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ABSTRACT

A novel, nano-sized, bis(3-(piperazine-1-yl)propyDtungstate (BPPT) is introduced as an efficient and reusable
organometallic catalyst which is considered as a heterogeneous Bronsted-Lowry base and applied successfully for
one-pot synthesis of methyl 2-amino-4-aryl substituted-4H-chromene derivatives with good to excellent yields.
BPPT has been prepared via a two-step route from natrium tungstate salt. At first, the oxygens of Na;WO4 react
with 1-bromo-3-chloropropane via nucleophilic substitution to produce bis(3-choloro propyl)tungstate. Then
nucleophilic substitution of piperazine with chlorines produced bis(3-(piperazine-1-yl)propyl) tungstate. Bis(3-
(piperazine-1-yl)propyl) tungstate, which was called BPPT, characterized by fourier transform infrared spec-
troscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy
(TEM) and scanning electron microscope (SEM). The catalyst is heterogeneous, green and recyclable. It is a
thermally stable and its handling is easy. Its catalytic activity is very high and leads to the production of 4H-pyran
derivatives with good to excellent yields in short reaction times. Furthermore, molecular modeling studies and
ADMETox prediction revealed that not only it can inhibit acetylcholinesterase enzyme and act as an anti-
Alzheimer agent but also has no variation from Lipinski's rule of five and can be a good candidate as anti-

Alzheimer agents. These above-mentioned facts can be countered as advantages of the current protocol.

1. Introduction

During last decades, many efforts have been made to the synthesis
and development of supported heterogeneous catalysts that they are
often organometallic (Eskandari et al., 2014; Karami et al., 2013d; Zhai
et al., 2018). Although sometimes it has been observed that homogenous
catalysts have been used for the synthesis of a wide range of organic and
biologically active compounds (Antonangelo et al., 2017; Fogeron et al.,
2018), but they are minimally recyclable, difficulty to handle and stor-
age, hazardous for environment, and also most of them are expensive,
therefore, are not desirable for industrial applications (Fukutake et al.,
2018). As a result, one of the important approaches for overcoming to the
above-countered problems is the preparation and application of hetero-
geneous supported catalysts (Eskandari et al., 2018a; Ye et al., 2018).
Heterogeneous supported catalysts generally have numerous benefits
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such as good catalytic performance, recyclability, environment safety,
high stability, being cheap, and simple handling (Li et al., 2018b). So
synthesis and characterization of heterogeneous supported catalysts and
their applications in the synthesis of organic and heterocyclic compounds
have recently been attracted the interest of chemists and industrialism
(Alzeer and MacKenzie, 2018). Aliphatic amines such as piperidine or
piperazine due to the presence of delocalized electrons on nitrogen are
known as organic base, which are used as conventional active catalyst for
the synthesis of organic compounds (Habibi et al., 2012; Karami et al.,
2012), but they have some disadvantages such as what mentioned above
for homogeneous catalysts along with they are mostly soluble in organic
solvents and their separation from homogeneous reaction mixtures
require neutralization by acidic conditions, which lead to worthless
ammonium salt (Rahmani-Nezhad et al., 2015; Saidi et al., 2009).
Harmful effects of acidic work-ups can be removed by immobilization of
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aliphatic amines for example piperazine onto solid supports to obtain
heterogeneous catalysts (Gupta et al., 2015). To profit from this tech-
nology, to date, various clean materials such as graphene (oxide) sheets
(Eskandari and Karami, 2016; Khalili and Dehghani, 2016), silica or
mesoporous silica (Pourshojaei et al., 2018b; Urus et al., 2018), Fe3O4
nanoparticles (Maleki et al., 2014), and dendrimer (Pullur Anil Kumar,
2010), have been using as support for preparation of new heterogeneous
base catalysts to overcome the problems related to the homogeneous base
catalysts.

Tungsten is an important element in chemistry and compounds con-
taining tungsten have wide range of applications not only in chemical
laboratories but also in various fields of industries such as catalysts
(Kocigcka et al., 2018), optical fibers (Liu et al., 2018b), and sensors
(Waghmare et al., 2018), and electrochromic applications (Li et al.,
2018a). Meanwhile, tungstate supported catalysts for the synthesis of
organic compounds have also been recently applied successfully (Farahi
et al., 2017; Karami et al., 2013a, 2013b).

Chromene and its derivatives are very important O-containing het-
erocyclic compounds in medicinal chemistry. They have shown so many
biological activities including reducing the risk of cardiovascular diseases
(Aune et al., 2018), anti-allergic (Chen et al., 2018), anti-microbial (Chen
et al., 2018), analgesic (Chen et al., 2018), anti-parkinsonian (Banoth
et al., 2018), anti-human immune deficiency virus (HIV) (Banoth et al.,
2018), antibacterial (Lee et al., 2018), anti-tumor (Banoth et al., 2018)
anti-diabetic (Davidson et al., 2018) and anti-inflammatory (Davidson
et al., 2018). Also, some of them have recognized as non-nucleoside
reverse transcriptase inhibitor (Chenera et al., 1993), and act in the
role of an enzyme that can catalyze chemical reactions (Engleder and
Pichler, 2018). Taking a brief look at Fig. 1 which shows some significant
biological active compounds containing chromene framework, can more
disclosed the highly importance of this family of heterocyclic compounds
(Aune et al., 2018; Chenera et al., 1993; Davidson et al., 2018; Engleder
and Pichler, 2018; Lee et al., 2018).

In regard to the importance of chromene and its derivatives (Maleki,
2016a, 2016b; Maleki and Sheikh, 2015a, 2015b) and also the significant
role of supported heterogeneous catalysts in chemical syntheses and
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industries (Alinezhad et al., 2019; Briickner et al., 2009; Chafran et al.,
2019; Maleki et al., 2015), herein we wish to report a nano-sized novel
heterogeneous supported Bronsted base as an efficient catalyst which
was successfully applied to synthesis of new 4H-chromene derivatives.
We called this newly prepared nanocatalyst bis(3-(piperazine-1-yl)pro-
pyl) tungstate (BPPT) that was prepared in an alternative two-step route
from sodium tungstate (1), 1-bromo-3-chloro-propane (2), and pipera-
zine (4) (Scheme 1).

