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For both healthy individuals and patients with type 2 diabetes (T2D), the hemodynamic
response to regular physical activity is important for regulating blood glucose, protecting
vascular function, and reducing the risk of cardiovascular disease. In addition to these
benefits of regular physical activity, evidence suggests even a single bout of dynamic
exercise promotes increased insulin-mediated glucose uptake and insulin sensitivity
during the acute recovery period. Importantly, post-exercise hypotension (PEH), which
is defined as a sustained reduction in arterial pressure following a single bout of
exercise, appears to be blunted in those with T2D compared to their non-diabetic
counterparts. In this short review, we describe research that suggests the sustained
post-exercise vasodilation often observed in PEH may sub-serve glycemic regulation
following exercise in both healthy individuals and those with T2D. Furthermore, we
discuss the interplay of enhanced perfusion, both macrovascular and microvascular,
and glucose flux following exercise. Finally, we propose future research directions to
enhance our understanding of the relationship between post-exercise hemodynamics
and glucose regulation in healthy individuals and in those with T2D.
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INTRODUCTION

As with healthy individuals, in patients with type 2 diabetes (T2D), regular physical activity
offers numerous benefits, including improved blood glucose regulation (reduced HbA1c) (Boulé
et al., 2001; Umpierre et al., 2011) increased insulin sensitivity (Winnick et al., 2008), improved
clinical symptoms (Wojtaszewski and Richter, 2006) and the delay or prevention of developing
cardiovascular disease (Balducci et al., 2012). In addition to these benefits of regular exercise,
evidence suggests even one bout of dynamic exercise stimulates increased insulin-mediated glucose
uptake (Usui et al., 1998; Oguri et al., 2009) and insulin sensitivity (Devlin et al., 1987; Perseghin
et al., 1996; Bordenave et al., 2008) in patients with T2D during post-exercise recovery. These
findings highlight the importance of the post-exercise period in optimizing glycemic regulation
in this population. In this mini review, we provide a brief overview of the phenomenon known as
post-exercise hypotension (PEH) and how the sustained vasodilation that is frequently associated
with PEH may affect glucose regulation in both healthy individuals and in people with T2D.
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In doing so, we focus on the significance of post-exercise blood
flow, both macrovascular and microvascular, in the delivery,
transport and metabolism of glucose. Finally, we suggest future
research directions to advance our understanding of how post-
exercise hemodynamics affect glucose regulation in both healthy
individuals and those with T2D.

OVERVIEW OF POST-EXERCISE
HYPOTENSION

During recovery from an acute bout of dynamic exercise, humans
experience PEH, which features a sustained reduction in arterial
pressure compared to pre-exercise control levels (Kenney and
Seals, 1993). In most circumstances, PEH is associated with
post-exercise skeletal muscle vasodilation that is not completely
off-set by a still elevated cardiac output (Halliwill et al., 2013).
However, occasionally (e.g., in some hypertensive subjects) it
has corresponded with a decreased cardiac output accompanied
by an increase in systemic vascular resistance (Brito et al.,
2014). Numerous mechanisms appear to be responsible for
PEH and the sustained post-exercise vasodilation often observed
in the previously active skeletal muscle vascular beds. The
baroreflex is reset to defend a lower pressure following exercise
(Halliwill et al., 1996), which is sometimes associated with a
decrease in post-exercise muscle sympathetic outflow (Halliwill
et al., 1996) and/or an increase in parasympathetic activity
concomitant to the PEH (Park et al., 2006). However, other
investigations have found no changes in autonomic modulation
(Park et al., 2008; Anunciação et al., 2016) or have observed
increased sympathetic activity (Teixeira et al., 2011; Cunha
et al., 2016) post-exercise, which suggests that variations in
autonomic control may reflect a physiological response to
compensate for the fall in blood pressure via the downward
resetting of the arterial baroreflex following exercise (Farinatti
et al., 2021). For a given level of sympathetic nerve activity,
reduced vascular resistance has been observed in the previously
active skeletal muscle vascular beds after exercise (Halliwill et al.,
2003). Importantly, post-exercise skeletal muscle vasodilation is
facilitated locally by activation of both the histamine H1 and
H2 receptors, as combined H1 and H2-receptor antagonism
attenuates PEH by ∼65% and post-exercise vasodilation by
∼80% following 60 min of moderate-intensity dynamic exercise
(Halliwill et al., 2013).

