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Abstract: Oil spills pose a significant threat to marine biodiversity. Crude oil can partition into sediments where it may be
persistent, placing benthic species such as decapods at particular risk of exposure. Transcriptomic and histological tools are
often used to investigate the effects of hydrocarbon exposure on marine organisms following oil spill events, allowing for the
identification of metabolic pathways impacted by oil exposure. However, there is limited information available for decapod
crustaceans, many of which carry significant economic value. In the present study, we assess the sublethal impacts of crude oil
exposure in the commercially important Australian greentail prawn (Metapenaeus bennettae) using transcriptomic and histo-
logical analyses. Prawns exposed to light, unweathered crude oil “spiked” sediments for 90 h were transferred to clean sedi-
ments for a further 72 h to assess recovery. Chemical analyses indicated that polycyclic aromatic hydrocarbons increased by
approximately 65% and 91% in prawn muscle following 24 and 90 h of exposure, respectively, and significantly decreased during
24‐ and 72‐h recovery periods. Transcriptomic responses followed an exposure and recovery pattern with innate immunity and
nutrient metabolism transcripts significantly lowered in abundance after 24 h of exposure and were higher in abundance after
72 h of recovery. In addition, transcription/translation, cellular responses, and DNA repair pathways were significantly impacted
after 24 h of exposure and recovered after 72 h of recovery. However, histological alterations such as tubule atrophy indicated an
increase in severity after 24 and 72 h of recovery. The present study provides new insights into the sublethal impacts of crude oil
exposure in greentail prawns and identifies molecular pathways altered by exposure. We expect these findings to inform future
management associated with oil extraction activity and spills. Environ Toxicol Chem 2022;41:2162–2180. © 2022 John Wiley &
Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
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INTRODUCTION
Marine ecosystems are under threat of oils spills through

exploration and transportation of hydrocarbons such as crude
oil (Barron et al., 2020; Luís & Guilhermino, 2012; Martínez‐
Gómez et al., 2010). Although oil spills only account for ap-
proximately 10% of crude oil entering the marine environment

(Farrington, 2013), they can have significant localized impacts
on marine ecosystems (Almeda, Wambaugh, Chai, et al., 2013;
Da Silva et al., 1997) through physical smothering of biota and
habitats, and chemical toxicity (Almeda, Wambaugh, Wang,
et al., 2013; Hook, 2020; National Research Council, 2003).
Crude oil is a complex mixture composed of thousands of
compounds (Meador & Nahrgang, 2019), including polycyclic
aromatic hydrocarbons (PAHs), which are most frequently as-
sociated with toxicity. However, Meador and Nahrgang (2019)
argue a combination of hydrocarbon compounds causes
common toxicological effects often attributed to PAHs alone,
including narcosis, reduced membrane integrity and function,
and inhibited larval development (Di Toro et al., 2000; Sørhus
et al., 2015). Hydrocarbon toxicity is well documented in many
marine organisms, including fish, molluscs, copepods, and
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zooplankton (Almeda, Wambaugh, Wang, et al., 2013; Brown‐
Peterson et al., 2017; Lavarías et al., 2011; Osman et al., 2017).
Although there have been numerous studies assessing the risks
of hydrocarbons to marine biota, there is a paucity of in-
formation for many ecologically and commercially important
invertebrate species such as decapods, which hinders effective
management.

Prawn (or shrimp) species have substantial economic value,
supporting commercial and recreational fisheries around the
world (Kenny et al., 2014; Zeng et al., 2011). In Australia alone,
commercial prawn fisheries have been valued at approximately
$396 million annually (Australian Bureau of Agricultural and Re-
source Economics and Sciences, 2018). The greentail prawn,
Metapenaeus bennettae, is primarily benthic and inhabits
shallow, coastal marine and estuarine environments from Rock-
hampton, Queensland to the southern coast of South Australia
(Edgar, 2008; Kirkegaard & Walker, 1970; Young et al., 2013).
Commercial fisheries operate largely from southeast Queens-
land in Moreton Bay and Brisbane River (annual catch >500 t)
and the Wallis Lake‐Hunter region in New South Wales (annual
catch 20–50 t; Taylor, 2015). During the day greentail prawns
take refuge in soft sediments and feed in the water column at
night (Kirkegaard & Walker, 1970), making them susceptible to
both water‐soluble and sediment‐bound contaminants such as
hydrocarbons (Carvalho Neta et al., 2019; Lewtas et al., 2014;
Pasquevich et al., 2013). Exposure to hydrocarbons can have
toxic effects on prawn species and decapods generally, im-
pairing swimming velocity (Silva et al., 2013), eliciting oxidative
stress (Lavarías et al., 2011; Ren et al., 2015), initiating DNA
damage (Ren et al., 2015; Vijayavel & Balasubramanian, 2008;
Wen & Pan, 2016), and causing histopathological alterations in
ovaries (Wen & Pan, 2016). However, only a few studies have
investigated the molecular responses of decapods to hydro-
carbon exposure and therefore the molecular mechanisms in-
volved in exposure responses remain unclear (Pasquevich
et al., 2013; Yednock et al., 2015; Yu et al., 2018).

To date, decapod responses to hydrocarbon exposure has
been determined using multiple analytical approaches: cyto-
chrome P450s (CYP) and other stress–response transcript ex-
pression (Dam et al., 2008; Lavarías et al., 2011; Ren et al., 2015),
oxidative stress and xenobiotic metabolizing enzyme activities
(Gravato et al., 2014; Luís & Guilhermino, 2012; X. Y. Ren
et al., 2014b), and PAH metabolite concentrations (Douglas
et al., 2018; Nudi et al., 2010; Silva et al., 2013). To a lesser
extent, assessments of DNA damage (Ren et al., 2015; Vijayavel
& Balasubramanian, 2008), oxidative damage (Lavarías
et al., 2011; Ren et al., 2015), and immunotoxic effects (X. Ren
et al., 2014a) have also been used to determine the effects of
petroleum hydrocarbon exposure. However, PAH exposure bi-
omarkers do not always predict ecologically relevant impacts of
crude oil exposure, including changes in survival, behavior,
growth, or reproduction (reviewed in Hook, Mondon, Revill,
Greenfield, Stephenson, et al., 2018).

Modern transcriptomic approaches utilized by ecotoxico-
logical studies are overcoming these limitations. By using next‐
generation sequencing technologies combined with advanced
bioinformatic tools, researchers are able to analyze

transcriptome‐wide responses to environmental stressors in
both model and non‐model species (Feldmeyer et al., 2011;
Lenz et al., 2014; Richardson & Sherman, 2015; Riesgo
et al., 2012). The transcriptomic literature investigating de-
capod stressors has increased in recent years, from response to
pathogens (He et al., 2021; Jin & Zhu, 2019), hypoxia (Sun
et al., 2014, 2020), aquaculture waste products (Liu et al., 2020;
Yu et al., 2019), and heavy metals (Liu et al., 2021; Zhang
et al., 2019), to adaptation to extreme deep‐sea environments
(J. Cheng, Hui, et al., 2019; Hui et al., 2018). Following the
Deepwater Horizon oil spill in the Gulf of Mexico in 2010,
several studies used transcriptomic profiling in field and labo-
ratory settings to assess the impacts of crude oil exposure on
native marine fish species (Pilcher et al., 2014; Whitehead
et al., 2012). For example, killifish collected from oil‐affected
and ‐unaffected locations differed in CYP1A protein expression
profiles in the tissues of adult and larval fish, with an up‐
regulation of CYP1A protein in the gills, liver, intestine, and
head kidney indicating the metabolism of PAHs corresponded
with the arrival of the Deepwater Horizon spilled oil (Dubansky
et al., 2013). Such studies have been pivotal in improving our
understanding of physiological and molecular responses trig-
gered by environmental changes and the pathways under-
pinning stress responses in nonmodel species (Gomiero
et al., 2006; Hook et al., 2010; Jiang et al., 2017).

