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ABSTRACT: Computational methods such as machine learning approaches have a strong
track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to
predict in vivo endpoints is more limited due to the high number of parameters and processes
that may influence the outcome. Recent studies have shown that the combination of chemical
and biological data can yield better models for in vivo endpoints. The ChemBioSim approach
presented in this work aims to enhance the performance of conformal prediction models for in
vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes.
Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and
cardiological (DICC) issues, were selected for this study due to their high relevance for the
registration and authorization of new compounds. Since the sparsity of available biological assay
data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning
model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets.
Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as
descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a
method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and
bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors
increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean
efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model
performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed
detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo
endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological
informationwhich is not necessarily captured by chemical descriptorsin an automated workflow without the need for adding
experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All
bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded
from https://doi.org/10.5281/zenodo.4761225.

■ INTRODUCTION

Modern toxicity testing heavily relies on animal models, which
entails ethical concerns, substantial costs, and difficulties in the
extrapolation of results to humans.1 The increasing amount
and diversity of not only drugs but also more generally of
chemicals present in the environment and the lack of
knowledge about their toxic potential require the development
of more efficient toxicity assessment tools.
In recent years, in silico tools for toxicity prediction have

evolved into powerful methods that can help to decrease
animal testing.2−4 This is particularly true when applied in
tandem with in vitro methods.5 Machine learning (ML)
models trained on data sets of compounds with known
activities for an assay can be used as predictive tools for
untested compounds.6 These models are generally trained on
chemical and structural features of compounds with measured
activity values.7 However, the outcomes of in vivo toxicological

assays depend on a number of biological interactions such as
the administration, distribution, metabolism, and excretion
(ADME) and the interaction with different cell types.4 The
ability of chemical property descriptors to capture these
complex interactions and, consequently, the predictive power
of ML models trained on these molecular representations are
limited. By the example of classification models for hit
expansion8,9 and toxicity prediction,10−13 recent studies have
shown that the predictive power of in silico models can be
improved by the amalgamation of chemical and biological

Received: April 20, 2021
Published: June 21, 2021

Articlepubs.acs.org/jcim

© 2021 The Authors. Published by
American Chemical Society

3255
https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marina+Garcia+de+Lomana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrea+Morger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ulf+Norinder"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roland+Buesen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+Landsiedel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrea+Volkamer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrea+Volkamer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+Kirchmair"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miriam+Mathea"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.1c00451&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?goto=supporting-info&ref=pdf
https://doi.org/10.5281/zenodo.4761225
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jcisd8/61/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/7?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00451?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


information. More specifically, it has been shown that
bioactivity descriptors could help to infer the activity of new
substances by capturing the similarity of compounds in the
biological space, i.e., identifying those compounds that behave
similarly in biological systems (but may be chemically
dissimilar). However, options to integrate biological data into
models are limited by the sparsity of the available experimental
data. In principle, the use of bioactivity features in ML requires
compounds of interest to be tested in all assays conforming the
bioactivity descriptor set. Norinder et al.14 however showed, by
the example of conformal prediction (CP) frameworks built on
random forest (RF) models, that the use of predicted
bioactivity descriptors in combination with chemical descrip-
tors can yield superior cytotoxicity and bioactivity predictions
while circumventing the problems of sparsity of data and
extensive testing. CP models are a robust type of confidence
predictors that generate predictions with a fixed error rate
determined by the user.15 To estimate the confidence of new
predictions, the predicted probabilities of a set of compounds
with known activity (calibration set) are used to rank the
predicted probabilities for new compounds and calculate their
so-called p-values (i.e., calibrated probabilities). An additional
feature of CP models is their ability to handle data imbalance
and predict minority classes more accurately.16

The CP approach offers the advantage of a mathematical
definition of a model’s applicability domain (AD); i.e.,
chemical space within the model makes predictions with a
defined reliability based on the allowed error rate.17 Other
common approaches for defining the applicability domain are
based on compound similarity or predicted probability and a
more or less arbitrary (user-defined) threshold. However, CP
models return a statistically robust class membership
probability for each class. Under the exchangeability
assumption of the samples (assumption also made for classical
ML models), the observed error rate returned by CP models
will be equal to (or very close to) the allowed (i.e., user-
defined) error rate.
The aim of this study is to determine if, and to what extent,

classification models for the prediction of in vivo toxicity
endpoints can benefit from integrating chemical representa-

tions with data from biological assays. To include the biological
assay information in the models, predicted bioactivities were
derived from 373 CP models, each representing an individual
biological assay. The results obtained for models trained
exclusively on chemical descriptors (“CHEM”), trained
exclusively on bioactivity (“BIO”) descriptors, or trained on
the combination of chemical and bioactivity descriptors
(“CHEMBIO”) were analyzed for three toxicological in vivo
endpoints: in vivo genotoxicity (with the in vivo micronucleus
test (MNT)), drug-induced liver injury (DILI), and cardio-
logical complications (DICC).
The in vivo MNT assay is used to detect genetic

(clastogenic and aneugenic) damage induced by a substance
causing the appearance of micronuclei in erythrocytes or
reticulocytes of mice or rats.18 DILI describes the potential
hepatotoxicity of a compound. Although there is no consensus
method for assessing the DILI potential of a compound, the
U.S. Food and Drug Administration (FDA) proposed a
systematic classification scheme based on the FDA-approved
drug labeling.19 The DICC endpoint comprises five cardio-
logical complications induced by drugs and annotated in
clinical reports: hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction.
Severe organ toxicity, as observed with DILI and DICC, but

also genotoxicity (which can lead to carcinogenesis and
teratogenic effects) must be avoided and hence recognized
early in the development of industrial chemicals and drugs.
Both hepatic and cardiovascular adverse effects are listed as
two of the most common safety reasons for drug withdrawals20

and failures in drug development phases I−III.21 Moreover,
REACH, the chemical control regulation in the European
Union, is requiring the in vivo MNT as follow up of a positive
result in any genotoxicity test in vitro.22 The Organisation for
Economic Co-operation and Development (OECD) Guideline
474 and the International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use
(ICH) list the in vivo MNT assay as one of the recommended
tests for detecting genotoxicity, as it can account for ADME
factors and DNA repair processes.18,23

Table 1. Overview of Collected Assay Data

database/
endpoint description source

ToxCast
database

• 222 high-throughput screening assays, including endpoints related to cell cycle and morphology control, steroid
hormone homeostasis, DNA-binding proteins, and other protein families (e.g., kinases, cytochromes, and
transporters)

ToxCast database version
3.324

eMolTox
database

• 136 in vitro assays, including endpoints related to mutagenicity, cytotoxicity, hormone homeostasis,
neurotransmitters, and several protein families (e.g., nuclear receptors, cytochromes, and cell surface receptors)

Ji et al.25

genotoxicity • AMES mutagenicity assay AMES assay: eChemPortal,26

Benigni et al.,28 Hansen et
al.29

• chromosome aberration (CA) assay

• mammalian mutagenicity (MM) assay CA and MM assays:
eChemPortal, Benigni et al.

bioavailability • human oral bioavailability assay Falcoń-Cano et al.27

permeability • Caco-2 assay Wang et al.30

thyroid
hormone
homeostasis

• deiodinases 1, 2, and 3 inhibition assays Garcia de Lomana et al.31

• thyroid peroxidase inhibition assay
• sodium iodide symporter inhibition assay
• thyroid hormone receptor antagonism assay
• thyrotropin-releasing hormone receptor antagonism assay
• thyroid stimulating hormone receptor agonism and antagonism assays

P-glycoprotein
inhibition

• P-glycoprotein (ABCB1) inhibition assay Broccatelli et al.32
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This study introduces an improvement of the in silico
prediction of in vivo toxicity endpoints by considering the
activity of compounds in multiple biological test systems. We
show that predicted bioactivities, which present the benefit of
not needing further experimental testing for new compounds,
are often enough to achieve ML models with increased
performance.