PEH has been observed in men and women (Senitko et al.,
2002) and in both sedentary and endurance-trained individuals
(Senitko et al., 2002; Lockwood et al., 2005; McCord et al.,
2006; McCord and Halliwill, 2006). Numerous modes of aerobic
exercise may evoke PEH (MacDonald, 2002) and although most
investigations have employed large muscle dynamic exercise (e.g.,
cycle ergometer), PEH and post-exercise vasodilation have also
been induced by single-leg dynamic knee extension exercise
(Barrett-O’Keefe et al., 2013). In normotensive and hypertensive
individuals, in both laboratory and ambulatory studies, PEH has
been provoked by varying doses of exercise (MacDonald et al.,
2000; Pescatello et al., 2004; Eicher et al., 2010), although the
magnitude and duration of PEH are somewhat dose-dependent

with regards to exercise intensity (Forjaz et al., 2004; Smelker
et al., 2004) and duration (Forjaz et al., 1998; Mach et al., 2005).

POST-EXERCISE GLUCOSE
REGULATION IN HEALTHY INDIVIDUALS

Skeletal muscle glucose uptake is dependent on several
determinants that can be sequentially categorized into either
glucose delivery, transport, or metabolism (Wasserman and
Ayala, 2005). Delivery of glucose to the interstitial space is
determined by arterial glucose concentration, skeletal muscle
blood flow, capillary perfusion, and endothelial permeability
(Jensen and Richter, 2012). Depending on acute (e.g., physical
activity level) or chronic conditions (e.g., disease), any of these
steps can be rate-limiting.

During the first 90 min post-exercise, skeletal muscle glucose
uptake is enhanced in an insulin-independent manner (Richter
et al., 2001; Henriksen, 2002). This elevated muscle glucose
uptake corresponds with the peak glycogen synthesis rate in the
previously exercised skeletal muscle (Price et al., 1994; Casey
et al., 2000), thereby promoting post-exercise glycogen repletion.

Research on both rodents (Schultz et al., 1977; Hespel et al.,
1995) and humans (Hickner et al., 1991; Baron et al., 1994;
Durham et al., 2003) suggest augmented limb blood flow
promotes skeletal muscle glucose uptake, even independent of
the vasodilatory influence of insulin. In examining the influence
of exercise on this relationship, Hamrin et al. (2011) observed,
via skeletal muscle microdialysis, that increased tissue perfusion
was associated with enhanced glucose uptake 12 h after the
completion of a 2-h bout of moderate-intensity one-legged
cycling. Notably, this response was independent of enhancement
of insulin responses, as they found similar increases in skeletal
muscle glucose uptake in the post-exercising and post-resting legs
in response to a hyperinsulinemic-euglycemic clamp.

Role of Histamine Receptor-Mediated
Vasodilation
Several studies employing histamine-receptor blockade have lent
support to the notion that sustained skeletal muscle vasodilation
following exercise aids in the movement of glucose from the
central circulation to skeletal muscles. Pellinger et al. (2010)
utilized skeletal muscle microdialysis following 60 min of
moderate-intensity cycling exercise to demonstrate that glucose
delivery to previously active skeletal muscle is supported by
post-exercise vasodilation, as interstitial glucose concentration
was reduced when post-exercise hyperemia was blunted by local
H1- and H2-receptor blockade. Subsequently, Emhoff et al.
(2011) found that oral H1- and H2-receptor antagonism reduced
both femoral vascular conductance and leg glucose delivery
after 60 min of cycling exercise. Interestingly, due to high
interindividual variability, skeletal muscle glucose uptake was
not universally decreased by the histamine receptor blockade in
this study. However, they noted that histamine receptor blockade
blunted glucose uptake in subjects who obtained higher absolute
oxygen consumptions, suggesting a potential histaminergic
impact on glucose uptake and glycogen repletion in individuals
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who exercise at high workloads. Furthermore, Pellinger et al.
(2013) observed that oral H1- and H2-receptor antagonism
reduced whole body insulin sensitivity by 25% in healthy
individuals following 60 min of moderate-intensity cycling
exercise. This finding suggests that if histaminergic skeletal
muscle vasodilation is blunted, so too is delivery of glucose
and insulin to skeletal muscle cells, likely attenuating insulin-
mediated vasodilation and capillary recruitment. Under these
circumstances, greater secretion of insulin would be required
in response to a sustained elevation of blood glucose (Pellinger
et al., 2013). Taken together, these investigations suggest the
importance of histamine-receptor-mediated elevations in skeletal
muscle blood flow in glucose regulation following exercise.