Ecotoxicological studies have used alterations in transcript
abundances as evidence of altered cellular mechanisms and
potential higher organism impacts in response to contaminant
exposure (Hook, Mondon, Revill, Greenfield, Smith, et al., 2018;
Mehinto et al., 2012). In addition, studies have successfully in-
tegrated transcriptomics and histopathology to observe
“higher” level organism damage that aligns with changes in
related transcript abundances (Hook, Mondon, Revill, Green-
field, Smith, et al., 2018; Hook, Mondon, Revill, Greenfield,
Stephenson, et al., 2018; Zhang et al., 2019), a common practice
known as “phenotypic anchoring” (Waters & Fostel, 2004). In
prawns exposed to hypoxic conditions, the down‐regulation of
oxidative stress gene expression and changes in fatty acid me-
tabolism were related to the vacuolation of R‐cells in the hep-
atopancreas (Sun et al., 2014). Similarly, in fish, changes in
inflammatory response and cell death‐related transcripts corre-
lated with necrosis observed in liver and gill tissues (Hook,
Mondon, Revill, Greenfield, Stephenson, et al., 2018). Tran-
scriptomic studies with the incorporation of histology allow for
assessments of transcriptional changes and impacted physio-
logical mechanisms in nonmodel species like decapods. Im-
portantly, these studies can point to alternative biomarkers of
hydrocarbon exposure/effect, because responses often tend to
be taxon‐ and contaminant‐specific (Gravato et al., 2014).

In the present study, we conducted transcriptomic and his-
tological analysis of greentail prawns (Metapenaeus bennettae)
following controlled crude oil exposure. Our experiments in-
volved exposing greentail prawns to sediments contaminated
with varying concentrations of light, unweathered Australian
crude oil. The experimental crude oil concentrations used are
environmentally relevant and similar to those recorded in
Louisiana salt marshes following the Deepwater Horizon
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wellhead blowout (Turner et al., 2014). Our goals were to (1)
determine the sublethal impacts of crude oil exposure on
greentail prawns by assessing histological alterations, the tissue
PAH concentrations at which this occurred, and differentially
abundant transcripts, (2) identify potential biomarkers of crude
oil exposure in decapod species, (3) identify response and/or
recovery cellular pathways after crude oil exposure in decapods
species, and (4) inform monitoring targets to be used in the
event of future oil extractions or spills. We expect the findings
from the present study will provide novel insights into molec-
ular and physiological impacts after hydrocarbon exposure in
decapod crustaceans and form a resource for guiding future
management associated with oil extraction activity and spills.

METHODS
Wild collections and controlled laboratory
exposures

Sixty greentail prawns were collected via netting from St
Vincent Gulf, near Adelaide in South Australia on February 9,
2016. The prawns were transported to the South Australian
Research and Development Institute (SARDI) laboratories in
Adelaide, where they were acclimatized for 2 weeks in 2250 L
circulating tanks and fed diced pipis (clams; Donax deltoids),
with salinity, temperature, and dissolved oxygen monitored
routinely prior to the trial's commencement.

An 8‐day exposure/recovery experiment to determine the
effects of sublethal crude oil exposure in greentail prawns was
conducted at SARDI in Adelaide. Four prawns were assigned to
five 25‐L tanks for each of the control and treatment (low and
high PAH concentration exposure) groups (Figure 1). The
substrate of each tank consisted of 13 kg of sand sediment,
collected from North Haven and Henley Beaches (Adelaide,
South Australia). Treatment tank sediments were contaminated
with low (nominal concentration of 0.5 mg/kg) and high (nom-
inal concentration 2mg/kg) concentrations of crude oil
(Northwest Shelf 2). To achieve this, 1 kg of clean sand (~1mm
grain size), collected from the same source, was placed in an
amber jar and was contaminated with 4.8 and 19.2ml of crude
oil (Northwest Shelf 2, with a density of 0.81 g/L) for low and
high treatment group sediments, respectively. Excess water
was removed, but the sand was not dried. The jars were filled
with seawater to eliminate headspace, sealed, and put on
sediment rollers for 7 days. The seawater was then decanted,
reducing the water‐soluble (and potentially narcotic) PAHs
present, and the contaminated sediment was then added to
12 kg of clean sediment and mixed by hand. Again, the excess
water was removed from the sand but the sediment was not
dried. Homogenization of sediments was clear as contaminated
sediments were significantly darker than the clean sediment.
The tanks were assigned letters (A–E) for each treatment rep-
licate and filled with filtered seawater, then arranged by repli-
cate rather than treatment (e.g., control A, 0.5A, 2A, control B,
0.5B, 2B, etc.), avoiding placement bias.

Four prawns were randomly assigned to each of the five
replicate tanks for each treatment (control, low, and high;

Figure 1) and monitored to ensure they buried into the sedi-
ments. Animals were fed diced pipis (Piebidonax deltoids) pe-
riodically throughout the experiment (once or twice daily), water
temperature (21.1± 0.1 °C), salinity (38‰), and dissolved oxygen
(92.0%± 0.4%) concentrations were monitored daily, and ani-
mals were checked twice daily for mortality. Uneaten food and
other particulate matter was also removed daily from the tank via
siphoning. Prawns were exposed to their treatment sediments
for a total of 90 h, due to the limited persistence of light crude oil
in the sand (Hook, Mondon, Revill, Greenfield, Stephenson,
et al., 2018), before being carefully transferred to clean sediment
tanks for the remaining 72 h of the experiment (Figure 1). One
prawn from each tank was euthanized at uptake time points 24
and 90 h, and recovery time points 24 and 72 h by submerging
the prawn in an ice‐water slurry to anesthetize it, followed by
cervical dislocation. Length (average 25.1± 0.4mm) and weight
(average 11.4± 0.4 g) measurements were recorded, followed
by tissue dissection for subsequent analysis. A section of hep-
atopancreas was removed and submerged in RNA later©
(Ambion), stored at 4 °C overnight then transferred to −20 °C for
RNA analysis. A muscle section was taken and stored at −20 °C
for hydrocarbon analysis. Sections of gill, hepatopancreas,
muscle, digestive tissue (if identifiable), and ovary (if identifiable)
were fixed in 10% seawater‐buffered formalin at room temper-
ature for histological analysis.

