all trials were significant for four

QTLs, their magnitude differed across trials, with smaller effects

in T1 (Figure 3). For example, for FLW-MT.4, Brandes allele con-

tributed with 6.8 days in T1, but with 27.7 and 22.7 days in T2 and

T3, respectively. FLW-MT.1 showed a significant effect on T1

alone, which was colocated not only with FLW-T1.1, but also with

FLW-T3.1 from MIM analyses.

Figure 1 Boxplots of adjusted means of Brandes �Wray sweet sorghum RILs evaluated in three trials (T1, T2, T3). Traits: days to flowering (FLW), plant
height (HGH, in cm), fresh biomass yield (FBY, in t � ha�1), juice extraction yield (JUC, in %), total soluble solids (BRX, in �Brix), sucrose (SUC, in %),
reducing sugar content (RSU, in %) and fibers (FIB, in %).
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For HGH, one QTL was found for each chromosome 1, 3, 6, 9,
and 10. HGH-MT.4 and HGH-MT.5 were found to be significant in
all three trials, both with favorable alleles coming from the taller
parent, Wray. Sill contributing with height, Wray allele had a sig-
nificant effect on T3 for HGH-MT.2. With Brandes allele contribu-
tions, HGH-MT.1 influenced T1 and T2, and HGH-MT.3 only
affected T2. Interestingly, for the same trial T2, HGH-MT.3 con-
tributed with 38.4 cm, which was comparable to the HGH-MT.5
effect with 40.7 cm. These results were corroborated by MIM
analyses, where QTLs specific to the corresponding trial were
identified (i.e., HGH-T1.1 and HGH-T2.1 colocated with HGH-
MT.1, HGH-T3.1 colocated with HGH-MT.2, and HGH-T2.2 colo-
cated with HGH-MT.3), with no statistical evidence for QTL in the
other trial(s).

Regarding the three QTLs for FBY, on chromosomes 1, 6, and
10, FBY-MT.1 and FBY-MT.2 have shown nonsignificant effects
for T3 and T1, respectively, whereas only FBY-MT.3 has influ-
enced all trials. For FBY-MT.1 and FBY-MT.2, Brandes allele
effects were comparable across trials, whereas for FBY-MT.3,
Wray allele effect was more pronounced on T3. On the other
hand, all three QTLs for JUC, on chromosomes 1, 6, and 9, did not
show a significant effect for T1. In fact, only two of them (JUC-
MT.1 and JUC-MT.3) colocated with MIM results (JUC-T2.1 and
JUC-T2.2). Brandes alleles contributed with JUC-MT.1 and JUC-
MT.3, whereas Wray alleles contributed with JUC-MT.2. In addi-
tion to these three QTL, physical map-based analyses for JUC

have revealed additional putative QTLs on chromosomes 3, 5,
and 10, that were completely missed in the genetic map-based
analyses.

BRX and SUC had five QTLs each: one on each chromosome 1,
3, and 9, and two on chromosome 6. Corresponding support inter-
vals from all five QTL overlapped when comparing both traits
(Supplementary Figure S7). BRX/SUC-MT.1, BRX/SUC-MT.2, and
BRX/SUC-MT.5 had significant effects for all trials, which were all
contributed by Wray (higher in sucrose). T1 was more impacted
by BRX/SUC-MT.2 in comparison with the other two trials.
Brandes alleles for SUC/BRX-MT.3 and SUC/BRX-MT.4 influenced
trials differently, as SUC-MT.3 had effects on T1 and T2 only, but
the latter was the only one influenced by BRX-MT.3. Similarly,
SUC-MT.4 had a single effect on T3, while BRX-MT.4 had signifi-
cant effects on both T1 and T3. For this specific chromosome 6,
MIM only detected an exclusive QTL for T2 (BRX/SUC-T2.3) and
T3 (BRX/SUC-T3.3). Physical map-based analyses revealed addi-
tional QTL on chromosomes 1 and 3 for both traits, and on chro-
mosome 9 for BRX.