Post-exercise Microvascular Perfusion
and Membrane Permeability
To determine the impact of prior acute exercise on insulin-
mediated skeletal muscle microvascular blood flow, Sjøberg
et al. (2017) employed a euglycemic-hyperinsulinemic clamp
4 h after single-legged exercise by young, healthy males. They
found microvascular perfusion was greater 4 h post-exercise
and increased 40% more in the previously exercised leg than in
the rested leg, in response to insulin stimulation. Furthermore,
after insulin stimulation, leg glucose uptake increased 50%
more in the previously exercised leg than in the rested leg.
Importantly, arterial infusion of the nitric oxide synthase (NOS)
inhibitor (L-NMMA) reversed the insulin-induced rise in arterial
and microvascular blood flow in both legs and abolished the
greater glucose uptake found in the previously exercised leg.
Interestingly, the previously exercised muscle had higher insulin
signaling at the level of the protein coding gene TBC1D4
(which mediates both exercise and insulin-stimulated GLUT4
translocation) and glycogen synthase activity and this was
largely unaffected by L-NMMA. These findings indicate that
acute exercise increases skeletal muscle insulin sensitivity via
coordinated increases in both microvascular perfusion and
insulin signaling (Sjøberg et al., 2017).

Recently, Parker et al. (2021) provided further evidence of
elevated microvascular perfusion well after the cessation of
dynamic exercise. Utilizing a randomized cross-over design, they
investigated the effect of 60 min of moderate-intensity cycling
exercise on postprandial skeletal muscle microvascular blood
flow responses to a high-glucose mixed nutrient meal consumed
3 h post-exercise. The exercise bout enhanced both femoral
artery and muscle microvascular blood flow for up to at least
3 h post-exercise. Moreover, although the high-glucose meal
evoked microvascular impairments in each condition, muscle
microvascular blood flow remained almost twice that of the non-
exercise control condition during the 2 h following the meal
consumed post-exercise. These findings are promising regarding
the impact of dynamic exercise on individuals with microvascular
dysfunction or impairments in glucose regulation.

Both exercise (Kennedy et al., 1999; Flores-Opazo et al., 2020)
and insulin-induced (Ryder et al., 2000; Koistinen et al., 2003)
GLUT4 translocation to the skeletal muscle membrane promote
glucose uptake. However, research indicates that increases in

insulin-stimulated GLUT4 translocation are significantly less
than the increases in glucose transport (Thorell et al., 1999).
In an effort to clarify this discrepancy, McConell et al. (2020)
used measurements of leg glucose uptake and skeletal muscle
interstitial glucose concentrations to estimate insulin-stimulated
muscle membrane permeability in healthy young men 4 h after
performing 60 min of 1-legged knee-extensor exercise during
a submaximal euglycemic-hyperinsulinemic clamp. Using this
novel technique, they found that during insulin stimulation,
muscle membrane permeability to glucose and glucose uptake
increased roughly twice as much in the previously exercised leg
than in the rested leg. In addition, although muscle membrane
permeability to glucose did not change in either leg with ATP (an
endothelium-dependent vasodilator) infusion, this caused both
leg blood flow and glucose uptake to rise substantially, with the
greater increases found in the previously exercised leg. These
findings reinforce the possible role of increased post-exercise
blood flow to support sufficient glucose uptake during recovery
from exercise. Figure 1 provides an overview of the relationship
between PEH, post-exercise blood flow, and glucose delivery to
the skeletal muscle cell for uptake.