Analysis of exposure sediment
Sediments collected at the beginning (t= 0 h) and end

(t= 90 h) of the uptake period were analyzed for PAH concen-
trations following the protocols specified in Hook, Mondon,
Revill, Greenfield, Stephenson, et al. (2018). Briefly, sediments
were initially spiked with a known mixture of denatured PAH
standards and extracted following a modified method from
Bligh and Dyer (1959), where PAHs were extracted three times
with a one‐phase dichloromethane–methanol–water mixture
(1:2:0.8 v/v/v). Sediment samples were ultrasonicated for 10min
during each extraction, centrifuged, and the supernatant ex-
tracts combined. Lipids were recovered in the lower organic
layer and the solvent removed in vacuo after phase separation.
Samples were analyzed as total extracts; PAH concentration
was determined by gas chromatography–mass spectrometry
(GC/MS) using a ThermoScientific 1310 GC coupled with a TSQ
triple quadrupole. Samples were then injected using a Triple-
plus RSH auto sampler with a nonpolar HP‐5 Ultra 2 bonded‐
phase column (50m × 0.32mm i.d. × 0.17 μm film thickness).
The initial oven temperature of 45 °C was held for 1min, fol-
lowed by temperature programming at 6 °C min to 180 °C then
at 3 °C min to 315 °C, where it was held for 15min. Helium was
used as the carrier gas. Mass spectrometer operating con-
ditions were electron impact energy 70 eV, emission current
250 μA, transfer line 310 °C, and source temperature 240 °C.
The instrument was operated in selected ion monitoring (SIM)
mode to detect each compound group. Data were acquired
and processed with Thermo Scientific Xcalibur software and
analytes quantified by comparison of peak areas with the rel-
evant deuterated standard.
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FIGURE 1: Flow chart depicting the outline of the laboratory trials undertaken at the South Australian Research and Development Institute in
Adelaide. Sixty prawns were separated into three treatment groups, control, low (sediment spiked with 0.5mg/kg of crude oil), and high (sediment
spiked with 2mg/kg of crude oil). One prawn from each of the five replicate tanks was taken for subsequent analysis after each exposure time points
(24 and 90 h of exposure). Remaining prawns were then transferred to tanks with clean sediment, and one prawn was collected after each recovery
time point (24 and 72 h of recovery).
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Hydrocarbon concentrations in muscle
Muscle samples were placed in 10‐ml test tubes, spiked with

a mixed standard containing d8‐naphthalene and d10‐
phenanthrene, and 5ml of dichloromethane added. Tubes
were sonicated in a water bath for 2 × 5min with stirring in
between, centrifuged, and the solvent transferred to a clean
tube. This was repeated twice. The combined solvent extracts
were reduced gently under a stream of N2 before being
transferred to small vials. Dry weights were determined after
drying the extracted material in an oven at 45 °C for 48 h.

Sample extracts were analyzed by GC/MS operating in SIM
mode (Thermo Scientific TSQ8000 with Trace 1310 GC). Then
0.5 μl was injected from a total volume of 200 μl onto a DB‐5
column using a PTV injector at 45 °C, which was ballistically
heated postinjection to 305 °C at 3 °C/s. The GC oven was in-
itially held at 45 °C for 1 min and then ramped to 180 °C for
6min, then to 250 °C for 3 min, and finally to 315 °C at 10min
with a final hold time of 15min. The MS was operated in SIM
mode with target ions in groups according to retention time
with no more than three ions per group. Each mass had a dwell
time of 0.2 s. The target compounds were calculated by com-
parison to the relevant internal standard via peak area.

Body burdens between treatments were compared using
the nonparametric Kruskal–Wallis test in conjunction with a
Wilcoxon rank sum test, in RStudio (v3.6.0), as a high pro-
portion of zeros prevented assumptions being met for analysis
of variance (ANOVA).

RNA extractions, sequencing, and quality control
Hepatopancreas from control and high treatment groups for

the two exposure times (24 and 90 h) and the 72‐h recovery
period were used for transcriptomic analysis, and RNA was
extracted following a method previously described by Hook
et al. (2017). Briefly, RNA was extracted from individual prawns
using approximately 10mg of hepatopancreas. The tissue was
added to 1ml of TRIzol reagent (Invitrogen) and homogenized
using an MP Biomedical bead beater at maximum speed
(6.5m/s) using lysing matrix D (MP Biosciences). RNA extraction
followed the TRIzol protocol until the aqueous phase was
separated, then the Qiagen RNeasy kit was used to purify the
aqueous phase. The RNA quantity and purity was established
by a nanodrop spectrometer (Fisher Scientific) using a min-
imum 260/280 ratio of 2.0, with quality determined using an
Agilent bioanalyzer (minimum RIN of 8); three (two from the
control 24‐h exposure group and one from the control 72‐h
recovery group) hepatopancreas samples were found to
have low‐quality RNA and therefore were not sequenced
(Supporting Information, Table S8). Because of the cost of
RNASeq experiments, only the high treatment, which was hy-
pothesized to exhibit the greatest changes, was submitted for
sequencing. Ideally, five replicates would have been used, but
three replicates are routinely used in transcriptomic studies
(Jenny et al., 2016; Qiao et al., 2018; Zhang et al., 2019). The
RNA libraries were prepared and sequenced by the Ramaciotti
Centre using 1 µg of RNA from 27 individuals following the

TruSeq Standard mRNA prep and dual indexing Illumina pro-
tocols. Libraries were subsequently sequenced on two HiSeq
2500 150bp ER Rapid v2 single‐end lanes in accordance
with the manufacturer's protocols. Sequencing data were up-
loaded to the National Center for Biotechnology Information
Sequence Read Archive (NCBI SRA) database (https://www.ncbi.
nlm.nih.gov/sra) under the project name PRJNA509986 and as-
signed accession numbers SAMN10591652—SAMN10591660.
Sequencing data from 27 samples were mapped to the greentail
prawn de novo transcriptome published previously in Armstrong
et al. (2019), using RSEM (Li & Dewey, 2011) and Bowtie Ver.
1.2.0 (Langmead, 2010) with default parameters.

Differential gene expression and enrichment
analysis

Differentially abundant transcripts were identified using Bio-
Conductor's DESeq2 (Ver. 1.30.1; Love et al., 2014) in RStudio
(Ver. 4.0.5; Team, 2020). Pairwise comparisons were made be-
tween control (n= 3) and high (n= 5) treatment groups at 24 h of
exposure, between control (n= 5) and high (n= 5) treatment
groups at 90 h of exposure, and between control (n= 4) and
high (n= 5) treatment groups at 72 h of recovery. Differentially
abundant transcripts were determined using a false discovery
rate (FDR) <0.05 and a log‐fold change (LFC) >2.

Gene ontology enrichment analysis was performed using the
R package GoSeq (Ver. 1.36.0) on the differentially abundant
transcripts, while controlling for length bias (Young et al., 2010).
Differentially abundant transcripts were annotated with gene
ontology terms and lengths obtained from the greentail prawn
transcriptome previously described by Armstrong et al. (2019).
Gene ontology enrichment analysis was performed following
Young et al.'s (2010) standard pipeline. Briefly, length bias was
accounted for using the probability weighting function, which
uses the length data of each transcript to estimate the proba-
bility that a transcript will be differentially expressed based solely
on its length (Young et al., 2010). The probability weighting
value instructs the Wallenius approximation test used to de-
termine enriched or under‐represented gene ontology terms
with an FDR value <0.05.