In continuous of our research on the synthesis of biological active
compounds (Eskandari et al., 2018b; Mehrabi et al., 2017), heteroge-
neous catalysts (Eskandari and Karami, 2018; Pourshojaei et al., 2018a),
and a wide range of organic and heterocyclic compounds (Asadipour
et al., 2018, 2017), in this work we wish to report preparation and
characterization of BPPT, for the first time, and its performance as a
nano-sized heterogeneous catalyst in a one-pot three-component
combinatorial reaction via a green procedure. It found that BPPT as a
heterogeneous Brgnsted base can successfully catalyze Knoevenagel
condensation, Michael addition and intramolecular cyclization reaction
between methyl cyanoacetate (5), a wide range of aryl aldehydes 6, and
dimedone (7) to afford 4-aryl substituted 4H-chromene derivatives 8 in
good to excellent yields (Scheme 2).

2. Results and discussion

With reference to green chemistry aspects, it is very important that
chemical reactions have been run under green conditions. Hence the use
of eco-friendly catalysts and solvents are inevitable. Also, industrially and
economic point of view it is very important that applied catalysts in
chemical reactions to be highly efficient and recyclable. Accordingly, so
many attempts have been taken place so far by chemists to the prepa-
ration of green, highly efficient and recyclable catalysts and their ap-
plications in organic syntheses (Eskandari et al., 2014; Karami et al.,
2013d; Zhai et al., 2018). Based on above, herein we wish to report a
novel, highly efficient and eco-friendly nano-catalyst and its first appli-
cation in the synthesis of 4H-chromene derivatives as highly efficient,
and recyclable basic catalyst. By a brief looking at Scheme 1, it is leveled
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Fig. 1. Selected significant biologically active compounds containing a chromene framework.
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Scheme 2. BPPT-catalyzed green synthesis of 4H-chromene derivatives.

that newly prepared catalyst which was called BPPT was synthesized in
an alternative two-step route from sodium tungstate 1, 1-bromo-3-chlor-
opropane 2 and piperazine 4. As can be seen from Scheme 1, in the first
step, bis(3-chloropropyl)tungstate 3 is formed from the reaction between
sodium tungstate 1 and 1-bromo-3-chloropropane 2, then in the second

step, 1-bromo-3-chloropropane 2 is treated with piperazine 4 to afford
bis(3-(piperazine-1-yl)propyl) tungstate nanoparticles (BPPT NPs). It is
noteworthy to consider that the reaction procedure is clean and easy.
BPPT NPs was characterized by FT-IR spectra, scanning electron micro-
scopy (SEM), transmission electron microscopy (TEM) and atomic
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Fig. 2. Comparable FT-IR spectra of anhydrous sodium tungstate, 1-bromo-3-chloropropane, piperazine, and BPPT NPs.
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absorption.

2.1. Characterization and application of catalyst

Fig. 2 shows mixing FT-IR spectra of the anhydrous sodium tungstate
1, 1-bromo-3-chloropropane 2, piperazine 4, and BPPT NPs. By a brief
looking at the spectrum of BPPT NPs and its comparison with the spectra
of starting materials, it is obviously revealed that both 1-bromo-3-chlor-
opropane and piperazine have joined to tungstate core. For instance, the
spectrum of BPPT NPs shows significant peaks of tungstate group
(appeared at 3462 and 836 cm 1), important peaks of the propyl group
appeared at 2927 cm ! (CH stretch) and 1448 em ! (CH bend), and
distinguished peaks of piperazine appeared at 3173 ecm™! and 2706
em™L. Also, the investigation of the catalyst by atomic absorption spec-
troscopy showed the existence of tungsten in catalyst structure that is in
agreement with appeared peaks of tungstate group in FT-IR spectroscopy.

The scanning electron microscope (SEM) image of as-prepared BPPT
NPs shows the bis(3-(piperazine-1-yl)propyl) tungstate nanoparticles
have a diameter of around 30 nm (Fig. 3). Furthermore, the transmission
electron microscopy (TEM) image of BPPT NPs was taken to more
investigate of BPPT NPs morphology (Fig. 4). The TEM image of BPPT
NPs clearly disclosed the BPPT NPs have a diameter size of about 30 nm.

Also, to support the stability of BPPT NPs at high temperatures,
thermogravimetric (TGA) analysis was carried out (Fig. 5). From the
obtained TGA curve, it was revealed that weight percent remains con-
stant till 100 °C. Therefore, it is concluded that the BPPT NPs is stable in
temperatures below 100 °C.

After characterization of the catalyst, with respect to the importance
of using novel green and recyclable heterogeneous catalyst in chemical
synthesis, herein, we decided to use and investigate the effectiveness of
BPPT NPs in the synthesis of 4H-chromene derivatives. In continues of
our research studies on the synthesis and application of nanocatalysts in
organic syntheses (Eskandari and Karami, 2018; Karami et al., 2013c;
Pourshojaei et al., 2018b), we found that BPPT NPs can act as a potent,
green and recyclable catalyst in an alternative two-step reactions that is
Knoevenagel condensation and Michael reaction between methyl cya-
noacetate (5), aryl aldehydes 6 and dimedone (7) to afford chromene

H
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Fig. 3. The SEM image of BPPT NPs.
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Fig. 4. The TEM image of BPPT NPs.

derivatives 8 in good to excellent yields (Scheme 2).

In this protocol, it was found that BPPT NPs has significant advan-
tages including being eco-friendly, recyclability, high thermal stability,
and also high efficiency.

