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Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). 
Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive cul-
ture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. 
Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease 
progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided 
insight into these dynamics, challenges remain including discerning not only “who is there” but “what they are doing” in relation to 
disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognos-
tication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in 
translating microbiome data to clinical practice.
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In healthy airways, until recently considered sterile, 
microaspirated microbiota shapes early colonizing communi-
ties through the balance of microbial immigration, coloniza-
tion, and subsequent elimination (Table 1). In cystic fibrosis 
(CF), microbial elimination, as a function of mucociliary clear-
ance and host defense, is critically impaired. Consequently, 
respiratory infections and associated inflammation are the 
primary contributors of morbidity and mortality for persons 
with CF (pwCF) [1]. With advancements in molecular tech-
nologies, it has become increasingly apparent that CF air-
ways are colonized by a community much larger than merely 
those identified through routine clinical laboratory proto-
cols [2–4]. In this review, we explore the complexity of these 
polymicrobial communities and their potential for impact on 
CF pathogenesis.

EVALUATION OF THE CF MICROBIOME: EVOLVING 
SAMPLING STRATEGIES

To unravel the microbiome’s role in CF pathogenesis, a com-
prehensive understanding of the microbial milieu and sampling 
modalities is necessary. The challenge of adequate sample col-
lection for infection surveillance has long been recognized as 
it pertains to children and those with mild lung disease; how-
ever, this is further convoluted with molecular approaches to 
microbiome studies. Culture-independent microbiome studies 
are complicated by the lower respiratory tract microbiome 
being a low-microbial biomass system with high host DNA 
(>90% DNA is from neutrophils), resulting in very low depth 
of sequencing of microbial DNA, unlike other sites including 
the gastrointestinal tract [11]. Moreover, the respiratory envi-
ronment is changing for many pwCF with the widespread use 
of cystic fibrosis transmembrane conductance (CFTR) modula-
tors (Figure 1).

Bronchoalveolar lavage (BAL) is the gold standard for lower 
respiratory tract surveillance [12] but limited by its invasive na-
ture, requirement for sedation, and cost—all of which preclude 
serial assessment. In CF, bronchoscopy is primarily utilized in 
children who often cannot spontaneously produce sputum [13]. 
However, even in this highest needs population, it has not been 
associated with improved outcomes [14].

Sputum, composed of lower airway-derived mucus plugs, is 
the mainstay of microbiome analysis and offers several advan-
tages including its non-invasive nature and ease of collection 
in those who expectorate, thereby lending itself to serial collec-
tion, particularly important in longitudinal studies [15]. Given 
that sputum inherently represents a mixture of upper and lower 
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airway microbiota, critiques include traveling through the 
upper respiratory tract with inevitable contamination by oro-
pharyngeal microbiota. A study of end-stage pwCF identified 

microbial communities from explanted lungs as less diverse 
than expectorated sputum on the day of transplantation [16]. 
However, others have demonstrated sputum as representative of 

Table 1. Terminology and Nomenclature of the CF Microbiotaa 

Term Definition 

Ecological

  Microbiota The entire collection of microbial organisms at a particular site.

  Microbiome Defined as a characteristic microbial community occupying a reasonably well-defined habitat that has distinct physicochemical 
properties. The term thus not only refers to the microorganisms involved but also encompasses their theater of activity.

  Mycome Collective genomes and gene products of fungi within and on humans.

  Virome Collective genomes and gene products of viruses within and on humans.

  Diversity General term used to describe the number of different species of microbes present and their distribution within an ecosystem.

  Dysbiosis Imbalance of ecological homeostasis and loss of diversity in microbial communities often associated with disease states or 
acute antibacterial therapies. Characterized by altered bacterial landscapes, pathogen domination, and colonization resist-
ance.

  Metagenome Collection of genomes within members of the microbiota (ie, what functional genes are present—but cannot determine who 
or what is active).

  Transcriptome High-throughput process to identify and quantify microbial genes expressed by the microbiota (ie, who is active and expressing 
genes).