■ MATERIALS AND METHODS
Data Sets. In the following paragraphs, the data from

biological assays used for generating descriptors based on
predicted bioactivities are introduced followed by the data
related to the three in vivo toxicological endpoints (MNT,
DILI, and DICC). Finally, the reference data sets used to
analyze the chemical space covered by the in vivo endpoints
are described.
All information required for the download of any of the data

sets used for modeling in this study (including download links,
exact json queries, as well as MD5 file checksums) are provided
in Table S1 (for the in vivo endpoints) and Table S2 (for the
biological assays).
Biological Assays. For the generation of descriptors from

predicted bioactivities, a total of 373 data sets (each belonging
to a single biological assay) were collected (Table 1): 372 data
sets from in vitro assays obtained from the ToxCast,24

eMolTox,25 and eChemPortal26 databases and the literature,
and one data set from an in vivo assay (a human oral
bioavailability assay) obtained from Falcoń-Cano et al.27 From
the ToxCast and eMolTox databases, only endpoints with at
least 200 active and 200 inactive compounds listed (after
structure preparation and deduplication; see the section
Structure Preparation for details) were considered for
modeling. Besides the endpoints selected from these two
databases, data sets for assays covering genotoxicity, bioavail-
ability, permeability, thyroid hormone homeostasis disruption,
and P-glycoprotein inhibition were considered (Table 1). A
more detailed description of the data collection and activity
labeling of these data sets is provided in Table S2. The
numbers of active and inactive compounds in each of the 373
data sets (after the structure preparation and deduplication
steps) are reported in Table S3.
In Vivo Endpoints. During the development of this study, a

larger number of publicly available in vivo endpoint data sets
were investigated for their suitability for modeling. Taking into
account the quantity and quality of the data, as well as the
regulatory relevance of the toxicological endpoints, three in
vivo endpoints were selected for this study: MNT, DILI, and
DICC. The collection of the respective data sets is introduced
in the following paragraphs.
MNT Data Set. For the MNT assay, data from the European

Chemicals Agency (ECHA) available at the eChemPortal were
collected. Only experimental data derived according to the
OECD Guideline 474 (or equivalent) were considered. All
assay outcomes annotated as unreliable or related to
compounds that are cytotoxic were discarded. All compounds
(identified based on CAS numbers) with conflicting activity
data were also removed. Additional data were obtained from
the work of Benigni et al.,28 which includes curated data sets
from the European Food Safety Authority (EFSA) data. In
addition, data sets for MNT on mouse (1001 compounds) and
rat (127 compounds) compiled by Yoo et al.33 and containing
binary activity labels for MNT were obtained. These additional
data sets include data, among other sources, from the FDA

approval packages, the National Toxicology Program (NTP)
studies, the U.S. EPA GENETOX database, the Chemical
Carcinogenesis Information System (CCRIS) and the public
literature. The mouse and rat data sets did not contain
overlapping compounds and an overall MNT result
(independent from the species) was derived for the 1128
compounds in the data set. The final data set (after the
structure preparation and deduplication steps) contains a total
of 1791 compounds (316 active and 1475 inactive compounds;
Table 2).

DILI Data Set. The data for the DILI endpoint were
obtained from the verified DILIrank data set compiled by the
FDA.34 In this data set, drugs are classified as “Most-DILI-
concern”, “Less-DILI-concern”, “No-DILI-concern”, and “Am-
biguous-DILI-concern”. For the purpose of this study,
compounds in the “Most-DILI-concern” and “Less-DILI-
concern” classes were labeled as ″active″ and compounds in
the “No-DILI-concern” class were labeled as ″inactive″.
Compounds of the ″Ambiguous-DILI-concern″ class were
removed from the data set. The final binary DILI data set
contained 692 compounds (445 active and 247 inactive
compounds).
DICC Data Set. For the DICC endpoint, the data set

compiled by Cai et al.35 on different cardiological complica-
tions was used. In their work, Cai et al. gathered individual
data sets for hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction from five databases:
Comparative Toxicogenomics Database (CTD),36 SIDER37

(side effect resource), Offsides38 (database of drugs effects),
MetaADEDB39 (adverse drug events database), and Drug-
Bank.40 In this study, a unique DICC data set was built that
combines the five data sets of Cai et al. In the DICC data set,
compounds were labeled as “active” if they were measured to
be active on at least one of the cardiological endpoints (and
active, inactive, or “missing” on the remaining endpoints), and
as “inactive” otherwise. This resulted in a data set of 3256
compounds after the structure preparation and deduplication
steps (988 active and 2268 inactive compounds; see section
Structure Preparation for details).

Reference Data Sets. Three reference data sets were
obtained to represent the chemical space of pesticide active
ingredients, cosmetic ingredients, and drugs in order to analyze
the coverage of these types of substances by the in vivo
endpoint data sets. The chemical space of pesticides was
represented by the 2417 compounds (after structure
preparation and deduplication; see the section Structure
Preparation for details) collected in the Pesticide Chemical
Search database41 (from the Environmental Protection
Agency’s (EPA) Office of Pesticide Programs) and down-
loaded from the CompTox Dashboard.42 The chemical space
of cosmetic ingredients was represented by the 4503
compounds (after structure preparation and deduplication)
included in the COSMOS cosmetics database,43 created as part

Table 2. Overview of the Data Sets for the in Vivo
Endpoints

number of

endpoint active compounds inactive compounds ratio

MNT 316 1475 1:5
DILI 445 247 2:1
DICC 988 2268 1:2
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of a European Union project for determining the safety of
cosmetics in industry without the use of animals, and
downloaded from the CompTox Dashboard as well. The
chemical space of drugs was represented by the 10087 (after
structure preparation and deduplication) approved, exper-
imental, or withdrawn drugs contained in DrugBank.44

Structure Preparation. The structures of all molecules
were prepared starting from the respective SMILES strings,
which are directly available from most data resources. For
resources that do not provide SMILES strings (e.g.,
eChemPortal and the work of Yoo et al.), this information
was obtained by querying the PubChem PUG REST
interface45 with the CAS numbers. CAS numbers for which
no SMILES was retrieved by this PubChem search were
queried with the NCI/CADD Chemical Identifier Resolver.46

For the 977 compounds that did not produce any match with
this procedure either, the “RDKit from IUPAC” node of
RDKit47 in KNIME48 was used in an attempt to derive a
structure from the chemical name. For 131 out of these 977
compounds, the chemical structure was successfully derived
with this method. The remaining 846 compounds, without
known chemical structures (e.g., including compound mixtures
and unspecific formulas), were removed.
All obtained SMILES notations were interpreted, processed,

and standardized with the ChemAxon Standardizer49 node in
KNIME. As part of this process, solvents and salts were
removed, aromaticity was annotated, charges were neutralized,
and structures were mesomerized (taking the canonical
resonant form of the molecule). All compounds containing
any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br,
and I were removed from the data set with the “RDKit
Substructure Filter” node in KNIME. In the case of
multicomponent compounds, the structures of the individual
components forming the compound were compared. More
specifically, the canonical SMILES of the components were
derived with RDKit, and in case the components had identical
canonical SMILES, one of them was kept; otherwise, the whole
compound was filtered out. Lastly, compounds with fewer than
four heavy atoms were discarded.
Canonical SMILES were derived with RDKit from all

standardized compounds. For each endpoint data set, duplicate

canonical SMILES with conflicting activity labels were
removed from the respective endpoint data set.
A KNIME workflow with the specific steps and settings for

the preparation of the structures as well as for the calculation
of the chemical descriptors (see Descriptor Calculation
section) is provided in the Supplementary Information.

Descriptor Calculation. Chemical Descriptors. Molecular
structures were encoded using count-based Morgan finger-
prints with a radius of 2 bonds and a length of 2048 bytes,
computed with the ″RDKit Count-Based Fingerprint″ node in
KNIME. Morgan fingerprints encode circular environments
and capture rather local properties of the molecules. To
capture global molecular properties, all 119 1D and 2D
physicochemical property descriptors implemented in the
“RDKit Descriptor Calculation” node in KNIME were
calculated. These descriptors encode properties such as the
number of bonds and rings in a molecule, the number of
particular types of atoms, or the polarity and solubility of the
compound. Two acidic and two basic pKa values were also
calculated per molecule with the “pKa” KNIME node from
ChemAxon.50 Missing pKa values (for molecules without two
acidic or basic groups) were replaced with the mean value of
the data set.

Bioactivity Descriptors. For the calculation of the
bioactivity descriptors, first, 373 CP modelsone per
assaywere fitted on the respective biological assay sets (see
the Data Sets section for details). The workflow for the
generation of these models is explained in detail in the “Model
development” section. With the generated bioactivity CP
models, two p-values for each compound contained in the
three in vivo endpoint data sets were predicted (Figure 1).
Both the p-values for the active (p1) and for the inactive (p0)
classes for each assay were used as bioactivity descriptors,
resulting in 746 descriptors.