Before start reaction runs, it was necessary to find optimum condi-
tions for reaction progress. For this purpose, compound 8d was selected
as a model. Loading model reaction in various solvents including
dichloromethane, chloroform, toluene, water, DMF, acetonitrile, THF,
methanol, and ethanol disclosed that reaction progress was faster in
ethanol than others and caused to obtain the product with the highest
yield. Next, the effect of temperature on reaction progress was assessed,
and it was found that 70 °C is the best temperature to achieve the product
with the highest yield. In the next step, other same catalysts were applied
to the model reaction and compared with BPPT NPs. From obtained re-
sults which are summarized in Table 1, it is understood that BPPT NPs is
the most effective catalyst in the synthesis of the target compound.

In the next step, the effect of catalyst amount on the model reaction
was examined that obtained results are summarized in Table 2. By a
closer looking at Table 2, it is found that the use of the catalyst in this
reaction is inevitable and the best amount of required catalyst which
leads to obtaining target product with the highest yield is 5 mol%.

After achieving optimal conditions, in order to examine the generality
of the protocol, the reaction was loaded with methyl cyanoacetate (5), a
wide range of aryl aldehydes 6 and dimedone (7) in the presence of 5 mol
% BPPT NPs as basic catalyst and the results were summarized in Table 3
(Guo et al., 2013; Li et al., 2006; Patra and Mahapatra, 2010; Rong et al.,
2006; Wang et al., 2003).

For confirmation of obtained products 8, their chemical structures
were characterized by FT-IR, 'H NMR, '3C NMR spectroscopies, and also
elemental analyses (Figs. S1-S30, supplementary materials). For
example, the 'H NMR spectrum of 8d (Fig. S10) indicates an identifiable
singlet at 7.56 ppm related to NH; group, multiple peaks around 7.46 are
correlated with four protons of the aromatic ring, two doublets appeared
in 7.07 and 6.86 ppm are corresponded for four protons of the other 1,4-
substituted phenyl ring. Three singlets appeared at 5.03, 4.49, and 3.52
ppm are corresponded for two protons of OCH, group, one proton of
methine group, and three protons of OCHs group respectively. The four
doublets in chemical shifts of 2.55, 2.46, 2.27, and 2.07, each for one
proton, are related to four diastereotopic protons of cyclohexenone
fragment. Also, the six protons related to two methyls groups (2xCHs)
are appeared at 1.05 and 0.90 ppm as two singlets. >CNMR spectrum of
8d (Fig. S11) also shows 21 distinct resonances in agreement with the
proposed structure. Furthermore, FT-IR spectrum of 8d (Fig. S12) clearly
disclosed the bonds correlated to NHy and carbonyl groups at 3431,
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Fig. 5. The TGA analysis of BPPT NPs.

Table 1

Effect of different catalysts on a model reaction.”
Entry Catalyst Time Yield”
1 FeCl;3.6H,0 90 68
2 Y(NO5).6H,0 80 75
3 CuS04.5H,0 80 65
4 p-TSA 80 70
5 Nap,HPO4 60 81
6 K,CO3 60 82
7 NayW04.2H,0 60 84
8 Piperidine 60 80
9 BPPT NPs 40 95

# Reaction conditions: catalyst (5 mol%), methyl cyanoacetate (1.25 mmol), 4-
((4-chlorobenzyl)oxy)benzaldehyde (1 mmol), dimedone (1 mmol), EtOH (8
mL), 70 °C.

b Refers to isolated yields.

Table 2
Optimization of catalyst amount for the model reaction.”

Entry Catalyst (mol%) Time (min) Yield® (%)
1 — 920 Trace

2 1 60 50

3 2 60 88

4 3 40 90

5 4 40 93

6 5 40 95

7 6 40 95

8 7 40 93

@ Reaction conditions: methyl cyanoacetate (1.25 mmol), 4-((4-chlorobenzyl)
oxy)benzaldehyde (1 mmol), dimedone (1 mmol), EtOH (8 mL), 70 °C.
b Refers to isolated yields.

3315, 1688 and 1666 cm ' respectively compatible with proposed
structures.

2.2. Recyclability study of BPPT NPs

Despite being effective and requiring a small amount of catalyst, the
capability of catalyst to reuse is the other advantage of BPPT NPs. In this
content, we wish to examine the recyclability of catalyst on model re-
action. For this purpose model reaction was loaded using 5 mol% of fresh,
once, twice, three-, four- and five-time used BPPT NPs. For reusing
catalyst in another cycle, it should be separated from the reaction mixture

by filtering and washing with THF, drying at 80 °C for 1 h, and then can
reuse in further cycles. The results showed that BPPT NPs is able to reuse
in further cycles (up to five times) besides its first use without a
remarkable miss of activity (Fig. 7).

In an additional investigation, the FT-IR spectra of the catalyst before
and after use as an appropriate comprehensive study for recycled catalyst
were compared (Fig. 8). The FT-IR spectrum of the catalyst after use
(Fig. 8b) showed no significant changes than the specrum of the catalyst
before use (Fig. 8a). This reveals that the catalyst is durable, and remains
constant during the reaction. Therefore, it can reuse in further runs
without significant loss in its activity and is capable to catalyze the re-
action after each run successfully.

2.3. Investigation of reaction mechanism

A proposed mechanism for the BPPT NPs catalyzed the synthesis of
4H-chromene derivatives has shown in Scheme 3. As can be seen from
the mechanism, 4H-chromene 8 is obtained through a multi-step route
including Knoevenagel condensation, Michael addition reaction and
intramolecular cyclization from reaction between methyl cyanoacetate 5,
aryl aldehyde 6 and dimedone 7 in the presence of catalytic amount of
BPPT NPs. By a closer look at Scheme 3, it is revealed that in all steps
BPPT NPs act as activator and accelerate reaction progress via its
Brgnsted base virtue. In first step, BPPT NPs activate methyl cyanoacetate
5 for nucleophilic attack to aldehyde 6 and leads to formation of int. 9.
Next, dehydration of int. 9 in the presence of BPPT NPs gives Knoeve-
nagel intermediate 10. On the other hand, BPPT NPs activate dimedone 7
to nucleophilic attack to Knoevenagel intermediate 10 (Michael addition
reaction). By this reaction, int. 11 is formed. Subsequent intramolecular
cyclization of int. 11 in the presence of BPPT NPs gives int. 12. In the
final step, product 8 is obtained by imine-enamine tautomerization of int.
12.