POST-EXERCISE HEMODYNAMICS AND
GLUCOSE REGULATION IN
INDIVIDUALS WITH TYPE 2 DIABETES

While the aforementioned studies were conducted on healthy,
non-diabetic subjects, their findings highlight the importance of
understanding the complex interactions amongst post-exercise
hemodynamic and glucose regulation mechanisms in patients
with T2D, who may engage in regular exercise to help manage
their blood glucose levels. Sustained post-exercise vasodilation
likely increases delivery of insulin to the microvasculature,
where it has been shown to enhance capillary recruitment
(Coggins et al., 2001; Vincent et al., 2004; Sjøberg et al., 2017)
and may increase nutritive blood flow in patients with T2D
(Clark, 2008), thus potentially circumventing insulin resistance
in this population.

Effects of Exercise on Glycemia in
Patients With Type 2 Diabetes
It has been established that a single bout of dynamic exercise
immediately confers beneficial post-exercise effects on glycemia
in patients with T2D (Asano et al., 2014), thus serving as
an effective strategy to help improve glycemic control in this
population through repeated bouts of exercise (Way et al., 2016;
Grace et al., 2017; Wake, 2020). The attenuation of hyperglycemia
is primarily due to the enhanced uptake of glucose from the
circulation, as shown in studies utilizing stable isotope tracers
to assess glucose flux in patients with T2D (Borghouts et al.,
2002; Boon et al., 2007). In this context, Boon et al. (2007)
reported a significant decline in plasma glucose concentration in
long-term-diagnosed T2D patients following 60 min of cycling
exercise at 50% of Wmax. Comparisons in isotopic enrichments
found that even though the plasma glucose rate of appearance
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FIGURE 1 | Post-exercise hyperemia facilitates glucose delivery to previously active skeletal muscle.

(Ra) remained higher in T2D at rest and during post-exercise
recovery, a significantly greater percentage of plasma glucose
Ra was taken up and disappeared during and following exercise
in the T2D patients compared to normoglycemic controls.
Similarly, Borghouts et al. (2002) found that compared to non-
diabetic control subjects, patients with T2D had greater reliance
on plasma glucose oxidation vs. muscle glycogen oxidation for
energy expenditure during 60 min of cycling exercise at 40%
of VO2peak. These results support the notion that the exercise-
induced decline in blood glucose concentration in patients with
T2D is attributed to an acute increase in glucose uptake.

Effects of Exercise on Endothelial
Function in Patients With Type 2
Diabetes
Individuals with T2D often express early signs of cardiovascular
co-morbidities, including endothelial dysfunction and arterial
stiffness (Guerci et al., 2001; Frontoni et al., 2005), which may
interfere with exercise-induced vasodilation following exercise.
To determine whether exercise improves vasodilatory function
in patients with T2D, Simões et al. (2013) compared post-
exercise responses in patients with T2D to non-diabetics during
a 20-min constant load exercise corresponding to 90% of LT,
followed by a 45-min recovery period. The non-diabetic group
showed slightly higher plasma kallikrein activity, bradykinin
concentration, and nitric oxide (NO) concentration after exercise,
all indicative of endothelium-dependent vasodilatory responses.
To examine whether the release of these vasodilator substances
is associated with the occurrence of PEH, the authors further
reported that both groups did experience PEH, although it was
more pronounced in the non-diabetic group compared to their
counterparts with T2D. Moreover, as discussed below, these

findings suggest that the bioavailability of NO released during
exercise may be dependent on the intensity of the exercise bout.