Chemical Space Analysis. To visualize the chemical space
covered by the data sets of the in vivo endpoints,
dimensionality reduction was performed on a subset of 23
physically meaningful and interpretable molecular descriptors
generated with RDKit (Table S4). For that purpose, the
principal component analysis (PCA) implementation of scikit-
learn51 was applied on the merged in vivo endpoint data sets

Figure 1. Workflow for the derivation of the bioactivity descriptors for the in vivo toxicity CP models. For each biological assay, a conformal
prediction model is built and used to predict the p-values of the compounds in the three in vivo endpoint data sets. These predicted p-values are
used as bioactivity descriptors, in combination with chemical descriptors, for training the models of the in vivo endpoints.
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(merged on the canonical SMILES). A further visualization of
the chemical space defined by the complete CHEM and
CHEMBIO descriptor sets was performed with the Uniform
Manifold Approximation and Projection (UMAP).52 This
method conducts a dimension reduction while maintaining the
global structure of the data (i.e., the pairwise distance between
samples). For each of the three in vivo endpoint data sets, a
two-dimensional projection was performed on the CHEM and
CHEMBIO descriptor sets, respectively, with 50 nearest
neighbors, a minimum distance of 0.2, and use of the
“euclidean” metric as the distance measure.
The molecular similarities of the compounds of the in vivo

endpoint data sets and the collected pesticides, cosmetics, and
drugs reference data sets were quantified with Tanimoto
coefficients calculated from Morgan fingerprints with a radius
of 2 bonds and a length of 1024 bits (fingerprints computed
with the ″RDKit Fingerprint″ node in KNIME).
Model Development for the Biological Assays and In

Vivo Toxicity Endpoints. Workflow for the Development
of CP Models. The same model development workflow was
followed to train the CP models used for the calculation of the
bioactivity descriptors, as well as to train the final models for
the in vivo toxicity endpoints. Note that the structure
preparation and chemical descriptor calculation was done in
KNIME, but the following workflow was implemented in
Python. All hyperparameters of the functions used in the
workflow for deriving the CP models are specified in Table S5.

Prior to model development, a variance filter was applied to
all features used as input for the in vivo toxicity CP models
(including the bioactivity features if present) in order to
remove any features with low information content. More
specifically, any features with a variance (among the
compounds in the respective data set) of less than 0.0015
were removed. Note that, in order to preserve the homogeneity
of the input features, this variance filter was not part of the
workflow for the biological assay CP model development (used
to calculate the bioactivity descriptors). Also, in all cases
(including the biological assay CP models), the features were
scaled (by subtracting the mean and scaling to unit variance)
prior to model development by applying the StandardScaler
class of scikit-learn on each endpoint-specific data set.
For CP model development, each endpoint-specific data set

was divided into 80% training and 20% test set using the
StratifiedShuffleSplit class of scikit-learn (Figure 2). For
performance assessment, this splitting of the data was
performed within a 5-fold cross-validation (CV) framework.
During each CV run, the training set was further divided
(stratified) into a proper training set (70% of the training set)
and a calibration set (30% of the training set) with the
RandomSubSampler class from the nonconformist Python
package.53 An RF model was trained on the proper training set
using the scikit-learn implementation (with 500 estimators and
default values for the rest of the hyperparameters). The trained
RF model was then used to predict the probabilities of the
compounds in the calibration set. From these probabilities, the

Figure 2. Workflow of the aggregated Mondrian CP set up for the development of the models for the biological assays and the in vivo endpoints.
The aggregated CP framework included 20 random splits in calibration and proper training data sets, on which individual RF models were trained,
and the resulting p-values per test compound were afterward averaged. The feature selection step was implemented with a lasso model and only
included in the development of the in vivo toxicity CP models (in vivo toxicity CP models without feature selection were also trained for
comparison).
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so-called nonconformity score (nc score) was derived by
applying a nonconformity error function, which yields low nc
scores for predictions close to the true value. Here, the inverse
probability error function from the nonconformist package
(named “InverseProbabilityErrFunc”) was used to calculate the
nc scores. This error function is defined as

= − ̂ |P y xnc score 1 ( ),i

with P̂(yi | x) being the probability of predicting the correct
class.
By definition, errors produced by CP models do not exceed

the significance level ε (i.e., indicated error rate) under the
assumption that training and test compounds are independent
and belong to the same distribution. However, these errors
may be unevenly distributed across classes. To achieve
conditional validity with respect to the active and inactive
classes, the Mondrian approach was used. Following the
Mondrian CP approach, a sorted nc score list with the
calculated nc scores of the calibration set was created for each
class (active/inactive) independently. After calculating the nc
scores (one per class) for the test compounds, their rank (with
regard to the calibration set) in the respective list was
calculated. The rank of the nc score of each test compound
defines the predicted p-value for the respective class.
An aggregated CP approach54 was conducted by repeating

the random splitting of the proper training and calibration sets
20 times. As a result, the p-values for a test set were calculated
20 times and the final p-value was derived from the median
value.
CP models output a set of labels, which contain one class

(“active” or “inactive”), both classes, or none. If the final p-
value for any of the classes was higher than the significance
level ε, the compound was assigned to that class (or to both
classes if both p-values were higher than ε). Thus, based on the
p-values and the significance level, the CP model determines
whether a compound is within the applicability domain (AD)
of the model.55 Compounds within the AD of the model are
assigned to one or both classes and those outside of the AD are
assigned to the empty class (i.e., no class label is assigned).
The predicted p-values obtained by applying the bioactivity

CP models on the in vivo endpoint data sets (for the
generation of the bioactivity descriptors) were used as is, and
no class labeling was performed (i.e., no significance level was
assigned). Instead, the p-values for both classes were
considered.
In Vivo Toxicity CP Models Including Feature Selection.

The workflow for developing the in vivo toxicity CP models
that include feature selection is similar to the general workflow
described in the previous section but additionally includes a
least absolute shrinkage and selection operator (lasso)
model.56 Lasso is a regression method that penalizes the
coefficients of the input features for the selection of variables
and the regularization of models. Some feature coefficients are
shrunk to zero and therefore eliminated from the model.
In our workflow, a lasso model with the LassoCV

implementation of scikit-learn was trained on the complete
training set (prior to splitting the complete training set into
proper training and calibration set; see Figure 2). To optimize
the regularization parameter alpha of the lasso model, an inner
5-fold CV is applied. The list of coefficients assigned to each
feature is obtained, and those features with a coefficient
shrunken to zero are filtered out from the data set. Only the

selected features (i.e., with a coefficient higher than zero) are
used as input for the aggregated CP workflow described in the
previous section.
In order to use the coefficients for ranking the features

according to their importance for the analysis of the models,
the mean among the absolute values of the coefficients
obtained during each outer CV run was calculated.
Since the lasso model discards highly correlated features,

considering only the lasso coefficients for the analysis of the
most relevant features could lead to an underestimation of the
importance of some biological assays. Therefore, this analysis
was mainly based on the feature importance values of the RF
models without feature preselection with lasso. The feature
importance values of RF were extracted, and the mean across
CV runs were calculated. Lastly, to better estimate the relative
importance of each feature, a min-max normalization with the
MinMaxScaler class of scikit-learn (with a range of 0.01 to
one) was applied on the mean coefficients higher than zero and
on the mean feature importance values of RF.