2.4. Molecular docking studies

The containing of alkylamine side chain in BPPT chemical structure
and considering the structures of drugs that inhibit acetylcholinesterase
enzyme such as donepezil, and rivastigmine (used for the treatment of
Alzheimer, Parkinson, and Autism), and also other potent acetylcholin-
esterase inhibitors that have contained piperidine or piperazine side
chains in their structures (Liu et al., 2018a; Mohamed et al., 2018), we
decided to study molecular docking for BPPT, and compare the results
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Table 3
Synthesis of 4H-chromene derivatives using BPPT NPs.”
Compound”  Ar Time Yield® M.P. (lit.)
(min)/ (%)/(lit.)
(lit.)
8a 4-(2- 60 87 174-175¢
morpholinoethoxy)-
CeHy
8b 4-(4-morpholino)- 60 85 188-189¢
CeHy4
8c 4-(4-piperidin-1-yl)- 60 80 170-173¢
CeHy
8d 4-(4- 40 95 158-160°
chlorobenzyloxy)-
CeHy
8e 3-(4- 45 92 159-161¢
chlorobenzyloxy)-
CeHy
8f 4-(4- 40 95 158-161¢
bromobenzyloxy)-
CeH,
8g 3-(4- 50 93 164-167¢
bromobenzyloxy)-
CeHy
8h 4-F-CgH, 40 90 143-145¢
8i 3-Br-CeHy 45 88 174-176"
8j 2-Br-CgHy 45 91 197-200¢
8k CeHs 40/10 88/92 145-147
(144-146) (Rong
et al., 2006)
8l 4-Cl-CgHy 40/20 91/91 167-169
(170-171) (Guo
et al., 2013)
8m 2-Cl-CeHy 40/60 91/70 196-199
(198-200)
(Wang et al.,
2003)
8n 3-Cl-CgHy 40/60 87/86 178-179
(178-179) (Li
et al., 2006)
8° 4-NO2-CgHy4 30/18 94/92 181-183
(187-188) (Guo
et al., 2013)
8p 3-NO,-CeHy 30/20 93/80 190-192
(191-192) (Patra
and Mahapatra,
2010)
8q 2-NO,-CeHy4 30/60 95/87 187-189
(188-189) (Li
et al., 2006)
8r 4-CH3-CeHy4 40/10 91/90 178-181 (172)
(Rong et al.,
2006)

@ Reaction conditions: methyl cyanoacetate (1.25 mmol), aryl aldehyde (1
mmol), dimedone (1 mmol), nanocatalyst (5 mol%), EtOH (8 mL), 70 °C.

b The chemical structures of compounds are listed in Fig. 6.

¢ Refers to isolated yields.

4 Novel compounds.

with the Donepezil as reference drug to treatment of Alzheimer (Fig. 9).
As can be seen from Fig. 9a, BPPT interacted with donepezil binding site
of AChE as great as donepezil. Also in Fig. 9b, it is clearer that BPPT has
an excellent matching in width and length with donepezil and exactly
overlap with donepezil structure to interact with AChE enzyme.

The investigation of molecular interaction of BPPT with AChE
revealed that there are five significant interactions that are two n-cation
interactions between NH3 groups with TRP86 and TRP286, two H-bond
interactions between oxygen with TYR124, and GLU202 with NHJ
group, and finally a salt-bridge interaction between NH3 group with
GLU202 (Fig. 10).

In addition, docking results indicated Glide XP G-score (a parameter
corresponding ligand-protein stability in which more negative scores are
related to better fillers and imply less steric hindrance and signifies that
the ligand can fill the poses of the protein very well) of BPPT (-10.323) is
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close to donepezil (-16.144) (Table 4).
Therefore, docking studies represented that BPPT has a great affinity
with donepezil structure to bind and block the sites of the AChE enzyme.

2.5. ADMETox prediction

In another supplement survey, to investigate the biological properties
of BPPT and the prediction that can it be a good candidate as AChE in-
hibitor?, In silico ADMETox prediction study was performed, compared
with donepezil, and the results were summarized in Table 4. ADMETox
prediction revealed that BPPT has no variation from Lipinski's rule of five
as of donepezil. It can permeate into the blood-brain barrier (BBB) as
good as donepezil. Both BPPT and donepezil are capable of binding well
to human serum albumin, but their quantitative human oral absorptions
are not identical. As predicted results showed, quantitative human oral
absorptions of BPPT is not as good as donepezil. As well as, predicted ICsq
for the blockage of HERG K' channels in heart for both BPPT and
donepezil was not in acceptable range, therefore they could be the HERG
K* channels blockers. On the other hand, HERG K" channels blocking of
donepezil has previously been proved and considered as one of the
known side-effects of the Donepezil. It can induce “torsades de point”
which is characterized as marked QT prolongation in electrocardiogram,
and may result in cardiac syncope (Kitt et al., 2015). This side-effect is
known to be related to the inhibition of hERG protein in cardiomyocytes
(Kitt et al., 2015). This fact can further confirm the accuracy of our
prediction tool. Overall, ADMETox prediction depicted that BPPT can be
a good candidate for AChE inhibitors and can be a lead compound for
further discoveries of anti-Alzheimer drugs.

