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The Combination of BRAF and MEK Inhibition
in Advanced Melanoma

The discovery and development of small molecule inhibitors of mutant BRAF kinase and MEK
kinase have revolutionized the care of patients with melanoma. When used as single agents,
the BRAF inhibitors, vemurafenib and dabrafenib, improve progression free and overall survival
when compared to chemotherapy with dacarbazine (1, 2). The MEK inhibitor, trametinib, also
improves progression-free survival compared to chemotherapy, but achieves a lower response rate
at its maximum tolerated dose in a continuous schedule when compared to BRAF inhibitors (3).
Therefore, single agent trametinib is generally reserved for patients with intolerance to BRAF
inhibitors, an uncommon event.

The identification of mechanisms of resistance to single agent BRAF inhibitors that reactivate
the RAF/MEK/ERK pathway (4–6) led to the hypothesis that addition of a MEK inhibitor to a
BRAF inhibitor may prevent or delay the emergence of resistance. This has indeed been the case.
Three separate phase 3 trials have shown superiority of dual BRAF and MEK inhibition when
compared to single agents BRAF inhibition alone (7–9). Dabrafenib combined with trametinib was
superior to dabrafenib alone or vemurafenib alone, and vemurafenib and cobimetinib were superior
to vemurafenib alone with hazard ratios for progression-free survival favoring the combination
arms of 0.75, 0.56, and 0.51, respectively. Moreover, overall survival was also improved with hazard
ratios, favoring the combination arms of 0.63, 0.69, and 0.65, respectively. Interesting combination
therapy also substantially improved the complete response rate from 4–9 to 10–13% across the three
studies.

In each of these three trials, it was also clear that combination therapy reduced the frequency
of cutaneous side effects that have been attributed to BRAF inhibitor-induced “paradoxical acti-
vation” of RAF kinases in cells without BRAF mutations. This exactly predicts the findings
from preclinical studies where MEK inhibition downstream of activated RAF kinases reduces
signaling through ERK and the outputs of paradoxical activation (10). Overall, the combina-
tion of BRAF and MEK inhibition is remarkably well tolerated, alleviating the fear that com-
binations of signaling inhibitors, particularly those that target the same pathway, would not be
tolerable. This is probably due to paradoxical activation of RAF kinases reducing the effects
of MEK inhibition, and MEK inhibition reducing the effects of paradoxical activation of RAF
kinases.
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Mechanism of Resistance to Combined
BRAF and MEK Inhibition

Although the combined use of BRAF and MEK inhibition has
clearly become a new standard for inhibiting the RAF/MEK/ERK
pathway in patients with advanced BRAF mutant melanoma the
problem of acquired resistance has become a major stumbling
block to obtaining long-term disease control. In contrast, pri-
mary or innate resistance is very uncommon (7–9), suggesting
that without the selective pressure of long-term pathway inhibi-
tion most melanoma cells with BRAF mutations are sensitive to
RAF/MEK/ERK pathway inhibition.

A systematic approach using next generation sequencing of
the exome of melanoma tissue from patients with acquired resis-
tance has been employed by the Garraway, Lo, and Rizos groups
to examine sequence variants of higher frequency in samples
derived from lesions refractory to single agent BRAF inhibitors.
Furthermore, RNA sequencing or reverse transcriptase-PCR has
been used to examine the emergence of splice variants of BRAF
that induce resistance to BRAF inhibition. With over 100 patient
samples analyzed, a very clear pattern emerges with approximately
two-thirds of patients acquiring genomic events that reactivate
RAF/MEK/ERK signaling (5, 6, 11–16). This correlates well with
immunohistochemistry and reverse phase protein array studies
that show a similar fraction of samples from patients with resis-
tance to BRAF inhibitors with elevated phosphorylation of ERK in
samples consistent with reactivation of RAF/MEK/ERK signaling
(17, 18). One-third of patients were predicted to havemechanisms
that bypass the requirement for reactivation of RAF/MEK/ERK
signaling.

Interestingly, the three most common molecular events reac-
tivating RAF/MEK/ERK signaling, BRAF amplification, NRAS
mutations, BRAF splice variants, all promote dimerization of
mutant BRAF with CRAF or wild type BRAF. Both vemurafenib
and dabrafenib inhibit mutant BRAF by binding to the ATP bind-
ing pocket that in the setting of mutant BRAFmonomers potently
inhibit RAF/MEK/ERK signaling. However, in the setting of
upstream activation of RAS (e.g., mutant NRAS), or amplified
BRAF or truncated mutant BRAF generated by the splice variant,
paradoxical activation of the pathway is induced through genera-
tion of RAF dimers (19–22). Furthermore, even in the absence of
these genomic variants, BRAF inhibitors can enhance upstream
activation of RAS through feedback mechanisms, resulting in a
new adapted steady state of active MEK and ERK (23–26). In
all these settings, inhibition of MEK and/or ERK should reduce
pathway output consistent with the clinical outcomes of patients
treated with combined BRAF and MEK inhibition.