The pathway analysis database Kyoto Encyclopedia of
Genes and Genomes (KEGG) was used to assign KO IDs to
transcripts, providing a biological function to transcripts. The R
packages gage (Ver. 2.40.2), gageData (Ver. 2.28.0), and
pathview (Ver. 1.30.1) were used to analyze altered pathways
for 24‐ and 90‐h exposure and 72‐h recovery treatments, and
significance was determined using a q‐value <0.1.

Histology
Histological preparation and evaluation followed a standard

paraffin procedure described in Mondon et al. (2001). Briefly,
gill, hepatopancreas, muscle, and gonad tissue was fixed in
10% buffered formalin, with delicate tissue (e.g., gills) placed
between biopsy pads inside histology cassettes for protection.
Tissue processing involved automated dehydration of fixed
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tissue in ascending concentrations of ethanol (30%, 50%, 70%,
90%, 95%, 100%), which were then cleared in Histolene (Leica
ASP 300S vacuum infiltration processor), followed by embed-
ding in paraffin (Leica EG1150 H manual embedding station).
Embedded tissue was sectioned to 4 µm using a HM 325 µm
microtome, mounted on glass slides, stained using the
standard hematoxylin and eosin (H&E) protocol, and cover
slipped using Entallin®.

Each slide was observed using a Zeiss Axiovert Universal
Microscope and picto‐micrographs were taken using a Zeiss
Axiocam HRc micro imaging GmbH camera. Micrographs of
muscle tissue captured at ×100 magnification and gonad tissue
captured at ×200 magnification were examined for pathologies
with presence/absence recorded. Micrographs of gill lamellae
were captured at ×100 magnification and examined for pres-
ence/absence of pathologies, and epithelial lifting was ranked
against a semiquantitative scale that was designed specifically
for the present study (Table 1).

Hepatopancreas micrographs taken at ×100 magnification
were examined for pathologies with presence/absence re-
corded. Hepatopancreas tubule atrophy was categorized
based on the semiquantitative scale developed by the National

Oceanic and Atmospheric Administration (NOAA) for bivalves
(Kim et al., 2006) with a score of 0–4 (Supporting Information,
Table S1). Micrographs of hepatopancreas captured at ×400
magnification were imported into the software “ImageJ” and
external and internal (lumen) tubule areas were measured. The
lumen percentage area was calculated by dividing the internal
lumen area with the total tubule area and multiplying by 100.
Tissue degeneration through necrosis was ranked against a
semiquantitative scale that was designed specifically for the
present study (Supporting Information, Table S2). Tubules were
also ranked based on the R‐cell impairment scale used by
Mazurová et al. (2010). Epithelial lifting, tubule atrophy, lumen
percentage area, and R‐cell impairment comparisons were
analyzed for statistical significance using a one‐way ANOVA
and Tukey's honest significant difference test in RStudio (Ver.
3.6.0). Assumptions of equal variances and normality were
checked using Levene's and Shapiro–Wilk normality tests and
residual plots.

RESULTS
Hydrocarbon analysis

The Northwest Shelf 2 (NWS‐2) crude oil used in this ex-
periment is a light oil which is normal for Australian Northwest
shelf crude oils (Qi et al., 2011), with a density of 0.81mg/L and
viscosity of 3.45 cP at 20 °C. Polycyclic aromatic hydrocarbon
concentrations measured in source oil and sediments before and
after exposure are presented in Figure 2. The treatments,
nominal control, low (0.5mg/kg), and high (2mg/kg) sediments
had respective total PAH concentrations of 10.9± 0.3, 165± 1.7,
and 519± 5.5 ng/g before exposure and 12.6± 0.3, 196± 3.4,
and 192± 2.4 ng/g after exposure. Naphthalene and phenan-
threne were measured in control sediments pre‐ and post‐
exposure, possibly due to pre‐existing contamination in the
sediments collected from an urban environment. The lower
proportion of naphthalenes measured in sediments pre‐ and

TABLE 1: Semiquantitative scale for epithelial lifting on gill lamellae
in the greentail prawn

Score Description

0 No lifting of the majority of lamellae

1 Low‐level lifting, significantly less than one
half of lamellae have lifting

2 Moderate‐level lifting, approximately half of
lamellae have lifting

3 High‐level lifting, significantly more than one
half of lamellae have lifting

4 Severe‐level lifting, all lamellae have lifting

FIGURE 2: Polycyclic aromatic hydrocarbon (PAH) concentrations (ng/g) measured in the control, low (nominal concentration of 0.5mg/kg), high
(nominal concentration of 2mg/kg), and higher concentrations (scale from 0 to 1800 ng/g) of source oil (Northwest Shelf 2). N = naphthalene;
P = phenanthrene; F = fluorene; DBT = dibenzothiophene; C1–C4 indicate the alkyl congeners for each PAH.
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post‐exposure compared with the source oil is attributed to the
volatile and water‐soluble nature of this PAH. We would hy-
pothesize that these compounds were poured off with the
overlying water or lost in the flow‐through systems after dis-
solving in the water column, rather than adhering to the sedi-
ments. Crude oil was lost from tanks over the 4‐day exposure
period (Figure 2), indicating exposure to PAHs could not have
been sustained for a longer experimental time. Naphthalene,
phenanthrene, fluorene, and dibenzothiophene sediment con-
centrations decreased postexposure, with the exception of an
increase in naphthalene concentration in the low treatment
sediments after 90 h of exposure (Figure 2). A reduction in total
PAH concentrations could be caused by a number of factors,
including accumulation, and metabolism by prawns, sorption to
the tank's glass walls, and/or adsorbtion to the prawns’ carapace,
degradation by microbial communities, and/or desorbtion and
loss to overlying water from the sediments by burrowing prawns.

Polycyclic aromatic hydrocarbons with molecular weights
greater than that of phenanthrene are not abundant in light

crude oils such as the NWS‐2 oil used in our experiment
(Figure 2). We focused the tissue body burden analyses on
sensitive detection of the low molecular weight PAHs instead of
measuring the full spectrum of compounds, as we expected very
low concentrations of higher molecular weight PAHs in the
prawn muscle, to allow for lower detection limits and greater
accuracy in these measurements. Uptake of naphthalenes and
phenanthrenes was measured after 24 and 90 h of exposure,
while a rapid depuration was observed after transfer to clean
sediment for 24 and 72 h (Figure 3). Naphthalene uptake was
highly variable, probably due to the water‐soluble nature of
these hydrocarbons and the uneven exposure from sediment.
However, naphthalene was accumulated in proportion with
treatment: the low treatment measured 3.8± 2.0 and
17.1± 1.8 ng/g of naphthalene after 24 and 90 h, respectively,
and the high treatment measured 4.9± 1.9 and 34.9± 12.9 ng/g
of naphthalene after 24 and 90 h, respectively (Figure 3).
Accumulation of phenanthrene in muscle tissue was similar re-
gardless of dose after 24 h, with concentrations of 1.9± 0.9 and

FIGURE 3: Naphthalene and phenanthrene concentrations (ng/g) measured in prawn muscle tissues after both exposure and recovery periods.
Significant differences (p> 0.05) between treatments for individual exposure and recovery time points are indicated by letters.
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2.3± 0.5 ng/g after exposure to the low and high treatments,
respectively (Figure 3). After 90 h of exposure, the concentration
of phenanthrene decreased in muscle tissues in both treatments
to 0.3± 0.1 and 0.3± 0.2 ng/g, still significantly higher
(p= 0.048) than the control treatment at 0.02± 0.02 ng/g of
phenanthrene (Figure 3). Naphthalene and phenanthrene con-
centrations in the muscle tissue of exposed prawns reduced
dramatically after 24 and 72 h of exposure to clean sediments
(Figure 3). After a 24‐h recovery, naphthalene muscle concen-
trations reduced to 0.45± 0.45 and 0.19± 0.03 ng/g in the
low and high treatments, respectively (Figure 3). After a 72‐h
recovery, naphthalene muscle concentrations reduced to
0.29± 0.1 ng/g in the low treatment, whereas the high treat-
ment slightly increased to 0.38± 0.1 ng/g (Figure 3). After a 24‐h
recovery, phenanthrene muscle concentrations reduced to
0± 0.0 ng/g in the low and high treatments (Figure 3). After a
72‐h recovery, phenanthrene muscle concentrations reduced to

0.07± 0.04 and 0.12± 0.09 ng/g in the low and high treatments,
respectively (Figure 3).