3. Experimental

All used chemicals were supplied from Merck or Sigma-Aldrich as
mercantile chemical companies. An Electrothermal-9100 apparatus was
applied to record melting points and all of them are uncorrected.
Elemental analyses of compounds were carried out by a Heracus CHN-O-
Rapid analyzer. An FT-IR Magna 550 spectrophotometer (Nicolet) using
KBr as a carrier was applied to record FT-IR spectra. All FT-NMRs were
taken by an FT-NMR Bruker 300 MHz spectrometer. The progress of the
reactions was monitored by thin-layer chromatography (Silica TLC Fas4
plates, eluent: ethyl acetate/n-hexane v/v = 1:1). Scanning electron
microscopy (SEM) evaluations of the nano-catalyst were performed on a
JEOL JEM 3010 instrument operating at an accelerating voltage of 300
kV. Transmission electron microscopy (TEM) investigations of the nano-
catalyst were performed on a JEOL JEM 3010 instrument operating at an
accelerating voltage of 300 kV. Thermogravimetric (TG) measurements
were carried out using a thermal gravimetric analyzer (BAHR, STA 503)
from room temperature to 1100 °C in air at a heating rate of 10 °C min™!.
Acetylcholinesterase (AChE) structure was extracted from the Protein
Data Bank (PDB) database which was co-crystalized with Donepezil as an
antagonist. The protein structure was prepared in pH = 7.4 + 1 using the
Maestro interface of Schrodinger Suite. Het groups and waters with less
than 3 hydrogen bonds to non-waters were removed and hydrogen bonds
were reassigned using PROPKA. A final minimization of the structure to
an RMSD of less than 0.3 A was performed to remove atom clashes and
reduce steric hindrance. The binding site of Donepezil with AChE was
used as a pattern to create grid-files for computational molecular
docking.

The structure of BPPT was drawn in Chemdraw software and opti-
mized using Ligprep with Optimized Potential for Liquid Simulations 3
(OPLS3) force-field and the 3D-optimized form was generated in pH =
7.4 £+ 1. Computational molecular docking was performed using Glide
module with extra precision (XP) method (Friesner et al., 2006) for both
BPPT and Donepezil as a reference compound. Ligand sampling was set
to flexible (including ring conformations and nitrogen inversions and
Epik state penalties were incorporated to docking scores. A post docking
minimization was applied by employing strain correction terms. Maestro
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Fig. 6. The chemical structures of synthesized compounds.
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Fig. 7. Recyclability studies of BPPT NPs on model reaction.

interface was used as the molecular visualization of all figures.

Absorption, Distribution, Metabolism, Excretion, and Toxicity of the
BPPT, was assessed using QikProp. Blood-Brain Barrier (BBB) perme-
ability, percent of human oral absorption, prediction of binding to human
serum albumin and ICs for the blockage of HERG K* channels in heart,
and also ligand-protein stability score for BPPT were compared with
donepezil as a reference drug.

3.1. Preparation of BPPT NPs

Sodium tungstate dihydrate (7 g) was firstly dried by a vacuum oven
under 120 °C for 6 h. Next, anhydrous sodium tungstate 1 (20 mmol, 5.88
g) was gradually added to a stirred 250 mL round bottom flask containing
1-bromo-3-chloropropane 2 (40 mmol, 6.28 g) in 50 mL n-hexane at room
temperature during 15 min. After 48 h, the reaction mixture was filtrate to
separate bis(3-chloropropyl)tungstate 3. Obtained solid material 3 was
washed with distilled water to remove side product, sodium bromide salt.
15 mL distilled water in five times (3 mL in each time) was used until
filtrate become free of bromide ion. To identification of bromide ion silver
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Fig. 8. The FT-IR spectra of the catalyst (a) befor and (b) after use.

nitrate solution (0.05 M) was applied. Solid material 3 was dried in vac-
uum oven at 100 °C for 5 h. In the next step, to a 250 mL round bottom flask
containing 60 mL toluene equipped with reflux condenser, connected to a
water bowl by a hoses interface, solid 3 (16 mmol, 6.4 g) was added, then
piperazine 4 (32 mmol, 2.8 g) was gradually added to the flask during 15
min. When the addition of piperazine was completed, it was allowed to the
reaction mixture to stir for 0.5 h in room temperature and then 48 h under
reflux conditions. Afterward, the reaction mixture was filtrated to obtain
BPPT. Finally, after drying catalyst at 100 °C for 5 h, 28 g BPPT was ob-
tained and was characterized by FT-IR spectroscopy, TEM, and SEM mi-
croscopes and also TGA measurement.

3.2. General procedure to the synthesis of methyl 2-amino-7,7-dimethyl-5-
oxo-4-aryl substituted-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate

To a stirred round bottom flask containing ethanol (12 mL) along with
catalytically amounts of BPPT (0.50 g, 5 mol%), appropriate aryl alde-
hyde (2.0 mmol), and methyl cyanoacetate (2.5 mmol, 0.25 g) was
added. After stirring reaction mixture for 1 h at room temperature,

dimedone (2.0 mmol, 0.280 g) was added, and it was allowed to the
mixture's temperature to rise at 70 °C. The reaction progress was moni-
tored by TLC (ethyl acetate/n-hexane v/v = 1:1). After passing the
appropriate time, indicated in Table 2, the boiling ethanol (50 mL) was
added to the reaction mixture till crude products completely dissolved,
then the mixture was filtered to separate catalyst. The catalyst was
washed with boiling ethanol, dried at 100 °C for 2 h and reused in
another cycle. The filtrate was evaporated to obtain the crude product.
The crystalline pure product was obtained from the crystallization of
crude product in boiling ethanol. The chemical structures of novel crys-
talline pure products were confirmed by FT-IR, 'H NMR, !3C NMR
spectroscopies, elemental analyses (C, H, N) and for known compounds
via comparison of their melting points with the reported ones.

3.3. Spectroscopic data of novel synthesized products

Methyl 2-amino-7,7-dimethyl-4-(4-(2-morpholinoethoxy)phenyl)-5-
0x0-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8a): Snow white
powder, m.p: 174-175 °C; FT-IR (KBr) (Omax, em™1): 3387, 3284, 3060,
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Scheme 3. Proposed mechanism for the BPPT NPs-catalyzed synthesis of 4H-chromene derivatives.

Fig. 9. (a) Molecular interactions of BPPT and Donepezil (reference drug) with
AChE enzyme. (b) The great structural matching of BPPT with donepezil to
interact with AChE enzyme.