  Metabolome Analysis of the complete set of metabolites present in a population (ie, what end-products, such as short-chain fatty acids, are 
present).

  Resistome Collection of all genes from pathogenic and commensal organisms associated with antibiotic resistance.

  Multi-omics Assimilation of data from various “omics” technologies, such as microbiomic, metagenomic, transcriptomic, and metabolomic.

Factors shaping the microbiome

  Immigration The movement of microbes into a new environment. For example, in CF, this may be seen in the context of lower airways that 
includes aspiration, subclinical microaspiration, and inhalation of microbes leading to direct dispersal across airway mucosa.

  Elimination The movement of microbes out of an environment. For example, in CF, this may be seen in the context of lower airways done 
through adjunctive airways clearance measures, antimicrobial therapies, cough, and host immune defenses.

  Relative reproduction Bacterial growth influenced by regional growth conditions, including (i) environmental (ie, nutrient availability, temperature, 
pH, and oxygen tension), (ii) host (ie, concentration and activation of inflammatory cells), and (iii) bacterial (ie, local microbial 
composition/competition).

Methodology

  16S Ribosomal RNA 
(rRNA/rDNA) gene

Amplification and sequencing of part of the 16SrRNA gene (SSU rRNA gene), typically including ≥1 hypervariable region(s) that 
can provide taxonomic resolution of the community structure.

  Shotgun sequencing Direct sequencing and analysis of total DNA extracted from a sample. This approach provides information on all genes present 
and can provide genome scale information on the more abundant community members.

  Culture-independent Analysis of the microbiome based on nucleic acid extracted directly from a sample (eg, 16S rRNA gene profiling, 
metagenomics, metatranscriptomics).

  Culture-enriched 
metagenomics

Coupling culture enrichment methods with shotgun metagenomic approaches to improve the resolution of community anal-
ysis.

  Operational taxonomic 
unit (OTU)

Clusters of similar sequence variants of the 16S rRNA gene used to identify taxa. 97% similarity is commonly used as a 
species-specific cutoff.

  Amplicon sequence var-
iant (ASV)

Alternative to OTUs. Infers the biological sequences prior to the introduction of amplification and sequencing errors. ASVs offer 
higher sensitivity to biological variation, as a change in one nucleotide in the 16S rRNA gene of a bacterial strain can indicate 
large variations within the rest of the genome relative to OTU.

Analysis

  Abundance Total number of bacteria within a sample.

  Relative abundance Proportion of the microbiome made up of specific bacteria (ie, more dominant bacteria have higher relative abundances). Often 
denoted as a percentage or proportion (0-1).

  Absolute abundance Actual abundance of a taxon in a unit volume of an ecosystem (ie, a measure of bioburden).

  Alpha-diversity A measure of the composition of microbial community (single sample) based on richness (number of species) and may include 
measures of evenness (different abundances of community members). Common alpha-diversity measurements include 
observed species, Chao 1, Shannon Diversity Index, and/or Simpson’s Index.

  Beta-diversity A measure of the differences in community composition inclusive of taxonomy between samples (eg, longitudinal within a 
subject, or between subjects). The measures can be based on the presence/absence (unweighted) or different abundances 
of community members(weighted) and some measures incorporate phylogenetic relatedness within a community. Common 
beta-diversity metrics include Weighted- and Unweighted-Unifrac, Aitchison Distance, and Bray Curtis Dissimilarity).

  Core microbiome Group that contains species that affect a large proportion of individuals with high relative abundance.

  Satellite microbiome Group that contains species that are present in low relative abundance and at limited locations. Often detected infrequently, 
may be transient.

  Pulmotype Partitioning of airway bacterial communities into distinct types across patients.
aAdapted from references [5–10].
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the lower airway microbiota established from BAL [17]. Indeed, 
paired samples of sputum and saliva found only modest com-
munity overlap, where expectorated sputum contained higher 
bacterial loads, lower richness, and less diversity [18].