Differential transcript abundance
Pairwise differential abundance analysis between 24‐h ex-

posure control and high treatment prawns identified 47 (six
higher and 41 lower) transcripts that were differentially abun-
dant (Supporting Information, Table S2). Financial constraints
prohibited the sequencing of the low exposure concentration.
Of these transcripts, 34 were annotated with a known function,
three had no annotation in the databases, and 10 were anno-
tated as an “uncharacterized protein.” Crustacean innate im-
munity transcripts reduced in abundance after 24 h of exposure
compared to the control, including the transcripts c‐type lectin
2, glucan pattern‐recognition lipoprotein, and cathepsin L
(Figure 4A). In addition, proteolytic transcripts including

FIGURE 4: Top 20 differentially abundant transcripts for each pairwise comparison. Colour bar indicates the abundances of the transcripts, red= high
and blue= low; (A) 24 h of exposure control versus 2mg/kg, (B) 90 h of exposure control versus 2mg/kg, and (C) 72 h of recovery control versus 2mg/
kg. ACDH‐6 = acyl‐CoA dehydrogenase 6; Act4C = cytoplasmic‐type actin 4; ALFC2 = anti‐lipopolysaccharide factor 2; APOD‐like = apolipoprotein D‐
like; ArthHc = athropod hemocyanin; C2H2‐type protein = C2H2‐type domain‐containing protein; CHY = chymotrypsin; CHY2B = chymotrypsin BII;
CP1A = carboxypeptidase A; CTNS = cystinosin homolog; ENPP6 = ectonucleotide pyrophosphatase/phosphodiesterase family member 6;
ENPP6‐like = glycerophosphocholine cholinephosphodiesterase; FABP = fatty acids binding protein; GAL3ST = putative galactose‐3‐O‐
sulfotransferase; glucan PRLP = glucan pattern‐recognition lipoprotein; H1 = Histone 1; H1.0‐B‐like = putative histone H1.0‐B‐like; HcV4 = hemocyanin
V4; IVL = involucrin; MEP = metalloendopeptidase; MT = metallothionein; MT1 = metallothionein 1‐like; PPA = inorganic pyrophosphatase; SLIT2‐like
= slit homolog 2 protein‐like; TG1 = thyroglobulin type‐1; TLSP2 = trypsin‐like serine proteinase 2; UNCH = uncharacterized protein; ZBED8 = ZBED8
protein; ZBED8 X1 = ZBED8 isoform X1 protein (note transcripts with an unknown function are annotated with their Trinity contig ID).
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FIGURE 5 Continued.
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Chymotrypsin and carboxypeptidase B‐like, and the detox-
ification transcript metallothionein 1‐like reduced in abundance
(Figure 4A). Several other detoxification transcripts, including
cytochrome P450 4 (CYP4) and thymidine phosphorylase (TP)
also reduced in abundance, but were not significant following
FDR correction (FDR= 0.06).

Pairwise differential abundance analysis between 90‐h ex-
posure control and high treatment prawns identified 14 tran-
scripts that were differentially abundant (two higher and 12
lower; Supporting Information, Table S3 and Figure 4B). Of
these transcripts, three were annotated with a known function,
eight had no annotation in the databases, and three were an-
notated as an “uncharacterized protein.” Of the three anno-
tated transcripts identified, Ectonucleotide pyrophosphatase/
phosphodiesterase family member 6 (ENPP6) is known to hy-
drolyze phospholipids (Zimmermann, 2021), apolipoprotein
D‐like (APOD‐like) is believed to be an important invertebrate
coloration protein in decapod crustaceans (Zhao et al., 2020),
and involucrin (IVL) is a transglutaminase substrate protein,
found initially in cell cytosol, which becomes cross‐linked at
sites in the plasma membrane, forming an insoluble layer be-
neath (Adhikary et al., 2004).

Pairwise differential abundance analysis between 72‐h re-
covery control and high treatment prawns identified a total of
13 differentially abundant transcripts (seven higher and six
lower in abundance; Supporting Information, Table S4). Of
these transcripts, seven had known functional annotations, one
was annotated with “uncharacterized protein,” and five had no
annotation in the databases. The detoxification transcript
metallothionein was higher in abundance in the recovery pe-
riod compared to the control, in addition two transcripts an-
notated probable acyl‐CoA dehydrogenase 6 (ACDH‐6) and
putative ACDH‐6 were also higher in abundance (Figure 4C).
Probable acyl‐CoA dehydrogenases are mitochondrial fla-
voenzymes responsible for catabolizing fatty acids and amino
acids (Swigonová et al., 2009). The lysosomal transcript cys-
tinosin homolog was lower in abundance and the antimicrobial
peptide transcript antilipopolysaccharide factor (ALF2) was
higher in abundance in the 72‐h recovery period (Figure 4C),
both of which are involved in crustacean innate immunity.

Functional annotation
Gene ontology enrichment analysis of these differentially

abundant transcripts identified 22 significantly enriched
gene ontology terms after 24 h of exposure to oil “spiked”

sediments, including “serine‐type endopeptidase activity,”
“proteolysis,” and “lipid binding” (Supporting Information,
Figure S6a). Only one gene ontology term, “pigment binding,”
was significantly enriched in the 90‐h exposure period. Six
enriched gene ontology terms were identified in the 72‐h re-
covery period, including “glycolipid biosynthetic process” and
“acyl‐CoA dehydrogenase” (Supporting Information,
Figure S6b).

The KEGG pathway enrichment analysis of the 24‐h ex-
posure period showed a significant reduction in 15 pathways
(Supporting Information, Table S7). These included DNA repair
pathways such as “nucleotide excision repair,” “Fanconi
anemia pathway,” and “base excision repair” (Figure 5),
translation pathways such as “RNA transport” and “ribosome,”
and cell growth and death pathways such as “cell cycle” and
“meiosis—yeast.” No pathways were found to be enriched in
the 90‐h exposure period. Eleven similar pathways that showed
a significant reduction in the 24‐h exposure period were found
to significantly increase in the 72‐h recovery period, including
the DNA repair, RNA translation, and cell growth and death
pathways (Supporting Information, Table S7).