Performance Evaluation of CP Models. Two important
metrics for the evaluation of CP models were calculated based
on all predictions of the respective test sets: the validity and
the efficiency. CP models are proven to be valid (i.e., guarantee
the error rate indicated by the user) if the training and test data
are exchangeable.15 To achieve the indicated validity of the
predictions, CP models output a set of class labels that can be
empty, contain both labels, or only one of the labels (i.e., single
class predictions). The validity is defined as the ratio of
predictions containing the correct label (the “both” class set is
therefore always correct and the “empty” set is always wrong).
The efficiency measures the ratio of single class predictions
(i.e., predictions containing only one class label) and,
therefore, how predictive a model for a given endpoint is.
Additionally, the F1 score, Matthews correlation coefficient

(MCC), specificity, sensitivity, and accuracy (both overall and
independently for each class) were calculated (on the single
class predictions only), to determine the model quality. The F1
score is the harmonic mean of precision and recall and is
robust against data imbalance. The MCC considers all four
classes of predictions (true positive, true negative, false
positive, and false negative predictions) and takes values in
the range of −1 to +1 (a value of +1 indicates perfect
prediction). This metric is also robust against data imbalance.
The specificity is determined by the proportion of inactive
compounds correctly identified, while the sensitivity is
determined by the proportion of active compounds correctly
identified. The accuracy is defined as the ratio of correct
predictions.
The CP models were evaluated at a significance level ε of

0.2, i.e., at a confidence level (1 − ε) of 0.80. The set of
predicted classes at this confidence level will contain the true
class label in at least 80% of the cases (for valid models). This
significance level was selected because it usually offers an
adequate trade-off between efficiency and validity.57,58

The difference in performance between models with distinct
descriptors was evaluated with the nonparametric Mann−
Whitney U test.59 For each pair of models compared, the
distribution of values obtained in the different CV runs for a
given performance metric (e.g., efficiency) was given as input
in the “mannwhitneyu” function implemented in SciPy.60
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■ RESULTS AND DISCUSSION

In this study, we investigated if, and to what extent, the
consideration of predicted bioactivities can improve the
performance of in silico models for the prediction of the in
vivo toxicity endpoints MNT, DILI, and DICC. To this end,
we first trained CP models for 373 biological assays and
applied them on the in vivo endpoint data sets for deriving the
predicted bioactivities. For training the models for the three in
vivo endpoints, we embedded three types of RF models in CP
frameworks: (a) CHEM models based exclusively on chemical
descriptors, (b) BIO models based exclusively on (predicted)
bioactivity descriptors, and (c) CHEMBIO models based on
the combination of both types of descriptors.
Chemical Space Analysis. In order to develop an

understanding of the chemical space represented by the
training data from the three in vivo endpoints (MNT, DILI,
and DICC), we compared the overlap of the chemical space
between the in vivo endpoint data sets and three reference data
sets. The overlap between data sets serves as an indication of
the relevance of models trained on the in vivo data sets for
different chemical domains (pesticides, cosmetics, and drugs).
The reference data sets represent pesticides (2417 compounds
from the EPA’s Office of Pesticide Programs), cosmetics (4503
cosmetics ingredients from the COSMOS database), and drugs
(10,087 approved, experimental, or withdrawn drugs from
DrugBank).
We found that the MNT data set covers 16% of the

pesticides reference set, 10% of the cosmetics reference set,
and 8% of the drugs reference set, considering exact matches
only (exact matches defined as any pair of compounds with a
Tanimoto coefficient of 1.00; Table 3). The DICC data set
covers 34% of the drugs reference set but just 7 and 6% of the
cosmetics and pesticides reference sets, respectively. The
lowest coverage rates were observed for the DILI data set (as it
is also the smallest data set), with just 6, 2, and 1% for the
drugs, pesticides, and cosmetics reference sets, respectively.

For assessing the structural relationships between the active
and inactive compounds present in the MNT, DILI, and DICC
in vivo data, we referred to PCA. The PCA was performed on
selected interpretable molecular descriptors, which describe,
e.g., the number of bonds, rings, and particular types of atoms
in a molecule, or the polarity and solubility of the compounds
(Table S4). The three in vivo toxicity data sets were combined
(containing 4987 compounds) and used to perform the PCA.
The PCA plots reported in Figure 3 indicate that the

physicochemical properties of the active and inactive
compounds of the individual in vivo endpoint data sets are
mostly similar, with only a few outliers. Outliers with high
values for the first principal component (PC1, x axis) are
molecules with high molecular weight. Outliers with low values
in the second component of the PCA (PC2, y axis) are mostly
acyclic and polar, while molecules with high values on this axis
have a high number of rings. Most outliers are inactive on the
three investigated endpoints. The loadings plots (indicating
how strongly each descriptor influences a principal compo-
nent) are provided in Figure S1.
In order to investigate the chemical space with regard to the

full set of descriptors used for model training, we utilized
UMAP to compare the two-dimensional projections of the
CHEM and CHEMBIO descriptor sets. UMAP conducts a
dimension reduction of the data while maintaining the pairwise
distance structure among all samples. In general, no clear
separation of activity classes emerged for any of the three
endpoints. Moreover, no significant difference was observed in
the projections derived from the two descriptor sets regarding
their ability to cluster compounds with different activity labels.
The resulting UMAP plots are provided in Figure S2.
The structural diversity within the individual compound sets

was determined based on the distribution of pairwise
Tanimoto coefficients (based on atom-pair fingerprints)61

among (a) all pairs of active compounds, (b) all pairs of
inactive compounds, and (c) all pairs consisting of one active
and one inactive compound (Figure 4). For the three in vivo
endpoints, the distribution of pairwise compound similarities
shows a tailing toward low similarities for the three sets of
compounds (a, b, and c), indicating a high molecular diversity
in the data sets. It is also shown that compounds in one class
are not more similar to each other than they are to compounds
of the other class, since the distribution of similarities of the
three subsets is in all cases comparable.
Hence, the classification of compounds in the active and

inactive classes based only on their structural similarity is not
straightforward and complementary information may be
necessary for in silico methods to be able to differentiate
between classes.

Performance of CP Models for Deriving the Predicted
Bioactivities. With the aim to improve the predictive
performance for in vivo toxicity endpoints, we included
information about the outcome of the compounds in biological
assays (obtained from the ToxCast database, eMolTox,
eChemPortal, and other publications) as input for the in
vivo toxicity CP models. To avoid increased sparsity of the
data due to missing experimental values, a fingerprint based on
predicted bioactivities was developed. More specifically, for
each of the 373 collected biological assay data sets, a
bioactivity CP model was trained on molecular fingerprints
and physicochemical property descriptors (see Materials and
Methods for details).

Table 3. Percentage of Compounds in the Reference Data
Sets Covered by Compounds in the Three In Vivo Endpoint
Data Sets (MNT, DILI, DICC) at Given Similarity
Thresholds

endpoint

parameter
Tanimoto coefficient

thresholda MNT DILI DICC

% coverage
pesticides

1.0 16 2 6
≥0.8 17 2 7
≥0.6 29 3 11
≥0.4 62 10 36
≥0.2 99 85 97

% coverage
cosmetics

1.0 10 1 7
≥0.8 14 1 9
≥0.6 29 3 17
≥0.4 68 17 58
≥0.2 99 89 99

% coverage drugs 1.0 8 7 34
≥0.8 9 8 37
≥0.6 16 15 51
≥0.4 40 34 73
≥0.2 99 96 100

aTanimoto coefficients calculated from binary Morgan fingerprints
(1024 bits and radius 2).
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CP models are a type of confidence predictor that use the
predictions made by the model on a set of compounds with
known activities (calibration set) to rank and estimate the
certainty of the predictions for new compounds57 (see
Materials and Methods section for details). These models
output a set of labels (instead of only one label), which can
contain one class (active or inactive), both classes, or none of
them. Therefore, two important metrics for the evaluation of
CP models are the validity, which measures the ratio of
prediction sets containing the correct label (i.e., the “both”
class is always correct), and the efficiency, which measures the
ratio of single class predictions. Furthermore, the quality of the
single class predictions (covered by the AD of the model) can
be evaluated with common metrics like the F1 score or the
MCC. The performance of models developed in this work was
evaluated on the validity, efficiency, and F1 score results
referring to mean values obtained by 5-fold CV at a
significance level ε of 0.2 (Table S6). The MCC, specificity,
sensitivity, and overall and class-wise mean accuracies of the
single class predictions are also provided in Table S6.
The AD of ML models defines the region in chemical space

where the model makes predictions with a given reliability.
Depending on the focus of the study, there are different ways
to define the AD. For example, unusual compounds or
unreliable predictions can be flagged, assuming that they are
likely outside the aforementioned region. In our case, error rate

reduction is the focus of defining an AD; hence, it is mandatory
to use confidence measures to identify objects close to the
decision boundary and reject their predictions. A large
benchmark study from Klingspohn et al. concluded that
built-in class probability estimates performed constantly better
than the alternatives (e.g., distance measures) in terms of error
reduction.62,63 In the current study, we are using the RF
prediction score (best confidence measure for RF) as
nonconformity measure for the CP. Hence, it is expected
that no other nonconformity measure (or method) will
outperform the prediction score to estimate the confidence
of the predictions.
All 373 bioactivity CP models showed adequate mean

validities for the given significance level (for which the
expected validity is 0.80) that ranged from 0.78 to 0.83 (Figure
5) and thus obtained the defined error rate. The mean
efficiency values and F1 scores spread over a wider range.
There were 19 CP models (5%) with mean efficiencies lower
than 0.70 (Figure 6). The lowest mean efficiency (0.41) was
obtained for the ToxCast assay “ATG Ahr CIS dn”. On the
other hand, mean efficiencies higher than 0.90 were achieved
for 101 CP models (27%), where the highest mean efficiency
of 0.99 was obtained for the two eMolTox assays “Substrates of
cytochrome P450 2C19” and “Differential cytotoxicity
(isogenic chicken DT40 cell lines)”, and the two ToxCast
assays “TOX21 ERa LUC VM7 antagonist 0.1nM E2” and

Figure 3. Principal component analysis based on a selection of interpretable molecular descriptors generated with RDKit on the merged in vivo
toxicity data sets. Inactive compounds are colored in red and active compounds in green. The variance explained by the first two principal
components is indicated in the axes.