Oropharyngeal swabs have been used as a surrogate for 
lower airway bacteria identification; however, the utility of rou-
tine use has been complicated by insensitivity and dispropor-
tionate recovery of oral commensal microbiota [19]. Cough 
swabs are easy to collect and have long been used as a pedi-
atric surveillance tool [20, 21]. Recently, paired cough swabs 
and sputum samples from a cohort of pediatric and adult pwCF 
were assessed for microbiome composition and validity be-
tween testing modalities [22]. Despite similar diversity meas-
ures, poor concordance between swabs and sputum to discern 
CF pathogens was observed. Inducing sputum production with 
hypertonic saline is an alternative technique with good bacteri-
ologic correlation to BAL in both children [21, 23] and adults 
[24], and offers superior detection of pathogens compared to 

cough swabs [21]. Moreover, induced sputum microbiome 
composition closely resembles that of expectorated sputum 
[19]. Taken together, sputum (expectorated or induced) may be 
considered as an acceptable, safe, and minimally invasive respi-
ratory microbiome sampling strategy.

WHO ARE THE MICROBIAL PLAYERS?

For much of the 80 years since the initial description of CF, micro-
biologists have focused on a narrow range of canonical patho-
gens including Pseudomonas aeruginosa, Staphylococcus aureus, 
Haemophilus influenzae, and the Burkholderia cepacia complex. 
Work by Rogers et al first identified bacterial species not previ-
ously associated with CF airways, setting the stage for rapid sci-
entific advancement [2, 25]. With more comprehensive culture 
methods and newer culture-independent-based molecular ap-
proaches, we now appreciate that CF respiratory tract samples 
reflect complex and dynamic microbial communities (Figure 2).

Figure 1. Establishing the structure and composition of the CF microbiome. (A) A range of respiratory sample types can be assessed, each of which differs 
with respect to its ease of collection, sensitivity, specificity, and relevance to the lower airways. (B) Samples can be assessed using routine and augmented 
culture protocols to identify specifically targeted organisms (which allow for pathogen characterization) or an agnostic approach in which next-generation 
sequencing is used to define the entirety of community constituents. (C) After DNA extraction, microbial communities can be defined based on establishing 
their gene content either using amplicon (16S ribosomal RNA) amplification or shotgun sequencing (±host DNA depletion strategies) enabling downstream 
analysis. Figure created with Biorender. Abbreviation: CF, cystic fibrosis.
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Using a range of media and growth conditions, Sibley et al 
demonstrated the majority of bacteria present can be cultured 
(43 of the 48 families, with those recovered solely by culture-
independent approaches present at very low abundance) [27]. 
Whelan et al utilized culture-enriched molecular profiling to 
culture ~80% of operational taxonomic units (OTUs) identified 
by molecular sequencing in sputum samples, representing >99% 
of the relative abundance (RA) identified from sequencing [28]. 
Moreover, culture enrichment identified over 60% more OTUs 
than identified by direct sequencing—highlighting the utility of 
integrated approaches (Table 1).

Diversity is often maintained in patients with stable respi-
ratory function and decreased in patients with deteriorating 
lung function over time [29]. Not surprisingly, the microbial 
community in advanced CF disease is particularly skewed with 
multiple studies having established a pattern of decreasing mi-
crobial diversity [30–35] and increasing RA in dominant taxa 
by traditional pathogens with increasing age and severity of 
lung disease [26, 29, 36, 37]. For instance, as P. aeruginosa col-
onization becomes chronic (often in late adolescence and early 

adulthood), community richness and diversity are lost and 
these changes are associated with disease progression [29, 38]. 
The emergence of canonical pathogens as dominant community 
members is a harbinger of advanced disease and postulated to 
be driven in part by frequent/recurrent antibiotic exposure in 
response to pulmonary exacerbations (PEx) [1, 29, 39].