Histology
Hepatopancreas and gill pathologies in prawns exposed to

low and high treatments indicated a trend of increasing severity
after 24 h of exposure compared to the time matched controls
(Table 2). In addition, after transfer to clean sediments
(recovery) for 24 and 72 h, the severity of pathologies across
both treatments, including percentage lumen area, tissue de-
generation, and R‐cell changes, continued to increase
(Table 2). However, the gill lamellae epithelial lifting scores of
2.1± 0.5 and 2.4± 0.2 in the low and high treatment prawns
after 72 h of recovery were similar to the time‐matched control
score of 2.6± 0.4, indicating possible recovery (Table 2 and
Supporting Information, Figure S3).

Percentage lumen area provided a quantitative measure of
tubule atrophy. A nonstatistically significant trend in increased
percentage lumen area was evident after 24 h of oil exposure,
where percentage lumen area increased from 24.0%± 5.9% to
30.1%± 2.8%, and 31.1%± 4.0% in low and high treatment
prawns, respectively. However, no difference was observed
between the time‐matched control and low and high treat-
ments after 90 h of oil exposure (Table 2 and Figure 6). Fol-
lowing 24 h of recovery, a significant increase in lumen area was
present in exposed prawns (40.1%± 5.6% and 41.7%± 3.8% in

FIGURE 5: Base excision repair pathway (ko03410; which repairs DNA damage caused by oxidation and alkylation from endo‐ and exogenous
sources), highlighting differentially abundant transcripts (green indicates a decrease in abundance and red indicates an increase). (A) The 24‐h
exposure period saw a significant decrease in pathway transcript abundance, compared to (B) the 72‐h recovery period, which saw a significant
increase. AlkA = DNA‐3‐methyladenine glycosylase II; APE1/APEX = AP endonuclease 1; APE2 = AP endonuclease 2; DpoI = DNA polymerase I;
Fen1 = flapendonuclease‐1; Fpg = formamidopyrimidine‐DNA glycosylase; HMGB1 = high mobility group protein B1; Lig = DNA ligase; Lig1 =
DNA ligase 1; Lig3 = DNA ligase 3; MBD4 = methyl‐CpG‐binding domain protein 4; MPG = DNA‐3‐methyladenine glycosylase; Mug = double‐
stranded uracil‐DNA glycosylase; MUTY = A/G‐specific adenine glycosylase; Nei = endonuclease VIII; NEIL1 = endonuclease VIII‐like 1; NEIL2 =
endonuclease VIII‐like 2; NEIL3 = endonuclease VIII‐like 3; Nfo = deoxyribonuclease IV; NTH = endonuclease III; OGG1 = N‐glycosylase/DNA lyase;
PARP = poly [ADP‐ribose] polymerase 1; PCNA = proliferating cell nuclear antigen; Polβ = DNA polymerase beta; Polλ = DNA polymerase lamba;
Polδ = DNA polymerase delta subunit 1; Polε = DNA polymerase epsilon subunit 1; RecJ = single‐stranded‐DNA‐specfic exonuclease; SMU =
single‐strand selective monofunctional uracil DNA glycosylase; Tag = DNA‐3‐methyladenine glycosylase I; TDG = thymine‐DNA glycosylase; Udg =
uracil‐DNA glycosylase; UNG = uracil‐DNA glycosylase; XRCC1 = DNA‐repair protein XRCC1; Xth = exodeoxyribonuclease III.
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FIGURE 6: (A) Hepatopancreas (24 h of exposure control) showing small signs of lumen debris (LB), tissue degeneration (TD), lumen fracture (LF),
and enlarged B cells. (B) Hepatopancreas (24 h of recovery low treatment) showing significant tissue loss (TL) and degeneration (TD), lumen debris
(LB), and enlarged B cells. (C) Percentage lumen area of hepatopancreas tubules at three time points for different crude oil exposure treatments.
Significant differences (p> 0.05) between treatments for individual exposure and recovery time points are indicated by letters.
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low and high treatment prawns) relative to the controls
(28.3± 0.8; F2,12= 4.26, P= 0.04), and after 72 h of recovery a
nonsignificant trend in increased percentage lumen area was
still evident (Table 2 and Figure 6). The lack of statistically
significant differences between treatments is likely to be due to
the variability observed within individual prawns, for example
one prawn's percentage lumen area ranged from 10.2% to
57.2% (Supporting Information, Figure S2).

DISCUSSION
In the present study, we identified transcriptomic and his-

tological level changes in greentail prawns exposed to sub-
lethal concentrations of crude oil. To our knowledge, our
study is the first to employ the use of both transcriptomics and
histological alteration to identify the effects of light, un-
weathered crude oil exposure on decapod crustaceans.
Prawns exposed to sublethal concentrations of crude oil for
24 h exhibited a lower abundance of transcripts involved in
innate immunity, detoxification, and proteolysis regulation.
Furthermore, KEGG pathway analysis indicated a negative
impact on nucleic acid repair, RNA transcription/translation,
and cell growth and death pathways after the 24‐h exposure
period, with impacts easing during the 72‐h recovery period.
Conversely, histopathological alterations continued to in-
crease in the digestive gland through the 24‐ and 72‐h re-
covery periods, including an increase in tubule lumen area
indicating tubule atrophy in the hepatopancreas. Overall,
evidence of changes in transcript abundances and cellular
degradation suggests that exposure to crude oil con-
taminated sediments can disrupt the innate immunity re-
sponse, nutrient metabolism, and detoxication mechanisms
employed by greentail prawns. These changes occurred after
a single dose of crude oil exposure, where a rapid loss of
PAHs in the higher concentration sediments was evident.
Impacts may have been even greater if the concentrations had
been constant. The findings from the present study are ex-
pected to provide insights into the potential risks of crude oil
exposure in prawns to inform future oil extraction and spill
management strategies.

Polycyclic aromatic hydrocarbons with molecular weights
greater than that of phenanthrene are not abundant in light
crude oils such as the NWS‐2 oil used in our experiment
(Figure 2). We focused the tissue body burden analyses on
sensitive detection of the low molecular weight PAHs, instead
of measuring the full spectrum of compounds, as we expected
very low concentrations of higher molecular weight PAHs in the
prawn muscle to allow for lower detection limits and greater
accuracy in these measurements.

Low molecular weight PAHs, such as naphthalene and
phenanthrene, are abundant in light crude oil and therefore
bioavailable to the greentail prawns. We observed a clear up-
take and assimilation of naphthalene and phenanthrene in
prawns following exposure to crude oil “spiked” sediments for
24 and 90 h (Figure 3). Multiple studies on fish (Snyder
et al., 2019; Struch et al., 2019), molluscs (Jenny et al., 2016),

and decapods (Douglas et al., 2018; Sagerup et al., 2016) have
also shown that low molecular weight PAHs such as naph-
thalene, phenanthrene, and fluorene, constitute a high pro-
portion of total PAH concentrations measured in tissues after
exposure to hydrocarbons. Specifically, naphthalene accumu-
lated at higher concentrations than phenanthrene in prawn
tissue, as seen in fishes exposed to hydrocarbons associated
with the Deepwater Horizon oil spill (Snyder et al., 2019; Struch
et al., 2019), and Arctic red king crab following exposure to
marine diesel (Sagerup et al., 2016). Greentail prawns dem-
onstrated an elimination of both naphthalene and phenan-
threne from the body as body burden concentrations reduced
after recovery, phenanthrene after only 24 h of recovery and
naphthalene after 72 h of recovery (Figure 3). A 3‐week re-
covery period also saw an elimination of PAHs from the Arctic
red king crab's hepatopancreas (Sagerup et al., 2016). Elimi-
nation can be through biotransformation of PAHs, and diffusion
and excretion of parent or metabolite PAHs (Meador, 2003),
but metabolite analysis is needed to determine exactly how
greentail prawns eliminate PAHs from their tissues. Never-
theless, transcriptomic analysis demonstrated a negative im-
pact of PAH exposure on immune response, detoxification,
energy metabolism, and essential physiological functions prior
to elimination in the recovery period.