Figure 4. Distribution of pairwise Tanimoto coefficients based on atom-pair fingerprints for three types of compound pairs: (a) active-to-active
(blue), (b) inactive-to-inactive (orange), and (c) active-to-inactive (green).
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“TOX21 SBE BLA antagonist ratio”. Hence, the ratio of single
class predictions obtained by the bioactivity CP models was
relatively high and only in a few cases the models showed poor
efficiencies. In general, the models with the lowest mean
efficiency had highly imbalanced classes and a low number of
active compounds, while the contrary was observed for the
models showing the highest mean efficiencies.
Seventy-seven models (21%) obtained F1 scores higher than

0.90, indicating a very good performance of these models on
the single class predictions. There were 149 CP models (40%)
with mean F1 scores lower than 0.70. Only for 15% of all
models, the mean F1 scores were lower than 0.60, indicating
poor performance. The worst-performing model was that for
the ToxCast assay “ATG Ahr CIS dn” (mean F1 score of 0.38)
and the best-performing ones for the eMolTox assays
“Modulator of Neuropeptide Y receptor type 1”, “Modulator
of Urotensin II receptor”, and “Agonist of Liver X receptor
alpha” (F1 score of 1.00). One explanation for the good
predictivity could be the fact that the chemical space of the
active and inactive compounds is well differentiated (PCA
plots of the chemical space of these data sets are shown in
Figure S3). The classification of these compounds might
therefore be easier than for data sets with more similar
compounds between classes.
The performance of all CP models for the biological assays

can be found in the Supplementary Information (Table S6).
In Vivo Toxicity CP Model Performance. The in vivo

toxicity CP models were trained on three sets of descriptors:

(i) the chemical descriptor set (“CHEM”) comprising
physicochemical features and the molecular fingerprint; (ii)
the bioactivity descriptor set (“BIO”) containing the predicted
p-values for the biological endpoints; and (iii) the “CHEM-
BIO” descriptor set, which contains all features from both the
CHEM and the BIO descriptor sets.
The number of features in the CHEM descriptor set (2171

features) is almost three times higher than the number of
features of the BIO descriptor set (746 features), and together,
they add up to 2917 features. The underrepresentation of
bioactivity features in the CHEMBIO descriptor set and, more
generally, the high number of total features could lead to a
dilution of relevant information in the high-dimensional
feature space. Moreover, since no prefiltering has been applied
to the BIO descriptor set, some features may be redundant or
less relevant for the specific in vivo endpoints. In order to test
whether a reduction of the feature space could increase the
performance of the in vivo toxicity CP models, we introduced a
feature selection procedure based on a lasso model (which
assigns coefficients, i.e., weights, to all features) that we applied
prior to model training (see Materials and Methods for
details).
With each of the CHEM, BIO, and CHEMBIO descriptor

sets, two types of models were trained: (i) baseline models
based on all features of the respective descriptor set (only
filtering out those features with low variance; see Materials and
Methods for details) and (ii) models based on a subset of
features selected with a lasso model (built on the feature subset
after the variance filter). For the model training, only those
features with coefficients higher than zero in the lasso model
were selected (see Materials and Methods for details).
The models based on the preselected set of features (based

on (ii) lasso procedure) generally performed better (details
will be discussed together with the individual in vivo endpoint
performances below) and also present the computational
advantage that only the p-values for the selected biological
assays need to be computed to build the bioactivity descriptor
for new compounds. Therefore, in the following paragraphs,
only the results of these models will be further discussed. The
results from the baseline models without feature selection with
lasso (as described in (i)) are presented in Figure S3 and Table
S7. All models were evaluated on the mean validity, efficiency,
and F1 score (on the single class predictions) over 5-fold CV
at a significance level ε of 0.2. The MCC is presented in Table
4 (see discussion in the next paragraph); specificity, sensitivity,
and overall and per class accuracy data are provided in Table
S8. The differences in the performance among models with

Figure 5. Histogram of the performance distribution of the CP
models for the biological assays. All models were valid but their
efficiencies and F1 scores showed a high degree of variability.

Figure 6. Percentage of the 373 bioactivity CP models showing mean efficiencies and mean F1 scores in the four given ranges.
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different descriptors are evaluated with a Mann−Whitney U
test at a p-value <0.05.
It is important to consider the inherent noise and errors in

experimental data, which sets the upper limit for the models’
performance, as a model can only be as good as the data it is
trained on.64 Hence, models trained on chemical descriptors
only, which already achieve high performance rates, may not
benefit from the addition of bioactivity fingerprints, as the

noise in the data may be the bottleneck in these cases.
Unfortunately, there is no information available on the noise in
the data sets under investigation. Since studies such as that by
Zhao et al.65 have shown that low levels of noise are often
tolerated by models while the removal of suspicious data
points often decreases model performances and causes
overfitting issues, we decided to not attempt to identify and
remove noise in the data.

Table 4. Average Performance of the CP Models Generated from a Selected Set of Featuresa

endpoint descriptor validity STD validity efficiency STD efficiency F1 score STD F1 score MCC STD MCC

MNT CHEM 0.77 0.02 0.76 0.05 0.61 0.02 0.28 0.05
BIO 0.82 0.03 0.81 0.05 0.70 0.03 0.46 0.06
CHEMBIO 0.81 0.03 0.85 0.03 0.70 0.03 0.44 0.07

DILI CHEM 0.78 0.05 0.91 0.04 0.74 0.05 0.49 0.09
BIO 0.81 0.04 0.83 0.07 0.76 0.04 0.53 0.07
CHEMBIO 0.81 0.03 0.88 0.04 0.77 0.03 0.55 0.06

DICC CHEM 0.79 0.02 0.84 0.02 0.72 0.03 0.46 0.05
BIO 0.79 0.02 0.96 0.02 0.81 0.01 0.63 0.02
CHEMBIO 0.79 0.02 0.94 0.01 0.82 0.01 0.65 0.03

aMean and standard deviation (STD) calculated over a 5-fold CV. The highest mean per metric and endpoint is highlighted (bold).

Figure 7. Distribution of the validity, efficiency, and F1 score values obtained within the 5-fold CV framework for the (a) MNT, (b) DILI, and (c)
DICC CP models built on the different descriptor sets after feature selection. The CHEM descriptor set includes the molecular fingerprint and
physicochemical descriptors; the BIO descriptor set includes the predicted p-values for a set of biological endpoints (bioactivity descriptor); the
CHEMBIO descriptor set includes the previous two descriptor sets. Significant differences in the distribution (p-value <0.05) are denoted by a star.
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To evaluate the influence of the predicted bioactivities on
model performance, the results of the in vivo toxicity CP
models (including feature selection with lasso) based on the
CHEM, BIO, and CHEMBIO descriptor sets were analyzed
for each of the three in vivo endpoints.
For the MNT endpoint, the mean validities obtained by the

two models including the BIO descriptor set (0.82 (±0.03)
with the BIO and 0.81 (±0.03) with the CHEMBIO descriptor
sets) were significantly higher than the validity of the model
trained on the CHEM descriptor set alone (mean validity of
0.77 (±0.02); Figure 7, Table 4). While the validity of the
model based on the CHEM descriptor set (0.77 ± 0.02) was
lower than the expected validity at a significance level of 0.2
(i.e., expected validity of 0.80), the validity could be restored
by adding the bioactivity descriptors (in the BIO and
CHEMBIO descriptor sets). The mean efficiency obtained
with the CHEMBIO descriptor set (0.85 ± 0.03) was
significantly higher than the one obtained with the CHEM
descriptor set alone (0.76 ± 0.05) but also higher than with the
BIO descriptor set (0.81 ± 0.05) only. The two models
including the BIO descriptor set significantly increased the
predictive performance of the single class predictions, as
reflected by the F1 score. More specifically, the model based
on the CHEM descriptor set yielded a mean F1 score of 0.61
(±0.02), while the models based on the BIO and CHEMBIO
descriptor sets both obtained a mean F1 score of 0.70 (±0.03).
Thus, the model based on the CHEMBIO descriptor set not
only increased the number of single class predictions but also
the accuracy of these predictions.
The analysis of the number and type of the features selected

with lasso for the models based on the CHEMBIO descriptor
set showed that a total of 157 features were selected, 30 of
which were bioactivity features (19%). Of the 15 features with
the highest lasso coefficients, seven were bioactivity features
and eight are chemical features (Table S10). Compared to the
models without feature selection, the efficiency of the
CHEMBIO MNT model including feature selection was
significantly higher (0.07 higher mean efficiency). Otherwise,
the difference in the performance between models with and
without feature selection (only comparing models with the
same descriptor set) was not significant.
The DILI models obtained mean validities between 0.78