Dose-Dependent Effects of Exercise in
Patients With Type 2 Diabetes
Several studies have suggested, given that patients can sustain
it, higher intensity or longer duration exercise confers greater
benefits to T2D management (Lima et al., 2008; Pellinger et al.,
2017; Liu et al., 2019; Mendes et al., 2019; de Mello et al., 2021).
The occurrence of PEH in T2D patients has been observed
in a dose-dependent manner, such that a significant reduction
in systolic blood pressure (SBP) occurred following 20 min of
exercise at 90% of anaerobic threshold (AT), whereas diastolic
blood pressure and mean arterial pressure were also reduced
when the exercise intensity reached 110% of AT (Lima et al.,
2008). Similarly, the increased concentration of exercise-induced
NO was greater and the reduction in SBP was more pronounced
when an exercise bout consisting of 20 min of cycling was
conducted at 120% of LT, compared to 80% of LT (Asano et al.,
2013). A recent study by Mendes et al. (2019) compared treadmill
walking protocols for T2D patients involving either moderate-
intensity steady exercise for 30 min at 50% of heart rate reserve
(HRR) or high-intensity interval exercise (five sets of 3-min bouts
at 70% of HRR interspersed by 3-min bouts at 30% of HRR).
Including warm-up and cool-down, both protocols consisted
of 40 min of exercise, followed by a 50-min recovery period.
Acute effects during and following exercise showed that the high-
intensity interval exercise reduced blood glucose to a greater
extent compared to the moderate-intensity steady exercise.

Recent findings by Pellinger et al. (2017) suggest that in
addition to intensity, exercise duration may also affect acute
post-exercise femoral blood flow and vascular conductance
in patients with T2D in a dose-dependent manner. In this
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study, individuals with well-controlled T2D participated in four
different combinations of cycling exercise: 30 min at 40%
VO2peak, 30 min at 60% VO2peak, 60 min at 40% VO2peak, and
60 min at 60% VO2peak. Sustained post-exercise hyperemia and
reductions in SBP were observed in the latter three exercise
protocols, suggesting that exercise must be at least moderate
in intensity and/or prolonged in duration to evoke these acute
hemodynamic responses in patients with T2D. Taken together,
these findings suggest that higher intensity and/or longer
duration exercise may promote PEH and improved glucose
regulation in patients with T2D, at least in part due to enhanced
post-exercise skeletal muscle blood flow.

DISCUSSION: FUTURE DIRECTIONS

Additional research is needed to further elucidate the complex
relationship between PEH, post-exercise skeletal muscle blood
flow and glucose regulation. Although the aforementioned
research examining the potential relationship between post-
exercise vasodilation and glucose regulation is compelling,
most of the data derived from these investigations are
associative. Therefore, more studies employing experimental
manipulations designed to determine if there is a cause and
effect relationship between these post-exercise phenomena are
necessary.

Much of the research on healthy individuals may be extended
to patients with T2D. For example, it is unclear if the histamine
receptor-mediated post-exercise vasodilation that appears to sub-
serve glucose regulation in healthy subjects (Pellinger et al.,
2010, 2013; Emhoff et al., 2011) has the same effect in patients
with T2D. In addition, the ability to estimate skeletal muscle
membrane permeability (McConell et al., 2020) will allow
investigations designed to better understand the interactions

between glucose delivery, transport, and metabolism, in both
healthy individuals and those with T2D.

In addition to investigations examining the acute effects
of post-exercise vasodilation on glucose regulation, future
investigations are needed to examine emerging interactions
between vascular and metabolic adaptions to exercise. Along
those lines, Van der Stede et al. (2021) observed that histamine
receptor blockade blunted post-exercise muscle perfusion and
increases in whole body insulin sensitivity in response to
6 weeks of high-intensity interval training in healthy males.
Importantly, they also found that several histamine receptor-
mediated adaptations were interrelated, as increases in VO2max
were related to changes in vascular function and whole-body
insulin sensitivity. Moreover, a correlation was found between
changes in capillary-fiber ratio and whole-body insulin sensitivity
(Van der Stede et al., 2021). These findings are consistent
with recent research suggesting that the post-exercise activation
of H1- and H2-receptors upregulate several related pathways,
including those related to metabolism, endothelial and vascular
function (Romero et al., 2016), thereby highlighting important
histaminergic adaptations to exercise that potentially impact both
post-exercise blood flow and metabolic regulation.

In conclusion, recent investigations suggest that the post-
exercise vasodilation that is often observed with PEH may
aid in glucose regulation, via increased macrovascular and
microvascular perfusion. Additional research is needed to further
elucidate the relationship between post-exercise hemodynamics
and glucose regulation in humans.
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