For QTLs from both RSU and FIB, there was an exclusive con-
tribution from Brandes, which is the parent with higher reducing
sugar and fiber contents. For RSU, there were three QTLs, one on
each chromosome 1, 3, and 4. No QTL had a significant effect on
T2, as RSU-MT.1 and RSU-MT.3 only affected T3 and T1, respec-
tively, and RSU-MT.3 has shown a greater effect on T1 than on
T3. For FIB, out of four QTLs, on chromosomes 3, 6, 8, and 9, only

Table 2 MT-MIM for Brandes �Wray sweet sorghum recombinant inbred lines evaluated in three trials (T1, T2, and T3)

Trait QTL Chr Position (cM) Marker (bp) LOD T1 T2 T3

Effect PVE Effect PVE Effect PVE

FLW 1 1 30.00 11,093,514 2.44 –1.69 2.80 sur sur sur sur
2 1 198.00 71,594,007 5.85 2.72 8.95 5.27 3.79 4.63 3.31
3 6 0.00 382,696 9.89 –4.81 25.46 –14.05 24.46 –10.96 16.86
4 6 42.65 4,049,408 18.74 6.83 32.45 27.69 60.03 22.73 45.89
5 10 74.91 53,882,121 4.29 –2.04 2.72 –7.90 4.58 –8.09 5.45

HGH 1 1 162.83 64,727,343 4.98 17.99 4.91 21.66 3.73 sur sur
2 3 92.14 69,453,408 3.75 sur sur sur sur –21.52 4.51
3 6 67.00 44,949,491 9.57 sur sur 38.38 9.16 sur sur
4 9 64.70 49,204,605 8.09 –32.69 12.03 –25.59 3.86 –31.07 7.77
5 10 70.00 48,678,282 7.08 –25.17 7.48 –40.70 10.25 –22.77 4.38

FBY 1 1 206.69 73,162,697 3.67 4.39 6.23 3.97 2.79 sur sur
2 6 73.91 46,121,015 7.97 sur sur 10.88 10.12 12.05 6.14
3 10 71.00 48,678,282 7.77 –7.58 8.98 –8.66 6.40 –14.49 8.87

JUC 1 1 0.00 1,581,214 3.87 sur sur 1.54 5.76 1.32 3.07
2 6 88.00 48,478,843 4.53 sur sur –1.91 4.39 –2.76 6.59
3 9 62.40 48,103,357 4.98 sur sur 2.76 7.75 2.35 4.03

BRX 1 1 0.00 1,581,214 5.78 –1.30 5.38 –1.09 4.98 –1.31 6.24
2 3 75.14 65,279,548 8.54 –3.14 12.94 –1.70 4.97 –1.49 3.31
3 6 61.00 42,731,400 6.02 sur sur 2.18 8.83 sur sur
4 6 113.18 52,779,223 4.00 0.96 2.01 sur sur 1.46 5.30
5 9 67.00 49,406,423 7.30 –2.62 9.11 –1.99 6.90 –1.67 4.20

SUC 1 1 1.71 2,709,413 7.10 –1.49 7.83 –1.05 4.75 –1.43 7.09
2 3 51.00 58,433,131 10.52 –3.27 15.25 –1.37 3.27 –2.23 7.00
3 6 71.64 45,898,926 5.78 1.25 2.45 2.10 8.45 sur sur
4 6 122.80 54,328,118 2.87 sur sur sur sur 1.22 4.09
5 9 65.26 49,406,423 7.29 –2.42 8.66 –2.05 7.58 –1.72 4.35

RSU 1 1 0.00 1,553,727 2.35 sur sur sur sur 0.10 4.20
2 3 45.22 57,882,869 9.02 0.52 10.71 sur sur 0.21 8.63
3 4 0.00 273,007 4.13 0.29 6.73 sur sur sur sur

FIB 1 3 112.04 73,490,974 3.98 1.12 3.62 0.75 5.17 0.77 5.54
2 6 70.04 45,740,799 3.38 sur sur sur sur 0.90 5.16
3 8 92.62 52,308,546 3.28 sur sur 0.49 2.98 0.62 4.82
4 9 42.00 6,770,591 2.62 1.49 4.53 sur sur sur sur

Chr: chromosome; LOD: log of the odds; PVE: proportion of the phenotypic variance explained by the QTL, in %; sur: seemingly unrelated regression coefficients
(Zellner 1962). Traits: days to flowering (FLW), plant height (HGH, in cm), fresh biomass yield (FBY, in t � ha�1), juice extraction yield (JUC, in %), total soluble solids
(BRX, in �Brix), sucrose (SUC, in %), reducing sugar content (RSU, in %), and fibers (FIB, in %). Positive effects represent alleles inherited from Brandes and negative
effects represent alleles from Wray.
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one, FIB-MT.1, was identified with consistent effects for all trials.
For the remaining three QTLs, FIB-MT.3 has shown significant
effects on both T2 and T3, whereas FIB-MT.2 and FIB-MT.4 have
impacted only T3 and T1, respectively. These two QTLs were not,
in fact, detected during MIM analyses for any specific trial. From
the physical map-based analyses, an additional QTL was de-
clared on chromosome 3 for RSU.