The lungs are an oxygen-rich environment; however, in 
chronic inflammatory lung disease regions of hypoxia develop 
within infected airways, further compounded in CF due to thick-
ened respiratory secretions and mucus plugs [40]. Consequently, 
anaerobic bacteria, once attributed to simply oropharyngeal 
contamination [41] are prevalent in the lungs of pwCF, including 
Prevotella, Veillonella, Streptococcus, Fusobacterium, Atopobium, 
Peptostreptococcus, and Porphyromonas (Figure 2) [42]. While 
ample studies have established that these organisms can colo-
nize the airways of patients at densities comparable to canonical 
pathogens [27, 43–45], how they might influence pathogenesis 
remains controversial [46]. Muhlebach et al found that both 
the presence and RA of anaerobes were associated with milder 
disease, including improved lung function [47]. In contrast, 

Figure 2. The core constituents of the CF microbiome by lung disease stage. Data presented correspond to the prevalence (%) and dominance frequency 
(%) of canonical CF pathogens and other members of the CF microbiota found in a multicenter cohort of 297 pwCF respiratory samples from the study de-
scribed by Cuthbertson et al [26]. pwCF and their microbiota are stratified by stage of lung disease: early (percentage predicted (ppFEV1) > 70) (n = 57), 
intermediate (ppFEV1 40-70) (n = 139), and advanced (ppFEV1 < 40) (n = 101). Prevalence for each taxon was defined as the proportion of patients in which a 
given taxon was detected for each stage of lung disease. Dominance frequency was defined as the percentage of samples that had a particular taxon as 
the most abundant. Size of the different taxa shown represents the median relative abundance (RA) across the samples for each stage with the lowest value 
corresponding to RA = 0 and maximum of RA = 40. Both prevalence and dominance frequency are on a log10 axis. Abbreviations: CF, cystic fibrosis; pwCF 
persons with cystic fibrosis.
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harmful associations have been observed including increased 
anaerobe abundance correlating to PEx occurrence [3, 30–33, 
48]. Anaerobes have also been identified as carriers of antibiotic 
resistance genes relevant to therapeutics commonly employed 
in CF [49, 50] including genes encoding several β-lactamases 
which may impart protection to neighboring organisms [44, 
50, 51] (Figure 3). Finally, anaerobic metabolism facilitates the 
production of several pro-inflammatory short-chain fatty acids 
(SCFAs) that may further amplify host immune responses [52].

While beyond the scope of this review, both viruses and 
fungi exist within the microbiome of CF. Respiratory viruses are 
common and detected in 13%-60% of CF sputum samples, pre-
dominantly in children [65, 66] and are frequently identified as po-
tential triggers of PEx. Viral infections are associated with poorer 
response to treatment, greater deterioration in lung function, and 
reduced time to next PEx [67]. Fungi, particularly Aspergillus and 
Candida spp, are frequently recovered from sputum in pwCF but 
their role in pathogenesis remains unclear [68].

USING MOLECULAR METHODS TO UNRAVEL THE 
COMPLEXITY OF THE MICROBIOME

Complex ecosystems are more than simply the “sum of their 
parts” and require evaluation beyond the presence or absence 
of individual species. Long-term decreases in community mi-
crobial diversity are clearly associated with worse lung function 
[69]; however, short-term dynamics are less clear. Identifying 
differences at the transition point between clinical stability 
and PEx has been a sought-after microbiologic mechanism to 
explain disease progression. While many groups report com-
munity structure transiently disrupted during antimicrobial 
treatment and/or PEx with a return to baseline after discontin-
uation [69–71], others suggest microbial community shifts can 
occur at the onset of PEx even preceding antimicrobial therapy 
[30, 32]. Moreover, even among canonical pathogens, such as P. 
aeruginosa, there is little evidence that bacterial density changes 
during PEx [31, 72–74] and the degree of reduction in bacte-
rial load following antibacterial therapy does not correlate with 
clinical outcomes [75, 76].