Given improved clinical outcomes of combined BRAF and
MEK inhibition and frequent reactivation of RAF/MEK/ERK
signaling as a mechanism of resistance to BRAF inhibitor
monotherapy, there is immense interest in understanding the
mechanisms of resistance to combined BRAF and MEK inhi-
bition. Because the combination of BRAF and MEK inhi-
bition may more effectively inhibit RAF/MEK/ERK signaling
one may predict a priori two possible outcomes: first, with
more effective inhibition of RAF/MEK/ERK signaling, there
would be an increase in the frequency of bypass mechanisms

independent of RAF/MEK/ERK signaling given a higher thresh-
old to reactivate RAF/MEK/ERK signaling; or second, with more
effective inhibition of RAF/MEK/ERK signaling, it would be
advantageous, or even essential to reactivate RAF/MEK/ERK
signaling by further genomic events for cell proliferation to
occur.

Studies from the Garraway, Lo, Rizos, and Chin groups
clearly show the acquisition of sequence variants activating
RAF/MEK/ERK signaling in patients developing resistance to
combined BRAF andMEK inhibition (18, 27–29). These genomic
events again include BRAF amplification, NRASmutations, BRAF
splice variants, andMEKmutations. If such studies are confirmed
on larger datasets, this sets up the intriguing concept that as the
RAF/MEK/ERK pathway is inhibited more effectively it becomes
essential for a cell to overcome this inhibition if proliferation
is to occur. Therefore, it follows that if the pathway can be
even more effectively inhibited one may be able to raise the
threshold for genomic events to reactivate the pathway so high
that the frequency of acquired resistance could be dramatically
reduced.

Consequences of More Effective Inhibition
of the RAF/MEK/ERK Pathway

Inhibition of RAF/MEK/ERK signaling in melanoma cells with
BRAF mutations results in cell cycle arrest and promotion of cell
death, including apoptosis. Clinically, this manifests in reduced
size of tumor masses, which is partial or even complete response.
In support of this concept, there was a correlation between inhi-
bition of phosphorylation or ERK and reduction in tumor size in
patients treated with vemurafenib (30). Moreover, as mentioned
above, combined BRAF and MEK inhibition increase the fre-
quency of complete responses. However, it is worth considering
the consequences of pathway inhibition in more detail. First,
pathway inhibition can result in cells adapting to the inhibition
of signaling with the acquisition of mesenchymal phenotype with
enhanced cell migratory capacity and a change in cell metabolism
(31–34). This allows cells to survive and potentially enables sub-
sequent outgrowth of resistant cells. Second, the tumor microen-
vironment must change with therapy. There is a change in the
leukocytic content of tumors (35–37), tumors contain dead and
dying cells and some cells may acquire senescence-like features
(38). All these factors may influence whether a cell capable of
generating acquired resistance survives, dies, or is enforced into
a non-proliferative state that maybe long term.

As summarized in Figure 1, enhanced inhibition of the
RAF/MEK/ERK pathway may lead to more cell death or even a
change in tumor microenvironment that is less compatible with
long-term cell survival or the reacquisition of a proliferative state.
This hypothesis remains speculative; however, the increased pro-
portion of patients achieving complete response with combined
BRAF and MEK inhibition, and the excellent survival of patients
who achieve a complete metabolic response on FDG-PET scan
(39), that is, a surrogate of inhibition of the RAF/MEK/ERK
pathway (40), suggest that more effective or complete inhibi-
tion of RAF/MEK/ERK signaling may indeed produce biological
responses that improve overall survival.
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FIGURE 1 | Proposed cellular responses to inhibition of RAF/MEK/ERK
signaling. (A) Response to single agent BRAF inhibitor with induction of cell
death and then out growth of resistant cells having RAF/MEK/ERK-dependent
mechanisms of resistance or RAF/MEK/ERK-independent mechanisms of
resistance. (B) Response to combined BRAF and MEK inhibitors with induction of
cell death and then out growth of resistant cells dominated by

RAF/MEK/ERK-dependent mechanisms of resistance. (C) Response to
enhanced inhibition of RAF/MEK/ERK signaling with induction of greater cell
death leading to tumor load being below a critical threshold required for
outgrowth of resistant cells. (D) Response to enhanced inhibition of RAF/MEK/
ERK signaling with induction of greater cell death plus a change in tumor
microenvironment with influx of leukocytes that prevents emergence of resistance.

Strategies to Enhance Inhibition of the
RAF/MEK/ERK Pathway

There are a number of strategies that might improve inhibition
of the RAF/MEK/ERK pathway beyond that obtained with con-
tinuous exposure to BRAF and MEK inhibitors. Dose, schedule,
potency, and inhibiting ERK all have the potential to reduce
output from the pathway and result in improved clinical out-
comes. A second approach is to inhibit key components of the
pathway downstream of ERK. This includes CDK4, pro-apoptotic
molecules, such as BIM, and even other signaling networks vital
to the outputs of the pathway.