Gene search
Our gene search within a 10 kb-window neighboring the QTL
peaks returned 500 genes (Supplementary File S10). In addition to
42 transcription and translation factors associated with our
QTLs, we found at least 26 homologs predicted to encode
enzymes involved in carbohydrate pathways which can be tar-
geted in further validation studies. Furthermore, two lists from

Cooper et al. (2019) guided us when looking for additional genes.
From a list of 150 DEGs in sweet sorghum (Supplementary File
S11), most of QTL support interval overlaps were with transcrip-
tion factors (at least 44), while only two were with sugar-related
genes: UDP-glucosyl transferase (Sobic.001G030600, colocated
with several QTL on chromosome 1 proximal), and sugar trans-
porter (Sobic.003G213000, colocated with RSU-MT.2). From a list
of 50 known sugar-related genes (Supplementary File S12), 18 of
them were found to be positioned within the support intervals of
25 of our QTLs. Sugar transporters are putative products of 10 of
these genes (e.g., Sobic.003G213000, colocated with RSU-MT.2,
Sobic.003G269300, colocated with HGH-MT.2, BRX-MT.2, and
SUC-MT.2, Sobic.008G193300, colocated with FIB-MT.3, and
Sobic.009G143500, colocated with several QTLs on chromosome
9). The remaining eight genes encode enzymes participating in

Figure 2 Genetic map-based LOD score profiles of multiple interval mapping (MIM) for individual (T1, T2, T3) and multiple trials (MT) for Brandes �
Wray sweet sorghum RILs. Triangles represent mapped QTLs. Traits: days to flowering (FLW), plant height (HGH, in cm), fresh biomass yield (FBY, in t �
ha�1), juice extraction yield (JUC, in %), total soluble solids (BRX, in �Brix), sucrose (SUC, in %), reducing sugar content (RSU, in %), and fibers (FIB, in %).
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carbohydrate pathways. In addition to other glucosyl transfer-
ases (Sobic.001G084500, colocated with on chromosome 1, and
Sobic.010G205100, colocated with HGH-MT.5 and FBY-MT.3) and
glycosyl hydrolases (Sobic.001G099700, colocated with several
QTL on chromosome 1, and Sobic.004G004800, colocated with
RSU-MT.3), we also found homologs for glucose-6-phosphate
isomerase (Sobic.001G071800, colocated with around QTLs on
chromosome 1) and sucrose synthase (e.g., Sobic.001G378300,
colocated with HGH-MT.1).

Discussion
The MT-MIM approach used here provides a proper way of study-
ing QTL stability across environments (Silva et al. 2012; Liu et al.
2016). In our study, 14 out of 33 QTLs had significant effects in all
trials, where three exhibited the same parental origin of the fa-
vorable alleles from Brandes (positive signs) and 11 from Wray
(negative signs) (Figure 3). The remaining 19 QTLs have shown
nonsignificant QTL effects in one or two specific trials. The signif-
icant effects had the same sign across trials for all QTLs (non-
crossover interactions), where Brandes and Wray provided
superior alleles for 16 and 3 QTLs, respectively. Both parents con-
tributed favorable alleles for almost all evaluated traits except
RSU and FIB, whose contributing alleles were inherited from
Brandes, the parent known by its relatively high RSU. Brandes
provided more favorable alleles for FBY, JUC, RSU, and FIB,
whereas Wray provided most of the favorable alleles for FLW,
HGH, BRX, and SUC. Interestingly, these four traits exhibited the
most significant QTLs, which corresponded to greater effects and
PVEs (Table 2).