To date, the majority of CF respiratory microbiota studies 
utilize sputum collected at clinically relevant time points (ie, 
during regular quarterly clinical visits, or acute need, such as 
that at the outset of PEx) [31, 36]. Unlike longitudinal studies, 
cross-sectional and observational studies cannot determine 
microbiome predictors of PEx, nor can they capture dynamic 
changes during periods of PEx. Carmody et al collected daily 
sputum samples from 4 pwCF over a 25-day timeframe, in-
cluding at initiation of PEx, and identified clear changes in 
the microbiome at PEx onset in a subset of participants [77]. 
Cuthbertson et al evaluated 10 pwCF across multiple time 
points longitudinally, including pre- and post-exacerbation, 
observing a relatively resilient core microbiota resistant to 

PEx and associated antimicrobial treatments regardless of 
clinical status [38].

METAGENOMIC ANALYSIS OF THE RESPIRATORY 
MICROBIOME

Much of the CF microbiome analysis to date has been carried 
out by 16S rDNA profiling, providing taxonomic composition 
of the community, but lacking information on species/strain 
diversity or important clinical features including virulence 
and antibiotic resistance. Culture-enriched metagenomics al-
lows for greater depth of sequencing of the CF microbiome and 
provides greater sensitivity than culture-independent methods 
alone [28]. Shotgun metagenomics could address the limita-
tions of 16S rDNA profiling; however, it is confounded by two 
factors: high concentration of host DNA in sputum and a sig-
nificant burden of bacterial DNA from dead cells. Practical 
sequencing depths necessary to get comprehensive data re-
quires methods to reduce host DNA, which may also help de-
plete extracellular microbial DNA. Lysing host cells followed 
by DNAse treatment [71] or depletion of human DNA using 
host methylation-specific-binding proteins [78] are the most 
common approaches. These methods reduce human DNA reads 
in the metagenomic data although there remains significant 
room for improvement. As a result, there are currently only a 
small number of metagenomic studies, most of which still have 
human DNA accounting for ≥80% of reads. These studies have 
largely focused on taxonomic profiling with the improved res-
olution possible by metagenomics and largely agreeing with 
the 16S rDNA profiling [71, 79–81]. These studies are starting 
to provide high-resolution mapping of sequence variants in 
the most abundant organisms with metagenomic assembled 
genomes [11, 71, 78]. Further reductions in sequencing costs 
(for both short and long-read sequencing), improved methods 
for enrichment of microbial DNA, and improvements in bio-
informatics tools should manifest in a significant increase in 
metagenome-focused CF studies.