The immune system in aquatic species, including fish,
crustaceans, and molluscs, is often sensitive to environmental
contaminants including hydrocarbons (Ito et al., 2021;
Nakayama et al., 2008; Su et al., 2017; Yu et al., 2018). Innate
immune response transcripts, including pattern recognition
receptors (PRRs), lysosomes, and hemocyanins lowered in
abundance after 24 h of exposure to crude oil contaminated
sediments compared to the control. C‐type lectins (CTLs) are
carbohydrate PRRs which play an important role in invertebrate
innate immunity through the recognition of pathogens and
initiation of subsequent immune responses (Jiang et al., 2016;
Qin et al., 2019; Zhang et al., 2018). C‐type lectin transcripts
including CTL, CTL2, and CTL4 were significantly lower in
abundance after 24 h exposure to crude oil (Supporting In-
formation, Table S2). A lower CLT expression was also seen in
green mussel embryos after 24 h of exposure to benzo(a)
pyrene (BaP; Jiang et al., 2016). In addition, altered expression
of CLT transcripts has been detected in decapods after ex-
posure to stressors such as ammonia (Si et al., 2020; Yu
et al., 2019) and cadmium (Sun et al., 2016). Glucan pattern‐
recognition lipoprotein is another PRR transcript that was lower
in abundance after 24 h of exposure and also plays an im-
portant role in activating immune responses, including phag-
ocytosis, clotting cascade, and the phenoloxidase‐activating
system (Lai et al., 2011; Sritunyalucksana & Söderhäll, 2000;
Wang & Wang, 2013). Lysosomes are also essential to crusta-
ceans’ innate immune system, providing protection against
pathogens (Guo et al., 2019, 2021; Yu et al., 2018). In addition,
lysosomal pathways and associated enzymes are sensitive to
various environmental stressors (Guo et al., 2021; Jiao
et al., 2020; Yu et al., 2018), as highlighted in the present study
which showed that the lysosomal enzyme transcripts cathepsin
L and legumain lowered in abundance after 24 h of exposure to
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oil‐contaminated sediments. Similarly, the lysosome pathway in
Chinese mitten crabs and the phagosome pathway in green
mussel embryos was altered following exposure to BaP (Jiang
et al., 2016; Yu et al., 2018). In addition, cathepsin L was also
lowered in expression after exposure to BaP in green mussels
(Jiang et al., 2016) and to chromium in Pacific white shrimp
(Jiao et al., 2020). Conversely, higher expression of cathepsin
L was found in decapods after exposure to cadmium (Sun
et al., 2016) and ammonia (Yu et al., 2019) when compared to
the control. Overall, suppression of immune‐related pathways
and transcripts from PAH exposure demonstrated in our study,
and in previous studies on fish (Nakayama et al., 2008), mol-
luscs (Jiang et al., 2016), and other crustaceans (Yu et al., 2018),
suggests greentail prawns could be susceptible to pathogens
while exposed to crude oil. Indeed, previous studies have
demonstrated increased susceptibility to infectious diseases
and mortality in prawns when exposed to stressors, including
PAHs (Ito et al., 2021; Kathyayani et al., 2019). Specifically, Ito
et al. (2021) showed exposure to phenanthrene caused a pro-
liferation of white spot syndrome virus in kuruma shrimp
(Penaeus japoncius), resulting in increased mortality.

Nutrient and energy metabolism is centered in the hep-
atopancreas of decapods (Si et al., 2020; Wang et al., 2014)
and is influenced by environmental stressors (Park et al., 2016;
Si et al., 2020; Yu et al., 2018). In the present study, the bio-
logical function gene ontology term “proteolysis” was sig-
nificantly enriched when comparing 24‐h exposure control and
high treatment prawns (Figure 5A). Proteolysis is the breakdown
of proteins via proteolytic enzymes into smaller peptides or
amino acids (Park et al., 2016), and is known to regulate other
processes such as immunity, apoptosis, osmoregulation, and
blood coagulation in crustaceans (Park et al., 2016; Russo
et al., 2018). In the present study, several proteolytic enzyme
transcripts lowered in abundance after exposure to crude oil
contaminated sediments for 24 h. These included, carbox-
ypeptidase B‐like, trypsin‐like serine proteinase 2, Chymotrypsin,
metalloendopeptidase, trypsin 3, and angiotensin‐converting
enzyme‐like (ACE‐like) transcripts (Figure 4A and Supporting In-
formation, Table S2). Transcriptional changes for trypsin and
carboxypeptidase B were also observed in swimming crabs
(Portunus trituberculatus) exposed to ammonia (Si et al., 2020).
Conversely, proteolytic enzyme transcripts were higher in abun-
dance after exposure to cadmium in freshwater crabs (Sinopo-
tamon henanese; Sun et al., 2016), to chromium in
the Pacific white shrimp (Litopenaeus vannamei), and to the an-
tifouling biocide, Irgarol, in Macrophthalmus japonicus (Park
et al., 2016). Many proteolytic enzymes, including trypsin,
chymotrypsin, carboxypeptidase A isoforms, and carbox-
ypeptidase B isoforms, are also essential to the function of the
“pancreatic secretion” (ko04972) pathway and have been shown
to be significantly enriched in Chinese mitten crabs (Eriocheir
sinensis) and green mussel (Perna viridis) embryos exposed to
BaP (Jiang et al., 2016; Yu et al., 2018). Although “pancreatic
secretion” was not significantly enriched in the present study on
greentail prawns, our analyses indicated that other pathways in-
volved in genetic information processing and cellular processes
were significantly enriched.