The existence of QTLs with consistent major effects across all
trials has shown a tendency to exhibit smaller G�E interaction

(El-Soda et al. 2014). Proportionally, FLW, BRX, and SUC presented
more QTLs with significant effects across all trials, followed by
HGH, FBY, and FIB, but there were no QTLs for JUC and RSU with
significant effects for all trials (Table 2). We investigated the ex-
tension of G�E interactions based on both covariances (through
GL selection) and mean ranks (via GGE biplots) genetic differences
across trials. From the multitrial mixed model analyses, we no-
ticed that there was no evidence for the simplest matrix structure
of identical variances and no covariances between trials for any
of the traits (Supplementary Table S3). Thus, some degree of
G�E interactions was observed for all traits, although simpler
variance–covariance structures were selected for HGH, BRX, and
SUC, whereas more complex structures were selected for FLW,
FBY, JUC, RSU, and FIB. From GGE biplot analysis (Supplementary
Figure S2), we observed that G�E interaction was lower for FLW,
HGH, FBY, and RSU in comparison to the remaining traits. FLW,
HGH, and FBY presented major QTLs contributing significantly to
the phenotypic variation. Greater G�E interaction was observed
for BRX and SUC, which possibly contributed to the detection of a
couple of QTLs with no effects in some trials. Finally, more pro-
nounced G�E interaction was detected when comparing trial-
specific means for FIB and JUC, for which most or all QTLs were
considered nonsignificant for at least one trial.

A major effort by Mace et al. (2019) has compiled QTL results
from previous studies for several traits in sorghum in a consen-
sus map and integrated it with genomic information in a data-
base called Sorghum QTL Atlas (https://aussorgm.org.au/
sorghum-qtl-atlas/) (Accessed: 2021 May 31). From the Atlas, we
learned that a total of 122, 100, and 26 QTLs colocated with our
QTLs for FLW, HGH, and the remaining bioenergy-related traits,
respectively (Supplementary File S13). These observations con-
firmed QTL hotspots on chromosomes 1, 6, and 10 with 49, 140,

Figure 3 MT-MIM for Brandes �Wray sweet sorghum recombinant inbred lines evaluated in three trials (T1, T2, T3). Dots represent QTL peaks
positioned along the genetic map (in cM), where size denotes the QTL effects relative to the largest within trait (in %) and color denotes the parental
origin of favorable alleles. Traits: days to flowering (FLW), plant height (HGH, in cm), fresh biomass yield (FBY, in t � ha�1), juice extraction yield (JUC, in
%), total soluble solids (BRX, in �Brix), sucrose (SUC, in %), reducing sugar content (RSU, in %), and fibers (FIB, in %).
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and 36 QTLs reported to date. In addition to chromosomes 3 and
9, these five chromosomes harbored most QTLs detected in the
present study (Figure 2 and Table 2). QTLs may cluster together
due to reduced recombination events, likely related to selection
processes during domestication, as already reported for chromo-
some 6 (Hamblin et al. 2011; Bouchet et al. 2017). In fact, some
Maturity (Ma) (Quinby 1974; Rooney and Aydin 1999) and Dwarf
(Dw) (Quinby 1974) loci might be linked, such as Ma1 (FLW-MT.4)
and Dw2 (HGH-MT.3) on chromosome 6 (Ritter et al., 2008;
Murphy et al., 2011; Bai et al., 2017) leading to phenotypically cor-
related traits. The vegetative growth stops at flowering, which
explains how late flowering would enable taller plants. Similarly,
taller plants would generally correspond to an increase in bio-
mass, so that correlation between HGH and FBY might also be
due to sharing colocated QTLs (Figure 3 and Supplementary
Figure S3). Later flowering is also believed to be related to greater
sugar accumulation (Burks et al. 2015; Mocoeur et al. 2015), but
just a few common minor QTL regions, namely on chromosomes
1 and 6 (Figure 2), seemed to underly both FLW and SUC/BRX.
There have been maturity loci reported on chromosomes 3 and 9
(Mace et al. 2013; Bouchet et al. 2017), where major SUC/BRX QTLs
lie, but they were likely monomorphic in our population.