POLYMICROBIAL INTERACTIONS AND VIRULENCE

The lower airways can be evaluated from a polymicrobial per-
spective given abundant microbe-microbe and microbe-host-
pathogen interactions (Figure 3) [82]. Several animal and in 
vitro studies have demonstrated microbial interactions con-
tributing to pathogenesis potential. For example, increased 
virulence activity of P. aeruginosa in the presence of what are 
generally considered benign commensal microbiota is partially 
mediated by both the general bacterial signaling molecule AI-2 
[4, 56] and 2,3-butanediol [83] metabolic cross-feeding of P. 
aeruginosa by Rothia [84]. Crosstalk may be observed between 
pathogens, such as where P. aeruginosa senses bacterial com-
ponents of the S. aureus cell wall to upregulate virulence [85]. 
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Figure 3. Mechanisms by which respiratory microbiota influence CF lung disease. (A) Members of the CF microbiota have been associated with risk of 
infection in the airways. Colonization of commensal microbiota, such as Porphyromonas catoniae was found as a biomarker associated with a lower risk of 
P. aeruginosa (PA) early infection in CF [53]. In contrast, infection of Streptococcus milleri/anginosus group (SMG) at the onset of pulmonary exacerbations 
(PEx) is associated with symptomatic deterioration in clinical status, whereas its relative reduction is associated with symptom resolution (unlike canonical 
pathogens, such as P. aeruginosa) [3, 54]. (B) Commensal bacteria may negatively or positively influence the virulence of CF pathogens. Co-infection models 
in human epithelial cell lines with P. aeruginosa and commensal CF microbiota have shown that different strains of Streptococcus mitis reduce P. aeruginosa-
induced inflammation through reduction of interleukin 8 (IL-8) production and neutrophil extracellular trap (NET) formation. The mechanism of action is still 
unknown but thought to be through modification of the micro-environment by metabolism adjustment by the commensal bacteria [55]. In contrast, some oral 
commensal streptococci enhance P. aeruginosa pathogenicity by increasing its virulence factor expression (eg, pyocyanin and elastase) [4, 56, 57]. (C) The CF 
microbiota contain bacteria with immunomodulatory activity that may alter host inflammatory response, which in turn could influence the progression of lung 
disease. Rothia mucilaginosa potentially mitigates host inflammation through the inhibition of the IL-8 production and NF-κB pathway activation in a human lung 
epithelial cell line [58]. Conversely, Prevotella intermedia was reported to be able to contribute to disease progression by secretion of cytotoxic extracellular 
toxins that induce the influx of macrophages and neutrophils in the airway lumen [59]. (D) CF microbiota influence disease through the modulation of extrinsic 
therapies. Extended-spectrum β-lactamases (ESBLs)-producing Prevotella isolates were reported to influence pathogenesis in vitro by shielding pathogens, 
such as P. aeruginosa from the action of β-lactam antibiotics [51]. (E) CF microbiota may be affected by a range of external factors, including pollution, diet, and 
viruses. Pollution may play a role in triggering PEx, leading to microbiota changes and further airway irritation and injury, which consequently could affect the 
extent of respiratory infections [60]. In the gut-lung axis, diet plays an important role in shaping the composition of the gut microbiota. Metabolites produced 
by the gut microbiota not only modulate gastrointestinal immunity but also impact immune responses in the lung [61, 62]. Bacteriophages may impact the 
fitness of members of the CF microbiota through horizontal gene transfer (HGT) of antimicrobial resistance genes [63]. Additionally, the progression of lung 
disease is influenced by infection with respiratory viruses which could indirectly promote community changes and host response [64]. Figure created with 
Biorender. Abbreviations: CF, cystic fibrosis; NF-κB, nuclear factor kappa B.
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Moreover, it is also likely that we underestimate the virulence 
potential of some upper respiratory tract microbiota that are 
present in the lungs. Understanding and being able to discern 
these interactions would allow targeting of the partnering or-
ganisms where conventional antibiotic therapy is not effective.

Microbial metabolites produced locally in the airways or 
from the gut, such as SCFAs, can affect host responses, although 
there are conflicting data as to whether these are net beneficial 
vs harmful [86]. Although most studies to date have identi-
fied interactions that increase virulence of CF pathogens, it is 
expected that antagonistic interactions abound. Recently, in 
vitro data have demonstrated that several commensal isolates 
of Streptococcus mitis and Streptococcus oralis from sputum can 
reduce pro-inflammatory responses of patient-derived airway 
epithelial cells to P. aeruginosa [55]. Importantly, these find-
ings were strain, not species, specific further highlighting the 
need for detailed profiling beyond 16S community level in the 
CF microbiome. No clear mechanism was identified, but ac-
tive strains of S. mitis contained distinct genes absent in strains 
failing to suppress inflammation. At other mucosal sites, col-
onization resistance mediated by direct commensal-pathogen 
inhibition, largely mediated by bacteriocins, is prevalent [87] 
but has not been explored thoroughly in the CF microbiome.

THE MICROBIOME AS A BIOMARKER: FORECAST OF 
OUTCOMES AND TREATMENT RESPONSE

Recently, more groups have established and begun to interrogate 
CF-specific biobanks, enabling longitudinal studies to better un-
derstand host outcomes as a function of their CF microbiota. 
One particularly important goal of microbiome research is 
the identification of biomarkers to predict short (ie, PEx) and 
long-term outcomes (ie, lung function decline), and treatment 
response. This is particularly relevant as existing CF microbi-
ology protocols used to guide clinical interventions (ie, routine 
culture and susceptibility testing) poorly correlate with clinical 
outcomes, creating a strong appetite for novel infection-based 
biomarkers that better correlate with clinical outcomes [88, 89].