(±0.05; with the CHEM descriptor set) and 0.81 (±0.04 with
the BIO and ±0.03 with the CHEMBIO descriptor sets). The
distribution of efficiencies within the CV from models trained
on the different descriptor sets was not significantly different.
However, the mean efficiencies ranged from 0.83 (±0.07; with
the BIO descriptor set) to 0.91 (±0.04; with the CHEM
descriptor set; Figure 7). The mean F1 score based on the

single class predictions was also comparable among the three
models and was between 0.74 (±0.05) with the CHEM
descriptor set and 0.77 (±0.03) with the CHEMBIO
descriptor set. Although there is no model for DILI that
outperforms the others, the models including biological
features (CHEMBIO and BIO) have a slightly higher mean
validity and F1 score (while a lower number of single class
predictions is obtained compared to the model trained on the
CHEM descriptor set). Thus, both the BIO and CHEM
descriptor sets may contain relevantbut not complement-
inginformation for the prediction of the DILI endpoint. In
the model based on the CHEMBIO descriptor set, 648
features were selected by the lasso model, 59 of which were
bioactivity features (9%). The smaller percentage of bioactivity
features (compared to the number of features in the MNT
model) among the selected features also reflects the fact that
including the bioactivity descriptor set did not improve the
performance of the models significantly for this endpoint.
Nevertheless, among the 15 features with the highest lasso
coefficients, nine were bioactivity features and six were
chemical features (Table S10). Compared to the models
without feature selection by lasso, the efficiencies of the BIO
and CHEMBIO models were significantly increased (up to
0.08 higher mean efficiency).
In the case of the DICC endpoint, the models based on each

of the three different descriptor sets yielded mean validities of
0.79 (±0.02). The models trained on the BIO and CHEMBIO
descriptor sets showed significantly higher efficiencies (0.96 ±
0.02 and 0.94 ± 0.01, respectively) than the model trained on
the CHEM descriptor set (0.84 ± 0.02, Figure 7). Not only the
ratio of single class predictions (i.e., efficiency) was improved
in the models including the BIO descriptor set but also the
quality of these predictions. The two models including the BIO
descriptor set obtained significantly higher F1 scores (mean F1
score of 0.81 (±0.01) with the BIO and 0.82 (±0.01) with the
CHEMBIO descriptor sets) than the model based on the
CHEM descriptor set (mean F1 score of 0.72 (±0.03)). The
significantly better performance of the DICC models making
use of the BIO descriptor set over the DICC models based
solely on CHEM descriptors is also reflected in the nature of
the features selected by lasso from the CHEMBIO descriptor
set: among the 666 features selected, 101 are bioactivity
features (15%). Furthermore, the bioactivity features were
assigned high coefficients by the lasso model, and from the top
50 features (ranked after the mean coefficient), 34 belong to
the bioactivity descriptor set (15 out of the top 15 features are
bioactivity features; Table S10). Compared to the models
without feature selection, the efficiencies of the two models
including the BIO descriptor set decreased when the feature

Table 5. Summary of Model Performances of the ChemBioSim Models and Existing Methods

endpoint model
mean

sensitivity
mean

specificity evaluation modeling approach comments

MNT Yoo et al. 0.54−
0.74

0.77−0.93 5% leave-
many-out

Leadscope Enterprise and CASE Ultra software variations related to different modeling
approaches

our method 0.78 0.76 5-fold CV CP built on RF models CHEMBIO model with feature selection
DILI Ancuceanu et

al.
0.83 0.66 nested CV meta-model with a naiv̈e Bayes model trained

on output probabilities of 50 ML models
our method 0.78 0.78 5-fold CV CP built on RF models CHEMBIO model with feature selection

DICC Cai et al. 0.69−
0.75

0.72−0.81 5-fold CV combined classifier using neural networks
based on four single classifiers

results refer to five cardiological
complications endpoints evaluated
independently

our method 0.83 0.86 5-fold CV CP built on RF models CHEMBIO model with feature selection
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selection was included (up to 0.03 lower mean efficiency).
Also, the mean F1 score of the model trained on the CHEM
descriptor set decreased by 0.04 when including the feature
selection procedure. One possible explanation for the decrease
in performance is the potential overfitting of the models
without feature selection to the training data due to the high
number of features.
In summary, it was shown that the addition of bioactivity

descriptors in the form of predicted p-values for a set of
biological assay outcomes can improve the predictive ability of
CP models with regard to the number of single class
predictions as well as to the quality of these predictions.
However, this effect and its magnitude were endpoint-
dependent and not achieved in all cases. It was also shown
that including feature selection before training, the models can
help to discard irrelevant features favoring those more relevant
for the specific endpoint.
Comparison with Existing Models. Several in silico

models for MNT, DILI, and DICC are described in the
literature (Table 5). However, to our knowledge, no CP
models have been previously developed for these endpoints.
Note that the studies cannot be directly compared given
differences in underlying data and techniques. Also, the
evaluation of the models differs since the quality of the
predictions of CP models is in general evaluated on single class
predictions only. However, considering existing models can
help to put the results of this study into context.
Yoo et al.33 recently collected data sets for MNT in mice and

rats, containing 1001 and 127 compounds, respectively. They
developed statistical-based models with the Leadscope and
CASE Ultra software combined with different balancing
techniques for the mouse data set based on chemical features
and structural alerts (functional groups or substructures
frequently found in molecules eliciting a determined biological
effect). Their best model with regard to specificity (i.e., the
proportion of inactive compounds correctly identified) on a
5% leave-many-out framework yielded a mean specificity of
0.93 but a mean sensitivity (i.e., the proportion of active
compounds correctly identified) of only 0.54. The model with
the highest sensitivity (and also with the most balanced
sensitivity-to-specificity ratio) obtained a mean specificity of
0.77 and a mean sensitivity of 0.74. To train our MNT CP
models, we combined the mouse and rat data sets from Yoo et
al. and added further data sources (see Materials and Methods
section) to obtain a data set with 1791 compounds. For
comparison, the specificity and sensitivity values obtained by
our models trained on the CHEMBIO descriptor set including
feature selection with lasso were also calculated (Table 5). The
CHEMBIO model for the MNT endpoint yielded a mean
specificity of 0.76 and a mean sensitivity of 0.78. Thus,
compared to the most balanced model of Yoo et al., our model
showed a slightly higher sensitivity and comparable specificity
on a significantly larger data set (790 additional compounds).
Several in silico models with adequate predictive perform-

ance have already been reported for the DILI endpoint.66−68 In
a recent study based on the same data set as our models,
Ancuceanu et al.68 built 267 different models combining
feature selection techniques with ML algorithms. Meta-models
using the output of 50 ML models as input for a final model
were developed. Their meta-model with the highest balanced
accuracy (0.75) evaluated in a nested CV was built training a
naiv̈e Bayes model on output probabilities of 50 ML models.
This model yielded a mean specificity of 0.66 and a mean

sensitivity of 0.83. In comparison, our CHEMBIO DILI model
yielded a much more balanced sensitivity-to-specificity ratio.
The mean specificity and sensitivity obtained by our model
were both 0.78.
Although in silico models for cardiological complications are

more scarce, Cai et al.35 compiled data sets for five different
cardiological complications (hypertension, arrhythmia, heart
block, cardiac failure, and myocardial infarction), on which our
DICC data set is based, and developed a combined classifier
for each of the five endpoints. These classifiers yielded mean
specificities between 0.72 and 0.81 and sensitivities between
0.69 and 0.75 (depending on the endpoint). Our CHEMBIO
model for the DICC endpoint yielded a mean specificity of
0.86 and a mean sensitivity of 0.83, thus increasing the
performance observed for the previous models (especially with
regard to the sensitivity).
Overall, our models yielded a high balanced sensitivity-to-

specificity ratio and often generally good performance. It
should be considered that the existing models used for
comparison were built on complicated and highly optimized
model architectures for the studied endpoint, while in this
study, we used simple RF models without hyperparameter
optimization embedded in a CP framework for the predictions
with the aim of comparing the different descriptors.