Regarding the QTL regions previously identified for SUC and
BRX, those on chromosome 6 shared the same genomic locations
with BRX/SUC-MT.3 (Ritter et al., 2008; Bai et al., 2017) and BRX/
SUC-MT.4 (Shiringani et al. 2010), in addition to BRX/SUC-MT.2 on
chromosome 3 (Murray et al. 2008b; Felderhoff et al. 2012; Harris-
Shultz et al. 2015). On the other hand, BRX/SUC-MT.1 and BRX/
SUC-MT.5 can be regarded as novel QTLs as their support inter-
vals did not overlap previously identified QTL regions on chromo-
somes 1 (Ritter et al. 2008; Shiringani et al. 2010; Guan et al. 2011;
Felderhoff et al. 2012) and 9 (Shiringani et al. 2010; Felderhoff et al.
2012). For JUC, the QTLs on chromosomes 1 (Guan et al. 2011) and
6 (Mace and Jordan, 2011; Burks et al., 2015; Mocoeur et al., 2015)
had been described before, while the one on chromosome 9 was
newly found. For RSU and FIB, only related traits were used to in-
vestigate previous QTL occurrences. For glucose content (a reduc-
ing sugar), two QTLs previously reported were found to colocate
with our QTLs for RSU on chromosomes 3 (Shiringani et al. 2010)
and 4 (Wang et al. 2013b). Moreover, two QTLs for acid detergent
fiber colocalized with the ones for FIB on chromosomes 6 and 9
(Shiringani and Friedt 2011), and one QTL for neutral detergent fi-
ber colocated with the one on chromosome 8 (Murray et al.
2008a). Murray et al. (2008a) also identified a QTL on chromosome
3 for cellulose (a structural carbohydrate), but it did not colocal-
ize with our newly discovered FIB-MT.3. These authors suggested
that the loci controlling the expression of fiber content have a
pleiotropic effect on sugar concentration in the stem, which
would explain the correlation between BRX/SUC and FIB.

To perform a more thorough search for candidate genes,
Murray et al. (2009) have designed markers based on more than a
hundred enzymes associated with starch and sucrose metabo-
lism, including sugar transporters (Kanehisa 2006). The only sig-
nificant association they found was for BRX on chromosome 1,
approximately 12 kb away from a glucose-6-phosphate isomerase
homolog (Sobic.001G071800), which overlaps with the support in-
terval of several QTLs in our study, including BRX/SUC-MT.1 and
RSU-MT.1. From lists of DEGs (Supplementary File S11) and
known sugar-related genes (Supplementary File S12) in sweet
sorghum (Cooper et al. 2019), we also found UDP-glycosyl trans-
ferase genes (Sobic.001G084500 and Sobic.001G030600) in the
same region, in addition to other homologs within our QTL
regions on chromosomes 1, 3, 9, and 10. UDP-glucose is directly

involved in the synthesis of sucrose, using fructose-6-P to gener-
ate sucrose-P by the action of sucrose phosphate synthase (SPS).
Subsequently, sucrose-P is converted into sucrose by the enzyme
sucrose phosphate phosphatase. Sucrose can also be converted
to fructose and UDP-glucose to be used in cellular processes,
such as respiration and polymer biosynthesis, including cell wall
components (Wang et al. 2013a).

We also observed putative genes in the same genomic regions
of other QTLs for some additional traits (Supplementary File S12).
RSU represents the total of glucose and fructose, generated from
sucrose by the action of glycosyl hydrolases family 32 (inver-
tases), whose putative genes have been mapped close to QTLs on
chromosome 1 (Sobic.001G099700), and colocalized with QTLs
from BRX/SUC, on chromosome 4 (Sobic.004G004800). Another
glycosyl hydrolase homolog (Sobic.006G160700) has been found
associated with BRX-MT.4 on chromosome 6. In this same chro-
mosome, Brenton et al. (2016) described other two glycosyl hydro-
lases family 5 (Sobic.006G122200 and Sobic.006G122300, at �49.7
Mb) with SNPs associated with nonfibrous carbohydrates.
Similarly, two independent studies (Xia et al. 2018; Zhang et al.
2018) described a NAC transcriptional factor (Sobic.006G147400,
at �51.8 Mb) as the candidate gene underlying the Dry (D) gene in
sorghum. These genes lie within JUC-MT.2, BRX/SUC-MT.4, and
FIB-MT.2 support intervals (Supplementary File S8) and show
how this QTL hotspot can affect stem composition. FIB represents
the structural biomass (as cellulose, hemicelluloses, and lignin
found in cell walls), in which not only cellulose synthases (such
as Sobic.009G063400 associated with FIB-MT.4) might participate,
but also bidirectional sugar transporters. These transporters,
such as SWEET10, are involved in the export of sucrose across
the plasma membrane to the apoplasm (cell wall space) (Chen
et al. 2012). SWEET10-like genes were found within QTL support
intervals for FIB on chromosomes 3, 8, and 9 (Sobic.003G377700,
Sobic.008G193300, and Sobic.009G143500), with the latter colo-
calized with QTLs from BRX/SUC.