It has become a “tradition” to inhibit oncogenic signaling con-
tinuously following the early success of this approach in targeting
BCR-ABL with imatinib (41). However, preclinical data suggest
that intermittent therapy can allow an increase in dose and greater
inhibition of oncogenic signaling when targeting BCR-ABL (42)
or BRAF (43). Moreover, intermittent therapy allows reversal of
cell adaptation referred to above (32), potentially re-sensitizing
cells that survive pathway inhibition to reintroduction of the
inhibitors. Interestingly, withdrawal of pathway inhibition may
also lead to heightened ERK activity as a “rebound response”
leading to tumor regression (29, 43). This approach of intermittent
therapy targeting BRAF inmelanoma has been partially examined
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by the use of a schedule of 3 weeks on and 1week off of the MEK
inhibitor cobimetinib when combined with the BRAF inhibitor
vemurafenib that is given continuously (44). The intermittent
schedule allows a higher dose of cobimetinib to be delivered with
likely greater inhibition of pathway output for 3weeks out of 4 on
cobimetinib and vemurafenib when compared to 1week out of
4 on vemurafenib alone. However, more prolonged interruption
of pathway inhibition may provide greater benefits and is being
investigated in a clinical trial randomizing patients with advanced
BRAF mutant melanoma to continuous or intermittent exposure
to dabrafenib and trametinib (NCT02196181).

It is also possible to inhibit the output of the pathway by
more effectively inhibiting MEK or possibly by targeting ERK.
In the case of trametinib, this can occur through reduction of
CRAF/MEK complexes (45). Trametinib, the MEK inhibitor, cur-
rently approved in melanoma along with other MEK inhibitors
in clinical development are allosteric inhibitors (45, 46). In
contrast, the ERK inhibitors in clinical development target the
ATP binding pocket of the kinase. These properties may influ-
ence the output of the pathway when the agents are used in
combination possibly due to suppression of feedback mecha-
nisms when compared with MEK inhibitors. Indeed, different
allosteric MEK inhibitors can affect feedback to MEK inhibi-
tion (45–47) and similar differences may also occur with ERK
inhibitors. Furthermore, covalent irreversible inhibitors of ERK
have been developed that may further differentiate these agents
fromMEK inhibitors (48), (NCT02313012). So, further preclinical
and clinical data with ERK inhibitors and novel MEK inhibitors
are warranted.

A number of approaches can be taken to inhibit the
RAF/MEK/ERK pathway downstream of ERK. It is clear that
CDK4 activation by ERK is critical to the ability of RAS or RAF to
promote cell cycle progression (49). Moreover, genomic changes
in the CDK4 regulatory network affect outcomes in patients
treated with BRAF inhibitors and can induce resistance (15, 50).
Interesting CDK4 inhibition can induce irreversible cell cycle
arrest and senescence in melanoma cells with BRAF mutations
(38). Therefore, combining CDK4 inhibitors with inhibitors of
RAF, MEK, and/or ERK is a promising approach that is actively
being pursued preclinically and clinically (51).

Inhibition of the RAF/MEK/ERK pathway can induce apop-
tosis, principally through activation of the BH3 alone protein
BIM (52, 53), mitochondrial relocalization of BMF (54), and
reduction of the anti-apoptotic molecule MCL1 (52). Therefore,
the possibility of selectively enhancing the pro-apoptotic affects
of RAF/MEK/ERK pathway inhibition through the use of BH3-
mimetics in combination with pathway inhibitors is being inves-
tigated in clinical trials (NCT01989585).

Finally, the understanding that ERK can influence other signal-
ing networks offers additional strategies to enhance the biological
outcomes of ERK inhibition. Interestingly, protein translation can
be regulated by ERK with signaling converging on the EIF4E/4G
complex (55) that may also be influenced by the mTOR path-
way (56). Therefore, one approach to enhance inhibition of the
RAF/MEK/ERKpathway is to combine inhibitors of protein trans-
lation or inhibitors ofmTORC complexes with BRAF and/orMEK
inhibitors.

Conclusion

The rationale for ongoing investigation of therapeutic strategies
to enhance inhibition of the RAF/MEK/ERK pathway is strong.
Moreover, the impact of pathway inhibition in the adjuvant set-
ting where there maybe differences in the extent of response of
the micro-metastases, or in the microenvironment that emerges
following treatment with BRAF and MEK inhibitors necessitates
ongoing preclinical and clinical research into therapeutic targeting
of the pathway. While it is clear that combination approaches
that look at simultaneous or sequential use of immunotherapeutic
approaches with agents that target the RAF/MEK/ERK pathway
are also a priority, it is not time to divert attention away from
the pathway that induces such profound oncogene addiction in
melanoma patients whose tumors contain activating mutations
in BRAF.
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