2958, 2865, 2801, 1693, 1693, 1669, 1534, 1509, 1365, 1295, 1251,
1201, 1146, 1037, 846, 541. 'H NMR (DMSO-ds, 300 MHz) 5 (ppm): 7.55
(2H, s, NHy), 7.04 (2H, d, J = 9 Hz, CHa,), 6.78 (2H, d, J = 9 Hz, CHp,),
4.47 (1H, s, CH), 4.02 (2H, t, J = 6 Hz, OCHy), 3.59 (4H, t, J = 6 Hz,
CH»0CH3y), 3.52 (3H, s, OCH3), 2.69 (2H, t, J = 6 Hz, NCH3), 2.52 (4H, t,

J = 6 Hz, CH,NCH,), 2.49 (2H, m, CHy), 2.27 (1H, d, J = 15 Hz, CH),
2.06 (1H, d, J = 15 Hz, CH), 1.05 (3H, s, CH3), 0.90 (3H, s, CH3). 13¢
NMR (DMSO-dg, 75 MHz) § (ppm): 196.3, 168.8, 162.3, 159.7, 157.0,
138.9,128.8,116.3,114.2,78.3, 66.5, 65.4, 57.5, 54.0, 50.9, 50.4, 32.6,
32.3, 29.1, 26.9. Anal. calcd for Cy5H32N206: C, 65.77; H, 7.07; N, 6.14;
Found: C, 65.81; H, 7.12; N, 6.09%.

Methyl 2-amino-7,7-dimethyl-4-(4-morpholinophenyl)-5-oxo-
5,6,7,8-tetrahydro-4H-chrome-ne-3-carboxylate (8b): Light yellow crys-
tals, m.p: 188-189 °C; FT-IR (KBr) (Umax, em™Y): 3390, 3280, 3058, 2957,
2870, 2822, 1690, 1652, 1609, 1529, 1439, 1364, 1287, 1156, 1120,
1104, 921. 'H NMR (DMSO-dg, 300 MHz) & (ppm): 7.52 (2H, s, NH,),
6.99 (2H, d, J = 9Hz, CHy,), 6.79 (2H, d, J = 9 Hz, CHa,), 4.44 (1H, s,
CH), 3.71 (4H, brs, CHyOCHy), 3.36 (3H, s, OCH3), 3.04 (4H, brs,
CH,NCHy), 2.52 (2H, m, CHy), 2.27 (1H, d, J = 15 Hz, CH), 2.07 (1H, d, J
=15 Hz, CH), 1.05 (3H, s, CH3s), 0.91 (3H, s, CH3). 13C NMR (DMSO-dg,
75 MHz) § (ppm): 196.3,168.9, 162.3,159.7,149.5,137.6,128.4,116.4,
115.1, 78.5, 66.6, 50.9, 50.5, 49.0, 32.5, 32.3, 29.1, 27.0. Anal. calcd for
Co3HogN2Os: C, 66.97; H, 6.84; N, 6.79; Found: C, 67.05; H, 6.79; N,
6.83%.

Methyl  2-amino-7,7-dimethyl-5-0x0-4-(4-(piperidin-1-yl)phenyl)-
5,6,7,8-tetrahydro-4H-chr-omene-3-carboxylate (8c): Golden rod crys-
tals, m.p: 170-173 °C; FT-IR (KBr) (Omax, em™b): 3412, 3301, 3085, 2933,
2853, 2792, 1695, 1656, 1612, 1513, 1437, 1367, 1288, 1204, 1164,
1036, 840, 497. 'H NMR (DMSO-ds, 300 MHz) § (ppm): 7.52 (2H, s,
NHy), 6.98 (2H, d, J = 9 Hz, CHa,), 6.77 (2H, d, J = 9 Hz, CHyp,), 4.44
(1H, s, CH), 3.53 (3H, s, OCH3), 3.04 (4H, t, J = 6 Hz, CHoNCH,), 2.54
(1H, d, J = 18 Hz, CH), 2.54 (1H, d, J = 18 Hz, CH), 2.27 (1H,d, J =15
Hz, CH), 2.08 (1H, d, J = 15 Hz, CH), 1.59 (4H, m, 2xCHy), 1.51 (2H, m,
CH,), 1.05 (3H, s, CHy), 0.92 (3H, s, CHs). >C NMR (DMSO-ds, 75 MHz)
§ (ppm): 196.3, 168.9, 162.2, 159.7, 150.3, 136.9, 128.3, 116.5, 115.8,
78.5, 50.9, 50.5, 50.1, 32.4, 32.3, 29.1, 26.9, 25.9, 24.3. Anal. calcd for
C24H30N204: C, 70.22; H, 7.37; N, 6.82; Found: C, 70.27; H, 7.31; N,
6.85%.

Methyl 2-amino-4-(4-((4-chlorobenzyl)oxy)phenyl)-7,7-dimethyl-5-
0x0-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8d): White crys-
tals, m.p: 158-160 °C; FT-IR (KBr) (Omax, em™b): 3431, 3315, 3060, 2953,
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Table 4

In silico prediction of pharmacokinetic/pharmacodynamic characteristics of BPPT to inhibition of AChE versus Donepezil.
Compound Rule of Five QplogBB* QPlogKhsa” Human Oral Absorption® QPlogHERG! XP G-score®
Donepezilf 0 0.063 0.597 100 % -6.528 -16.144
BPPT 0 -0.526 -0.741 379 % -7.405 -10.323

2 Predicted blood-brain barrier coefficient (Recommended Range: -3 - 1.2).

b Pprediction of binding to human serum albumin (Recommended. Range: -1.5 — 1.5).

¢ Predicted quantitative human oral absorption on 0-100% scale; >80% is high and <25% is poor.
4 Predicted ICs, for the blockage of HERG K* channels in the heart (concern below -5).

¢ A parameter corresponding ligand-protein stability that more negatives values imply that the poses of the target protein (binding sites) are filled by the ligand very

good.
f Reference drug.