Our results not only validated some of the previously identi-
fied QTLs, but also allowed the discovery of novel regions under-
lying the variation of bioenergy-related traits. Newly discovered
QTLs might be a result of both mapping methodology (multivari-
ate analysis) and population genetic background (exclusive sweet
sorghum parents). Moreover, based on the GGE biplot analysis, it
was possible to observe the existence of G�E interaction across
the evaluated trials, which highlights the importance of using an
appropriate QTL mapping strategy for multiple environments.
The QTLs associated to sugar composition and content in the
juice consistently found across trials have great potential use in
selection strategies in sweet sorghum breeding programs focus-
ing on bioenergy purposes, especially since Wray and Brandes are
sweet sorghum lines known worldwide. Knowledge on QTL stabil-
ity will leverage breeding programs’ decisions toward broadly
adapted cultivars as more diverse environments are investigated.
The putative associated genes, highlighted in this work, will also
allow for further studies aiming to better understand the genetic
control of bioenergy traits, and may provide the basis for marker-
assisted selection for these traits in sweet sorghum.

Data availability
Supplementary Files S1 and S2 contain imputed and nonimputed
HapMap files used for the physical map and genetic map-based
analyses, respectively. Supplementary File S3 contains pheno-
typic adjusted means. Supplementary File S4 contains map infor-
mation. Supplementary File S5 contains the heatmaps of each
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respective linkage group. Supplementary Files S6, S7, and S8 pro-
vide detailed information on MIM and MT-MIM results for each
physical map (100- and 200-kb window sizes) and genetic map
(10-cM window size) based analyses, respectively. Supplementary
File S9 contains colocated QTLs across MIM and MT-MIM based
on physical and genetic map analyses. Supplementary File S10
contains the list of putative genes within a 10-kb window on each
side of QTLs from genetic map-based analyses. Supplementary
Files S11 and S12 contain lists of DEGs and sucrose-related genes
(Cooper et al. 2019), respectively, along with colocated QTLs from
our study. Supplementary File S13 contains the list of previously
reported QTLs according to the Sorghum QTL Atlas (Mace et al.
2019) along with colocated QTLs from our study. Supplemental
material is available at figshare: https://doi.org/10.25387/g3.
15183750.

Funding
Funding for this study was provided by the Brazilian Agricultural
Research Corporation (Embrapa, Brazil) and SWEETFUEL project
(Sweet Sorghum: An alternative energy crop), supported by the
European Commission in the 7th Framework Programme (GA
#227422). V.F.S. has received a PhD scholarship from the
Brazilian Coordination for the Improvement of Higher Education
Personnel Foundation (CAPES). G.S.P. has received a PhD scholar-
ship from S~ao Paulo Research Foundation (FAPESP) award #2012/
25236-4, and a research scholarship from the CAPES Foundation
award #88887.369781/2019-00. A.A.F.G. was awarded a fellowship
of research productivity granted by the National Council for
Scientific and Technological Development (CNPq), Brazil.

Author contributions
J.V.M., R.E.S., and C.M.B.D. conceived and designed the study.
V.F.S., R.A.C.P., M.L.F.S., B.A.B., and R.W.N. collected data. V.F.S.,
G.S.P., M.M.P., L.D.C.E.S., A.A.F.G., and C.M.B.D. analyzed data.
V.F.S. and G.S.P. drafted the manuscript. M.M.P., J.V.M., A.A.F.G.,
and C.M.B.D. critically reviewed the manuscript. All authors read
and approved the manuscript.

Conflicts of interest
The authors declare that there is no conflict of interest.

Literature cited
Ahmad Dar R, Ahmad Dar E, Kaur A, Gupta Phutela U. 2018. Sweet

sorghum: a promising alternative feedstock for biofuel produc-

tion. Renew Sustain Energy Rev. 82:4070–4090. https://doi.org/10.

1016/j.rser.2017.10.066

Akaike H. 1974. A new look at the statistical model identification.

IEEE Trans Automat Contr. 19:716–723.

Bai C, Wang C, Wang P, Zhu Z, Cong L, et al. 2017. QTL mapping of ag-

ronomically important traits in sorghum (Sorghum bicolor L.).

Euphytica 213:285. https://doi.org/10.1007/s10681-017-2075-1

Bilton TP, Schofield MR, Black MA, Chagné D, Wilcox PL, et al. 2018.
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