Acosta et al assessed sputum from 104 pwCF to understand 
how features of the microbiome correlated with future clinical 
outcomes [90]. Whereas traditional microbiological endpoints, 
including the presence of canonical pathogens, failed to corre-
late with clinical outcomes, several measures of the microbiota 
(reduced alpha-diversity, enrichment of Pseudomonas, and 
depletion of Streptococcus) were associated with progression 
to end-stage lung disease and disproportionate FEV1 decline. 
Notably, the RA of Pseudomonas and Stenotrophomonas (as 
opposed to their mere presence or absence in aerobic culture) 
were associated with decline, suggesting that culture alone may 
lack the ability to discern the role of those agents. Efforts to in-
corporate machine learning to augment predictive models are 
underway but already demonstrate promise [91].

The CF Microbiome-determined Antibiotic Therapy Trial 
in Exacerbations Study (CFMATTERS) was the first pro-
spective multicenter randomized controlled study intended 
to assess if antibacterial therapy prescribed on the basis of 
microbiome composition (collected months earlier) would 
improve outcomes of PEx [92]. While not fully reported, the 
empiric addition of a “microbiota-targeting agent” (predicted 
to have activity against the top four most abundant organ-
isms) to standard of care (tobramycin and either ceftazidime 
or aztreonam) did not result in improved FEV1 recovery after 
PEx [5, 93]. While subject to the same bias as other ran-
domized studies assessing novel CF microbiology-directed 
treatment algorithms [94, 95] (ie, decisions that are based 
on sputum collected potentially months preceding PEx and 
therefore not necessarily reflective of community composition 
at PEx), this study demonstrated for the first time in a large 
multicenter cohort that large-scale prospective microbiome-
based intervention studies are indeed possible, with hopefully 
more to follow.

An abundance of clinical trial and real-world evidence have 
established nebulized antibiotics as cornerstones of CF main-
tenance, improving the health and well-being of pwCF [96, 
97]. While cycled therapies (licensed in 28 days on/off incre-
ments) induce transient reductions of P. aeruginosa [98], pa-
tient improvements do not generally correlate with changes in 
bioburden, suggesting additional “off-target” effects may exist. 
As inhaled antibiotics achieve exceedingly high concentrations 
within the CF airways, it was postulated that a range of micro-
bial constituents are affected beyond P. aeruginosa. Accordingly, 
investigators have sought to understand the relationship be-
tween CF microbiome and inhaled anti-Pseudomonal agents. 
In a cohort of pwCF treated with nebulized aztreonam, Heirali 
et al did not observe changes in microbiome community struc-
ture or composition during treatment with aztreonam but 
did observe improvements in lung function [97] and quality 
of life indices [96] in persons with communities deplete for 
Staphylococcus. In contrast, a retrospective analysis of 41 pwCF 
naive to inhaled tobramycin found individuals demonstrating 
FEV1 improvements had communities that clustered together 
and were disproportionately enriched with Staphylococcus [99]. 
Whereas both aztreonam and tobramycin have broad aerobic 
gram-negative antibacterial activity, only the latter also has po-
tent anti-S. aureus activity—suggesting that chronic suppression 
of Staphylococcus may be important, and strategies focusing 
inhaled antibiotics on individuals chronically infected with P. 
aeruginosa may be inappropriately exclusionary. Nelson et al 
similarly observed in a prospective cohort using a combination 
of qPCR and metagenomic sequencing that tobramycin prima-
rily induced changes in “off-target” non-dominant community 
members and not P. aeruginosa [71]. These observations yield 
hope that the microbiome may be used to identify previously 
unrecognized organisms as contributors to disease pathogenesis, 
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potentially serving as a biomarker that can be adapted to person-
alize chronic suppressive antibacterial therapies.