Fifteen KEGG pathways were significantly enriched,
showing a lower abundance of pathway transcripts in greentail
prawns after 24 h of exposure to crude oil contaminated sedi-
ments (Supporting Information, Table S7). Transcription and
translation pathways such as “ribosome,” “RNA transport,”
and “spliceosome” were significantly enriched in the present
study (Supporting Information, Figure S4), as reported for other
aquatic invertebrates following exposure to environmental
contaminants. Previous studies demonstrated significant en-
richment of the “ribosome” pathway following BaP and copper
exposure (Guo et al., 2019; Jiang et al., 2016) and of the
“spliceosome” pathway following cadmium exposure (Zhang
et al., 2019). We also observed a significant enrichment in cell
growth and death pathways, including “cell cycle” and
“meiosis—yeast” in greentail prawns after 24 h of exposure
(Supporting Information, Table S7). The “cell cycle” pathway
was also significantly enriched in Pacific white shrimp after
exposure to Rapamycin, a pharmaceutical drug (Wu
et al., 2019). Of concern, DNA replication and repair pathways,
including “base excision repair,” “mismatch repair,” and
“Fanconi anemia pathway,” which are the first line of defence
against genotoxicants, were enriched in greentail prawns
after 24 h of exposure to crude oil contaminated sediments
(Figure 5 and Supporting Information, Table S7). Exposure
to various stressors, including PAHs, causes genotoxic
damage in decapods (C. H. Cheng, Ma, et al., 2019; Vijayavel &
Balasubramanian, 2008; Wen & Pan, 2016), indicating the ne-
cessity of such pathways to be working effectively. The “base
excision repair” pathway is of particular interest as it is the
primary repair pathway utilized for small base lesions from
oxidation and alkylation damage caused by a range of en-
dogenous and exogeneous sources (Almeida & Sobol, 2007).
The “base excision repair” pathway was significantly enriched
in freshwater crabs exposed to cadmium and in Pacific white
shrimp exposed to chromium (Jiao et al., 2020; Sun
et al., 2016). However, after prawns were transferred to clean
sediment tanks for a 72‐h recovery period a reversal in genetic
information processing and cellular processes pathways was
observed.

The KEGG pathway analysis showed similar significantly
enriched pathways with higher transcript abundances after a
72‐h recovery period in greentail prawns (Supporting In-
formation, Table S7). The change to these pathways indicates a
recovery at the molecular level, as transcripts in significantly
enriched pathways such as “cell cycle” (Supporting In-
formation, Figure S8) and “base excision repair” increased in
abundance (Figure 5B). In addition, innate immune response
transcript, anti‐lipopolysaccharide factor (Figure 5C), and nu-
trient metabolism transcripts, ACDH‐6 and putative ACDH‐6,
increased in abundance after a 72‐h recovery period in
greentail prawns (Figure 4C). These findings are consistent with
other fish and crustacean examples. English sole (Parophrys
vetulus) showed improvement in health indices, including re-
duction in CYP1A activities, levels of biliary FACs, DNA adduct
formation, and histopathological lesions, after remediation of a
PAH‐contaminated site (Myers et al., 2008). Red king crabs
(Paralithodes camtschaticus) showed a marked decrease in
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PAH concentration in the hepatopancreas and no differences in
biomarker responses between control and exposed crabs after
a 3‐week recovery period following marine diesel exposure
(Sagerup et al., 2016). The reversal in transcript abundances of
important pathways identified in the greentail prawn indicates
the ability to recover from short‐term exposure to light, un-
weathered crude oil after the cessation of exposure. However,
further assessments are needed to determine the recovery
capacity of prawns after chronic, long‐term exposure to
crude oil.

Sensitivity to low environmentally relevant PAH exposure
concentrations, and subsequent onset of histological alteration
responses, is likely to vary between individuals, more so than if
exposed to high dose concentrations. Histological examination
of gill and hepatopancreas pathologies indicated a trend of
increased severity after 24 h of exposure to low concentration
crude oil contaminated sediments. Interestingly, cellular
damage and lumen area continued to increase after prawns
were transferred to clean sediments, suggesting that although
PAHs had been excreted, KEGG pathways reversed, and the
number of significantly altered transcripts lowered from 47 to
13 after 72 h of recovery, a longer period of time is required for
tissue recovery (Table 2 and Figure 6). A previous study on
spotted dragonet (Repomucenus calcaratus, a flat fish) showed
similar trends of tissue damage following controlled PAH ex-
posure, where the presence of lesions continued to increase
throughout the recovery period (90 h), which could be due to
either a delayed onset of cellular damage or a delay in recovery
after exposure to clean sediments (Hook, Mondon, Revill,
Greenfield, Stephenson, et al., 2018). The significant tissue loss
in the hepatopancreas after 24 h of recovery, indicated by an
increase in the lumen area, could be related to the altered
abundance of the lysosomal transcripts cathepsin L and legu-
main, and proteolytic enzyme transcripts, which are known to
be involved in apoptosis regulation (Park et al., 2016; Russo
et al., 2018). Similarly, the severity of necrosis measured in fish
liver and gill tissues was connected to the altered abundance of
inflammatory and apoptotic transcripts after exposure to hy-
drocarbons (Hook, Mondon, Revill, Greenfield, Stephenson,
et al., 2018). Incorporating histological examination into tran-
scriptomic studies supports a weight of evidence assessment of
impacted physiological processes and transcriptional changes,
particularly in non‐model species.

Research effort increased significantly after the Deepwater
Horizon oil spill, consequently much is now known about the
health impacts of hydrocarbon exposure in fish species (Brown‐
Peterson et al., 2017; Pilcher et al., 2014; Whitehead
et al., 2012). Yet despite the commercial and ecological im-
portance of decapods, the number of studies investigating the
molecular and physiological effects of crude oil exposure in
decapods remains limited (Beyer et al., 2016). Impacts on in-
nate immunity, nutrient and energy metabolism, and DNA re-
pair pathways were evident in greentail prawn after short‐term
exposure to light, unweathered crude oil contaminated sedi-
ments. The findings in our study indicate a number of potential
biomarkers in prawns suitable for future oil extraction and spill
monitoring programs, including immune response and

proteolytic enzyme gene expression assays, immunotoxic bio-
markers such as ProPO and phenoloxidase activity, and phag-
ocytic activity (X. Ren et al., 2014a). Furthermore, innate
immunity and proteolytic genes are known to be conserved in
decapods (Fang et al., 2013; Lai & Aboobaker, 2017), sug-
gesting these biomarkers could also be used for other decapod
species. Finally, the present study showed cellular damage to
the hepatopancreas continued into the recovery phase of our
study, highlighting the extended time needed for tissue
recovery compared to the molecular response mechanisms.

CONCLUSIONS
The present study shows sublethal impacts in greentail

prawns exposed to environmentally relevant concentrations of
light, unweathered crude oil. Body burden analysis showed
uptake of naphthalene and phenanthrene concentrations after
24 and 90 h of exposure to crude oil contaminated sediments,
and rapid decrease in concentrations after 24 and 72 h of re-
covery in clean sediments, providing evidence of PAH elimi-
nation by the greentail prawn. Transcriptomic analysis
indicated immune response and nutrient metabolism sup-
pression after 24 h of exposure to crude oil contaminated
sediments. Furthermore, KEGG analysis showed transcription
and translation, cell growth and death, and DNA replication
and repair pathways were negatively impacted after 24 h of
exposure. In particular, the impact on DNA repair pathways is
concerning as they protect the DNA from genotoxic sub-
stances, such as hydrocarbons, from causing damage.
Encouragingly, after a 72‐h recovery period, immune response
and nutrient metabolism transcripts increased, and DNA repair
and cellular processes pathways were enriched, indicating a
possible recovery at the molecular level. However, digestive
tubule atrophy, quantified by percentage lumen area, con-
tinued to increase in severity after 24 and 72 h of recovery,
indicating the duration of impact on health is likely to exceed
the oil exposure period. The lack of genomic research on
economically and environmentally important decapods limits
the understanding of transcriptomic change in response to
hydrocarbon exposure, with some differentially abundant
transcripts remaining unknown or uncharacterized. However,
the information provided in the present study can be used to
inform monitoring programs for future oil extraction activity
and spills, and to add to the growing genetic resources
available for the ecologically and economically important
decapods.
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