Analysis of Feature Importance to Discover Bio-
logical Relationships. Understanding which bioactivity
features are most important for the prediction can help to
identify the most relevant assays for an endpoint and to
discover unknown biological relationships. From the complete
CHEMBIO descriptor set (i.e., the descriptor set without
feature selection with lasso), we analyzed the 15 descriptors
that were assigned the highest feature importance values by the
RF model. The reason for using the complete set of
CHEMBIO descriptors instead of the subset of features
selected by the lasso method (which generally yields better
performing models) is that the lasso model discards highly
correlated features during the feature selection. Therefore,
feature importance analysis involving a descriptor preselection
with lasso may lead to an underestimation of the importance of
some of the features.
The RF model for the MNT endpoint ranked the features

from (i) the AMES assay, (ii) the eMolTox assay for
mutagenicity, and (iii) the eMolTox assay for agonism on
the p53 signaling pathway as the most important features
(Table S9). These three in vitro assays are known to be
biologically related to the MNT endpoint: the AMES and
mutagenicity assays evaluate the genotoxic potential of
compounds in vitro by measuring the capability of substances
to induce mutations in bacterial strains. DNA damage leading
to these gene mutations could also cause the chromosome
aberrations observed in the MNT.69 The tumor suppressor
p53 has the capacity of preventing the proliferation of cells
with a damaged genome and is also referred to as “the
Guardian of the Genome”.70 The p53 signaling pathway is
activated i.a. when DNA damage accumulates in a cell. As a
result, a mechanism of cell cycle arrest, cellular senescence or
apoptosis is initiated. Since genotoxic damage is one of the
primary triggers of the activation of the p53 signaling pathway,
the detection of agonism of the p53 pathway could be an
indication of the genotoxic activity of a compound, which
could also lead to micronuclei formation in vivo.71 The
contribution of the p53 signaling pathway for the prediction of
MNT in vivo is highlighted by the high feature importance
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assigned to features corresponding to further assays related to
this endpoint (ToxCast assays “TOX21 p53 BLA p3 ratio,”
“TOX21 p53 BLA p5 ratio,” and “TOX21 p53 BLA p2 ratio”
(each measuring the ratio of two measurements with the
inducible beta lactamase (BLA) reporter); Table S9). Also the
biological function of the constitutive androstane receptor
(CAR) and aryl hydrocarbon receptor (AhR) could explain the
high importance assigned by the model to the ToxCast assay
“TOX21 CAR antagonist” and the eMolTox assay “Activator
the aryl hydrocarbon receptor (AhR) signaling pathway.” The
AhR and the CAR are ligand-activated transcription factors
functioning as sensors of xenobiotic compounds. Upon
activation of these receptors, i.a. the expression of enzymes
involved in the metabolism of xenobiotic compounds, is
upregulated.72,73 The downregulation of enzymes detoxifying
compounds (or their metabolites) mediated by CAR
antagonists, as well as the AhR-mediated upregulation of
enzymes activating compounds to form genotoxic metabolites
seem to contribute to the observed effects in the MNT. The
remaining features among the 15 most important features for
MNT are related to the eMolTox assay “Antagonist of the
farnesoid-X-receptor (FXR) signaling pathway.” The FXR, also
called bile acid receptor, is a nuclear receptor that regulates,
among other things, bile acid and hepatic triglyceride levels.74

Its possible biological relationship with genotoxicity has not
been reported so far (to the best of our knowledge).
Comparing the features with the highest feature importance
values with RF to the features with the highest lasso
coefficients during feature selection (Table S9 and Table
S10), an overlap of the assays for AMES, the p53 signaling
pathway, and the CAR antagonism was observed, highlighting
the relevance of these biological endpoints for the prediction of
MNT.
Although in the case of DILI the performance of the RF

models making use of bioactivity descriptors was not superior
(see Table 4) over that of the models trained on chemical
descriptors only, 14 out of the 15 top-ranked features were
bioactivity features. The highest feature importance was
obtained for a chemical descriptor (smr VSA10) that captures
polarizability properties of compounds. The bioactivity
features ranked at positions 3 and 4 are the two p-values (of
the active and inactive classes) for human oral bioavailability,
respectively. Since any compound must be absorbed and
distributed in order to be able to elicit any kind of biological
response, bioavailability is essential to induce liver injury.
Moreover, orally administered substances undergo a hepatic
first pass before they become systemically available. Other than
that, several features related to modulators of G protein-
coupled receptors were of high importance (see Table S9).
Despite the lack of a clear biological relationship between liver
injury and opioid receptors (kappa, mu and delta) or
muscarinic acetylcholine receptors (M2, M3, M4 and M5),
the activity of compounds against these receptors showed high
predictivity for DILI. Between the features with the highest
feature importance values for RF and the features with the
highest lasso coefficients (Table S10) we found an overlap of
descriptors for the bioavailability, mu opioid receptor, and
muscarinic acetylcholine receptor assays.
Consistent with the DILI model, also the DICC model

assigned high ranks (rank 1 and rank 4) to the two features
related to human oral bioavailability (i.e., p-values for the
active and inactive classes). The importance of these features is
plausible, as substances first need to be absorbed in order to be

able to elicit any response. We also found the ToxCast assay
“TOX21 ERa LUC VM7 agonist”, an assay for detecting
agonists of the estrogen receptor alpha, to have a high
relevance value assigned by the DICC RF model. There is
evidence about the important correlation between estrogen
levels and cardiovascular diseases.75 The cardioprotective
effects shown by estrogen derive from the increase in
angiogenesis and vasodilation as well as the decrease in
oxidative stress and fibrosis. Another feature that was assigned
a high importance is agonism on the retinoid X receptor (RXR;
eMolTox assay “Agonist of the RXR signaling pathway” and
ToxCast assay “TOX21 RXR BLA agonist”). Following its
activation, RXR forms homo- or heterodimers with other
nuclear receptors (e.g., thyroid hormone receptor), regulating
the transcription of several genes and therefore playing a role
in diverse body functions. It has been shown that the
functionality of RXR influences, for example, the composition
of the cardiac myosin heavy chain, thus affecting the correct
functionality of the heart.76 The induction of phospholipidosis,
a phospholipid storage disorder in the lysosomes, was also
assigned a high importance value by the DICC RF model.
There is still controversy whether phospholipidosis is a toxic or
an adaptive response, as it does not necessarily result in target
organ toxicity.77 However, a high percentage of compounds
inducing phospholipidosis has been found to also inhibit the
human ether-a-̀go-go-related gene (hERG),78,79 an ion channel
that contributes to the electrical activity of the heart. Inhibitors
of hERG can lead to fatal irregularities in the heartbeat
(ventricular tachyarrhythmia).80 Another bioactivity that was
of high importance for the prediction of cardiological
complications is the agonism of the p53 signaling pathway
(ToxCast assays “TOX21 p53 BLA p2 ratio” and “TOX21 p53
BLA p3 ratio”). As already mentioned, the p53 transcription
factor is related to tumor suppressor mechanisms of the cell,
but it also inhibits the hypoxia-inducible factor-1 (Hif-1) in the
heart. Inhibition of Hif-1 hinders cardiac angiogenesis (i.e., the
formation of new blood vessels). This hindrance presents a
problem in cases of cardiac hypertrophy (an adaptive response
to increased cardiac workload), as blood pressure overload can
lead to heart failure.81,82 Recently, heart failure has also been
related to DNA damage. Higo et al.83 showed that single-
stranded DNA damage is accumulated in cardiomyocytes of
failing hearts and that mice lacking DNA repair mechanisms
are more prone to heart failure. This relationship between
DNA damage and heart failure could also explain the high
relevance assigned by the DICC RF model to the three
features related to genotoxicity in cells lacking DNA damage
response pathways (from the eMolTox assay “Differential
cytotoxicity against isogenic chicken DT40 cell lines with
known DNA damage response pathways - Rad54Ku70 mutant
cell line” and the ToxCast assay “TOX21 DT40 657”). The
comparison of the most important features for RF with the
features assigned the highest coefficients by lasso showed an
overlap of the descriptors for the bioavailability and estrogen
agonism assays. Furthermore, other assays related to
genotoxicity (and correlated with the ones with a high feature
importance shown in Table S9) were also assigned high
coefficients.
Apart from biological relationships, there are other factors