Several barriers limit the potential of adapting microbiome-
based learnings to the clinic setting. Samples collected in the 
context of new systemic illness and/or new acute antibiotics may 
confound interpretation and should be avoided. Day-to-day var-
iation in sputum composition has been observed in those few 
individuals followed for protracted periods of time, suggesting 
caution about inferring too much from any individual sample 
[100]. Relative to culture-based identification, molecular anal-
ysis is costly, slow, and requires considerable technical and bioin-
formatics expertise. Most importantly, the highly individualized 
nature of the CF microbiome means that a one-solution-for-all 
approach is unlikely, and that adequately powered studies will be 
required to discern complex relationships.

CFTR MODULATORS AND THE MICROBIOME

The use of highly effective CFTR modulators, designed to 
target the underlying genetic defect and improve protein func-
tion, has dramatically improved the well-being of many pwCF. 
Lung function can increase 3%-14% within 4 weeks of initiation 
[101]. However, even with these improvements in lung function, 
structural lung damage remains. Persistent infections have been 
identified in pwCF after modulator therapy [102–104] despite 
observations of restructured microbiomes [105]. In a study of 31 
pwCF (with ≥1 G551D mutation) pre- and post-ivacaftor therapy, 
no significant changes in diversity, specific bacterial pathogens, or 
markers of inflammation were observed [102]. Similarly, neither 
total bacterial load nor the presence of Pseudomonas changed 
significantly. In contrast, one group used quantitative culture to 
demonstrate ivacaftor reduced both P. aeruginosa density and as-
sociated lung inflammation [103]. In recent work by Sosinski et 
al sputum microbiome diversity and evenness were increased in 
24 pwCF (with ≥1 F508del mutation) pre- and post-elexacaftor-
tezacaftor-ivacaftor (ETI) therapy but with no specific microbial 
taxa changes other than the log-ratio of canonical CF pathogens 
to anaerobes [105]. Furthermore, and consistent with almost all 
other longitudinal studies, microbiome structure is more sim-
ilar within an individual pre- and post-treatment than between-
subject after-modulator initiation.

The long-term sequelae of modulators on the composi-
tion of the microbiome are unknown—in fact, rebounding of P. 
aeruginosa density has been observed during the second year of 
treatment with re-emergence of strains that were transiently not 
cultured immediately after the initiation of ivacaftor in a small 
study [103]. The PROMISE study (NCT04038047), a large US mul-
tidisciplinary prospective study on the broad impacts of long-term 
ETI therapy in pwCF aged 6 years and older aims to clarify some 
of these questions raised around durability of modulator-related ef-
fects by evaluating sputum microbiology and quantitative measures 

of targeted pathogens serially over 24 months [106]. Management 
of chronic airway infections is critical to the care of pwCF; thus, 
understanding the effects of modulators on the microbiome is of 
utmost importance and an area for further exploration.

FUTURE OF THE MICROBIOME IN CF MANAGEMENT

Taken together over the course of multiple molecular taxonomic 
[25, 28, 29, 69, 100, 107, 108] and metabolomic [109] studies, a 
clear message is apparent: microbial composition of the CF res-
piratory tract is highly personalized and may variably contribute 
to patient outcomes by a range of mechanisms. The expansion of 
multi-omic approaches, including microbiomic, metabolomic, 
and transcriptomic analysis has provided insight into both taxo-
nomic and functional processes. Individual microbiome fluctu-
ations could potentially be used as a prognostic tool to delineate 
not only onset of PEx, but also severity and future risk. The 
use of culture-independent data, such as RA and measures of 
diversity, may in the future add another dimension to the care 
of pwCF to enable stratification of those at highest risk of fu-
ture negative outcomes and allow targeted clinical interventions. 
Furthermore, a greater understanding of the microbiome’s role 
in CF pathogenesis may enable strategies to manipulate com-
munity structure and thereby impart benefits to pwCF.
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