2929, 2869, 1688, 1666, 1606, 1506, 1368, 1300, 1233, 1200, 1163,
1014, 875, 814, 559, 539. H NMR (DMSO-dg, 300 MHz) § (ppm): 7.56
(2H, s, NHy), 7.46 (4H, m, CHa,), 7.07 (2H, d, J = 6 Hz, CHa,), 6.86 (2H,
d, J = 6 Hz, CHyp,), 5.03 (2H, s, OCH>), 4.49 (1H, s, CH), 3.52 (3H, s,
OCHj3y), 2.55 (1H, d, J = 18 Hz, CH), 2.46 (1H, d, J = 18 Hz, CH), 2.27
(1H, d, J = 15 Hz, CH), 2.07 (1H, d, J = 15 Hz, CH), 1.05 (3H, s, CHs),
0.90 (3H, s, CHs). 13C NMR (DMSO-dg, 75 MHz) 5 (ppm): 196.2, 168.8,
162.4, 159.7, 156.8, 139.3, 136.7, 132.8, 129.9, 128.9, 128.8, 116.3,
114.5, 78.3, 68.7, 50.9, 50.4, 32.7, 32.3, 29.1, 26.9. Anal. calcd for
CoeHo6CINOs: C, 66.74; H, 5.60; N, 2.99; Found: C, 66.80; H, 5.55; N,
3.07%.

Methyl 2-amino-4-(3-((4-chlorobenzyl)oxy)phenyl)-7,7-dimethyl-5-
0x0-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8e): Snow white
crystals, m.p: 159-161 °C; FT-IR (KBr) (Umax, cm™): 3416, 3302, 3064,
2950, 2868, 1691, 1655, 1612, 1517, 1439, 1370, 1291, 1249, 1202,
1171, 1028, 802, 689, 491. TH NMR (DMSO-dg, 300 MHz) § (ppm): 7.60
(2H, s, NHy), 7.47 (4H, m, CHp,), 7.14 (1H, t, J = 9 Hz, CHja,), 6.79-6.76
(2H, m, CHypy), 6.74 (1H, s, CHy,), 5.05 (2H, dd, 3J = 15 Hz, *J = 6 Hgz,
OCHy), 4.52 (1H, s, CH), 3.52 (3H, s, OCH3), 2.55 (1H, d, J = 18 Hz, CH),
2.45 (1H, d, J = 18 Hz, CH), 2.27 (1H, d, J = 15 Hz, CH), 2.07 (1H, d, J =
18 Hz, CH), 1.04 (3H, s, CHs), 0.89 (3H,s,CHs). '3C NMR (DMSO-ds, 75
MHz) 6 (ppm): 196.2, 168.7, 162.7, 159.8, 158.2, 148.4, 136.6, 132.8,
129.9, 129.3, 128.9, 120.5, 116.0, 114.8, 112.2, 77.8, 68.7, 50.9, 50.4,
33.4, 32.3, 29.0, 26.9. Anal. calcd for CogHogCINOs: C, 66.74; H, 5.60; N,
2.99; Found: C, 66.79; H, 5.63; N, 3.05%.

Methyl 2-amino-4-(4-((4-bromobenzyl)oxy)phenyl)-7,7-dimethyl-5-
0x0-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8f): Snow white
crystals, m.p: 158-161 °C; FT-IR (KBr) (Umax, cm_l): 3434, 3315, 3049,
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2954, 2926, 1688, 1666, 1606, 1506, 1436, 1369, 1300, 1234, 1199,
1163, 1012, 873, 810, 555. H NMR (DMSO-dg, 300 MHz) § (ppm): 7.61
(2H, s, NHy), 7.57 (2H, d, J = 6 Hz, CHy,), 7.40 (2H, d, J = 6 Hz, CHy,),
7.06 (2H, d, J = 9 Hz, CHa,), 6.86 (2H, d, J = 9 Hz, CH,,p), 5.01 (2H, s,
OCHy), 4.48 (1H, s, CH), 3.52 (3H, s, OCH3), 2.55 (1H, d, J = 15 Hz, CH),
2.45 (1H, d, J = 15 Hz, CH), 2.27 (1H, d, J = 15 Hz, CH), 2.07 (1H, d, J =
15 Hz, CH), 1.05 (3H, s, CHs), 0.90 (3H,s,CHz). 3C NMR (DMSO-dg, 75
MHz) § (ppm): 196.3, 168.8, 162.4, 159.7, 156.8, 139.3, 137.1, 131.8,
130.2, 128.9, 121.3, 116.3, 114.5, 78.2, 68.7, 51.0, 50.4, 32.6, 32.3,
29.1, 26.9. Anal. caled for CogHogBrNOs: C, 60.95; H, 5.11; N, 2.73;
Found: C, 60.99; H, 5.06; N, 2.80%.

Methyl 2-amino-4-(3-((4-bromobenzyl)oxy)phenyl)-7,7-dimethyl-5-
0x0-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8g): Snow white
crystals, m.p: 164-167 °C; FT-IR (KBr) (Umax, cm™b): 3415, 3300, 3050,
2948, 2867, 1690, 1655, 1595, 1517, 1439, 1370, 1290, 1249, 1202,
1172, 1027, 802, 778, 689, 495. TH NMR (DMSO-dg, 300 MHz) § (ppm):
7.60 (2H, d, J = 9 Hz, CHy,), 7.58 (2H, s, NHy), 7.41 (2H, d, J = 9 Hz,
CHap), 7.14 (1H, t, J = 9 Hz, CHa,), 6.79-6.75 (2H, m, CHp,), 6.74 (1H, s,
CHap), 5.03 (2H, dd, 357=18 Hz, ‘=6 Hz, OCHy), 4.52 (1H, s, CH), 3.51
(3H, s, OCH3), 2.55 (1H, d, J = 18 Hz, CH), 2.45 (1H, d, J = 18 Hz, CH),
2.27 (1H, d, J = 15 Hz, CH), 2.06 (1H, d, J = 15 Hz, CH), 1.04 (3H, s,
CHs), 0.88 (3H, s, CH3). 13C NMR (DMSO-dg, 75 MHz) § (ppm): 196.2,
168.7, 162.7, 159.8, 158.2, 148.3, 137.1, 131.8, 130.2, 129.3, 121.3,
120.5,116.0,114.8,112.3,77.8, 68.7, 51.0, 50.4, 33.4, 32.3, 29.0, 26.9.
Anal. caled for Co¢HogBrNOs: C, 60.95; H, 5.11; N, 2.73; Found: C, 61.01;
H, 5.05; N, 2.81%.