that may influence the importance values assigned to the
respective bioactivity features. One should keep in mind that
predicted p-values are used for the representation of biological
properties, not measured bioactivity values. This means that
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feature importance values are likely affected by the perform-
ance and applicability of the individual models used for
predicting the p-values. For example, bioactivity features based
on biological assay data sets with a strong overlap with the in
vivo endpoint data sets could be favored by a model, as the
predicted p -values for structurally similar compounds are likely
more accurate (as they were also used to train the bioactivity
model itself).
Therefore, the overlap between the in vivo endpoint data set

and the data sets of the selected biological assays, as well as the
performance of the biological assay models, was analyzed to
test possible correlations with the assigned feature coefficients.
Overall, we observed no strong correlation between the extent
of overlaps in the data and the assigned feature importance
values. Also, no pronounced correlation between the perform-
ance of the bioactivity CP models and the feature importance
values was observed (Figure 8), but bioactivity descriptors
predicted with models showing lower efficiencies also often
resulted in less important features.
The comparison between the data set overlap and model

performance with the coefficients obtained during feature
selection with the lasso model showed similar effects and
correlations to the feature importance of the RF models
discussed here (Figure S5).
In general, it was observed that the most predictive

biological assays have a clear biological relationship with the

corresponding in vivo endpoint. However, not all biological
assays with a clear biological connection were assigned a high
feature importance. Moreover, biological assays with a less
obvious biological relationship were sometimes given a high
relevance, as they may describe a more general behavior of the
compounds in biological systems. These less obvious relation-
ships could also reflect yet unknown effects and point to
further lines of investigation.

■ CONCLUSIONS
In this work, we have explored the potential of incorporating
predicted bioactivities to improve the in silico prediction of in
vivo endpoints beyond the level of accuracy reached by
established molecular descriptors. More specifically, in the first
part of this work, we collected 373 compound data sets with
biological assay outcomes from the literature for modeling, and
in the second part, we developed an elaborate conformal
prediction framework in combination with the random forest
algorithm, with the aim to identify the scope and limitations of
the developed bioactivity descriptors for in vivo toxicity
prediction on three selected in vivo endpoints (MNT, DILI,
and DICC).
Overall, valid in vivo toxicity CP models could be produced

with the different descriptors for all endpoints. For the MNT
and DICC endpoints, the incorporation of predicted
bioactivities was highly beneficial for the performance of the

Figure 8. Mean feature importance reported by the RF model for the bioactivity descriptors in relationship with the percentage of overlapping
compounds (of the in vivo data set), the efficiency and F1 score of the models for each biological assay. For each of the 373 biological assays, the
highest mean feature importance of the two p-values used as descriptors (for the active and inactive classes of each assay) was taken. The feature
importance values were normalized with a min-max normalization (from 0.01 to 1; see Materials and Methods section) for easier comparison.
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models. Compared to the models based only on chemical
descriptors, the mean efficiencies of the models for MNT and
DICC including bioactivity descriptors increased by 0.09
(from 0.76 to 0.85) and 0.12 (from 0.84 to 0.96), respectively.
The mean F1 scores also increased by 0.09 (from 0.61 to 0.70)
and 0.10 (from 0.72 to 0.82), respectively. The performance of
the model for the DILI endpoint did not significantly improve
by the integration of bioactivity descriptors, but a slight
increase in the mean F1 score was also observed. The chemical
and bioactivity descriptors may not complement each other for
the prediction of DILI, which could explain the lower influence
of the selected descriptor set on the performance. The
prediction of the DILI endpoint may be especially challenging
due to the nature of the data set, which has a reduced number
of compounds and combines substances producing major and
less severe effects in the active class. Further investigations are
needed to determine how to improve the learning power of
ML models for this endpoint.
In general, applying a feature selection procedure with a

lasso model prior to model training with RF increased the
mean efficiency of the models (up to 0.08 for the MNT and
DILI endpoints). Feature selection proved especially beneficial
in the models including the bioactivity descriptor set, as some
biological assays may be redundant or not related to the in vivo
endpoints.
The analysis of the most important features of the models

based on the CHEMBIO descriptor set for each in vivo
endpoint showed that generally these features had an
explainable relationship with the biological mechanism eliciting
the toxicity in vivo. For instance, some of the most important
features for the MNT, an in vivo genotoxicity assay, are
measuring genotoxicity in vitro or are involved in tumor
suppressor mechanisms of the cells. In the case of the DILI and
DICC endpoints, human oral bioavailability was ranked as one
of the most important features, as bioavailability is an
unavoidable requirement to elicit organ toxicity. Furthermore,
the high feature importance assigned to assays with a less clear
biological relationship could hint to unknown interactions that
might help to better understand the toxic mechanisms.
The determination of which features will make the largest

impact on the in vivo models prior to model development
remains a difficult task since there are many factors influencing
the relevance of the bioactivity features. However, using
biological assays with known biological relevance for the in
vivo endpoints is a well-suited approach. Also, for which in
vivo endpoints the bioactivity descriptor will enhance the
results cannot be predicted beforehand and may require
evaluation case-by-case.
Overall, the approach presented in this work shows how the

prediction of in vivo endpoints, which entail a high complexity
due to all interactions taking place in biological systems, can be
improved by the incorporation of bioactivity fingerprints.
Moreover, the CP framework supporting the developed
models also presents the advantage of intrinsically defining
the applicability domain of these models and ensuring a
defined error rate. Our approach also showed that bioactivity
information can be included in the form of predicted
probabilities, opening the possibility to apply these models
directly on new compounds, without the need to fill their
bioactivity profile experimentally. The bioactivity CP models
for deriving the predicted bioactivities as well as the in vivo
toxicity CP models trained on the different descriptor sets (and

including feature selection with lasso) are freely available for
download (https://doi.org/10.5281/zenodo.4761225).84

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451.

Loading plot of the PCA; UMAP projections for the
three in vivo endpoints on the CHEM and the
CHEMBIO descriptor sets; PCA of the biological assays
with a mean F1 score of 1.0; distribution of the
performance over 5-fold CV for the models for the three
in vivo endpoints without feature preselection with
lasso; scatter plots of lasso coefficients vs data set overlap
and model performance of the models for the biological
assays (PDF)
Download links, queries, and MD5 file checksum of the
in vivo endpoint data sets; download links, queries, and
MD5 file checksum of the biological assay data sets; data
set information for the biological assays used to build the
bioactivity descriptors; list of molecular descriptors used
in principal component analysis; average performance of
the CP models built on the biological assay data sets
average performance of the CP for the three in vivo
endpoints without feature preselection with lasso; top 15
features with the highest feature importance values for
the three in vivo endpoints; top 15 features with the
highest lasso coefficients for the three in vivo endpoints
(ZIP)
KNIME workflow for the preparation of the molecular
structures and calculation of the CHEM descriptors
(ZIP)

■ AUTHOR INFORMATION
Corresponding Authors

Johannes Kirchmair − Department of Pharmaceutical
Sciences, Faculty of Life Sciences, University of Vienna,
Vienna 1090, Austria; orcid.org/0000-0003-2667-5877;
Phone: +43 1-4277-55104; Email: johannes.kirchmair@
univie.ac.at

Miriam Mathea − BASF SE, Ludwigshafen am Rhein 67063,
Germany; orcid.org/0000-0002-3214-1487; Phone: +49
621 60-29054; Email: miriam.mathea@basf.com

Authors
Marina Garcia de Lomana − BASF SE, Ludwigshafen am
Rhein 67063, Germany; Department of Pharmaceutical
Sciences, Faculty of Life Sciences, University of Vienna,
Vienna 1090, Austria; orcid.org/0000-0002-9310-7290

Andrea Morger − In Silico Toxicology and Structural
Bioinformatics, Institute of Physiology, Berlin 10117,
Germany; orcid.org/0000-0003-4774-6291

Ulf Norinder − MTM Research Centre, School of Science and
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