Methyl 2-amino-4-(4-fluorophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tet-
rahydro-4H-chromene-3-carboxylate (8h): White powder, m.p:
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143-145 °C; FT-IR (KBr) (Umax, crnfl): 3464, 3309, 3040, 2967, 2935,
1694, 1657, 1526, 1506, 1436, 1365, 1295, 1224, 1198, 1163, 1036,
849, 769, 645, 542. 'H NMR (DMSO-ds, 300 MHz) 6 (ppm): 7.37 (2H, s,
NHy), 6.91 (2H, d, J = 9 Hz, CHp,), 6.79 (2H, t, J = 9 Hz, CHy,), 4.28 (1H,
s, CH), 3.27 (3H, s, OCH3), 2.31 (1H, d, J = 18 Hz, CH), 2.22 (1H, d, J =
18 Hz, CH), 2.03 (1H, d, J = 15 Hz, CH), 1.83 (1H, d, J = 15 Hz, CH), 0.80
(3H, s, CH3), 0.65 (3H, s, CHs). 13C NMR (DMSO-ds, 75 MHz) 5 (ppm):
196.2, 168.7, 162.6, 159.7, 142.9, 129.7 (d, J = 7.5 Hz), 115.9, 115.1,
114.8, 77.8, 51.0, 50.3, 33.0, 32.3, 29.0, 26.9. Anal. caled for
C19H29FNOg4: C, 66.08; H, 5.84; N, 4.06; Found: C, 66.13; H, 5.78; N,
4.10%.

Methyl 2-amino-4-(3-bromophenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tet-
rahydro-4H-chromene-3-carboxylate (8i): White crystals, m.p: 174-176
°C; FT-IR (KBI) (Umax, cm ™ 1): 3399, 3298, 3043, 2960, 2875, 1696, 1656,
1535, 1437, 1365, 1286, 1200, 1163, 1072, 1034, 771, 695, 514. H
NMR (DMSO-ds, 300 MHz) 5 (ppm): 7.66 (2H, s, NH3), 7.33-7.30 (1H, m,
CHap), 7.28 (1H, s, CHp,), 7.21 (1H, t, J = 9 Hz, CHp,), 7.17-7.14 (1H, m,
CHap), 4.51 (1H, s, CH), 3.53 (3H, s, OCH3), 2.57 (1H, d, J = 15 Hz, CH),
2.50 (1H, d, J = 15 Hz, CH), 2.30 (1H, d, J = 15 Hz, CH), 2.10 (1H, d, J =
15 Hz, CH), 1.05 (3H, s, CHs), 0.90 (3H, s, CHs). '3C NMR (DMSO-ds, 75
MHz) § (ppm): 196.3, 168.5, 163.0, 159.7, 149.5, 130.7, 130.6, 129.2,
127.1,121.5,115.4, 77.3, 51.0, 50.3, 33.6, 32.3, 29.0, 26.8. Anal. calcd
for C19H90BrNOy4: C, 56.17; H, 4.96; N, 3.45; Found: C, 56.10; H, 4.88; N,
3.51%.

Methyl 2-amino-4-(2-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tet-
rahydro-4H-chromene-3-carboxylate (8j): White crystals, m.p: 197-200
°C; FT-IR (KBr) (Umax, cmfl): 3424, 3313, 3045, 2966, 2924, 1693, 1651,
1610, 1516, 1437, 1362, 1289, 1202, 1082, 1037, 828, 761, 739, 506. 'H
NMR (DMSO-dg, 300 MHz) 5 (ppm): 7.67 (2H, s, NHy), 7.45 (1H, dd, 3J =
9 Hz, %J = 3 Hz, CHay), 7.25 (1H, dt, 3J = 9 Hz, *J = 3 Hz, CHa,), 7.16
(1H, dd, J = 9 Hz, “7 = 3 Hz, CHa,), 7.02 (1H, dt, 3J = 9 Hz, “7 = 3 Hz,
CHay), 4.86 (1H, s, CH), 3.47 (3H, s, OCH3), 2.59 (1H, d, J = 18 Hz, CH),
2.44 (1H, d, J =18 Hz, CH), 2.26 (1H, d, J = 15 Hz, CH), 2.02 (1H, d, J =
15 Hz, CH), 1.05 (3H, s, CHs), 0.91 (3H, s, CHs). 3C NMR (DMSO-ds, 75
MHz) § (ppm): 196.0, 168.9, 162.6, 159.6, 145.3, 133.0, 131.7, 128.0,
127.7,123.7,115.0, 77.2, 50.7, 50.5, 34.3, 32.2, 29.1, 26.9. Anal. calcd
for C19H20BrNO4: C, 56.17; H, 4.96; N, 3.45; Found: C, 56.23; H, 4.89; N,
3.49%.

4. Conclusions

In conclusion, we found BPPT NPs as an efficient, and eco-friendly
heterogeneous recyclable organometallic Brgnsted base which can cata-
lyze successfully multi-step reaction including Knoevenagel condensa-
tion, Michael addition reaction and intramolecular cyclization between
methyl cyanoacetate, aryl aldehydes, and dimedone to yield 4H-chro-
mene derivatives in good to excellent yields. Therefore, BPPT NPs can be
applied as a catalyst in reactions in which needs basic catalyst or media.
Hence, it can attract many interests and find many applications in organic
syntheses in future. This methodology not only produces the products
with excellent yields in short reaction times but also keeps away from
some disadvantages such as catalyst handling and cost, pollution and
safety. Also, easy work-up, recyclability and thermal stability of catalyst
are other advantages of BPPT NPs. In addition, molecular modeling and
ADMETox prediction results showed that BPPT can be considered as a
potent AChE inhibitor, and can be a lead compound to further discovery
of anti-Alzheimer drugs.
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