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Attention deficit/hyperactivity disorder (ADHD) is one of the most common

neurodevelopmental disorders, and around two-thirds of a�ected children

report persisting problems in adulthood. This negative trajectory is associated

with high comorbidity with disorders like obesity, depression, or substance

use disorder (SUD). Decreases in cortical volume and thickness have also

been reported in depression, SUD, and obesity, but it is unclear whether

structural brain alterations represent unique disorder-specific profiles. A

transdiagnostic exploration of ADHD and typical comorbid disorders could

help to understand whether specific morphometric brain changes are due to

ADHD or, alternatively, to the comorbid disorders. In the current study, we

studied the brain morphometry of 136 subjects with ADHD with and without

comorbid depression, SUD, and obesity to test whether there are unique

or common brain alterations. We employed a machine-learning-algorithm

trained to classify subjects with ADHD in the large ENIGMA-ADHD dataset

and used it to predict the diagnostic status of subjects with ADHD and/or

comorbidities. The parcellation analysis demonstrated decreased cortical

thickness in medial prefrontal areas that was associated with presence of any

comorbidity. However, these results did not survive correction for multiple

comparisons. Similarly, the machine learning analysis indicated that the

predictive algorithm grouped most of our ADHD participants as belonging to

the ADHD-group, but no systematic di�erences between comorbidity status

came up. In sum, neither a classical comparison of segmented structural brain

metrics nor an ML model based on the ADHD ENIGMA data di�erentiate

between ADHD with and without comorbidities. As the ML model is based

in part on adolescent brains, this might indicate that comorbid disorders and

their brain changes are not captured by the ML model because it represents a

di�erent developmental brain trajectory.
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Introduction

Attention deficit/hyperactivity disorder (ADHD) is one

of the most common neurodevelopmental disorders and has

prevalence in children of 5–7%, of which around two-thirds

report persisting problems in adulthood (1, 2). A major factor

contributing to the disease burden of ADHD in adolescent

and adult populations is the high rate of comorbidities in

ADHD (3). Across the lifespan, increased prevalence of affective

disorders, personality disorders, and substance use disorder

(SUD) is present in patients with ADHD as compared to the

general population (4–6). Aside from reporting a higher disease

burden (7), subjects with ADHD and comorbid disorders also

suffer from decreased treatment efficacy (8) and higher lifetime

mortality (7). These issues underline the need for more research

on underlying mechanisms leading to high comorbidity in

subjects with ADHD.

Alterations in brain morphometry have been widely

reported in both children and adults with ADHD (9, 10)

and have been associated with clinical factors like disease

burden, persistence, and outcome of interventions (11, 12).

Studied separately, decreases in cortical volume and thickness

have also been reported in depression (13), SUD (14, 15),

and even obesity (16, 17), but it is unclear whether these

structural brain alterations represent unique disease profiles

or whether they represent a common underlying mechanism

that might link ADHD to these disorders (18). In a review of

structural MRI studies, Radonijc et al. (19) reported a significant

correlation in volumetric changes between sMRI findings in

ADHD and other corresponding mental health disorders like

major depression. In the current study, we will study the

structural brain morphometry of subjects with ADHD with and

without comorbid depression, SUD, and obesity to test whether

there are unique or common alterations underlying each of the

comorbidities of ADHD. One of the key overlapping features

between ADHD and the three abovementioned comorbidities

is altered structure and functioning of the reward network in

the brain (18). Based on previous findings, we expect potential

common underlying alterations in brain morphometry to be

concentrated around the thinner dorsal and medial and frontal

cortices, as well as in smaller subcortical brain volumes.

We used two distinct analytic approaches to investigate this

topic. First, we conducted a standard univariate analysis of

FreeSurfer-based volume segmentations of the structural brain

scans of subjects with ADHD with and without comorbidities

for testing our specific hypotheses. Second, we employed a

machine learning (ML) algorithm trained to classify subjects

with ADHD in a larger dataset and used it to calculate the

Abbreviations: ADHD, attention deficit/hyperactivity disorder; SUD,

substance use disorder; RCT, randomized controlled trial; ML, machine

learning; BRS, brain risk score.

ADHD brain risk score [BRS, e.g., (20)] of the current subjects

with ADHD with and without comorbidities. We expect that

if the brain morphometry changes associated with ADHD and

our comorbid disorders act upon the same neurobiological

pathway, the predictive algorithm would find more evidence

to classify the subjects as “affected” in the group of subjects

with ADHD and comorbidities, as opposed to the group with

ADHD only. This would result in higher BRS for the subjects

with ADHD and comorbidities. Hence, the two types of analyses

can be seen as complementary explorative approaches to

assess whether morphometric differences are shared or different

between ADHD with and without comorbid depression, SUD,

and/or obesity.

We address three separate research questions by both

types of analyses: 1) is there a general effect of comorbidities

on structural brain morphometry and/or predictive accuracies

of the ML algorithm? 2) Is there a cumulative effect of

comorbidities? 3) Is there a specific effect of each of

the comorbidities?

We hypothesized that the subjects with ADHD and

comorbid disorders will show smaller subcortical brain volumes

and lower cortical thickness, particularly in the frontal-striatal

pathways than the patients with ADHD only (18). We

hypothesized that the subjects with ADHD and comorbidities

would be more likely to be classified as affected by the algorithm

as compared to the subjects with ADHD only, and hence get

a higher average BRS. We further hypothesized that multiple

comorbidities would be associated with larger structural brain

changes and increased BRS. Lastly, we hypothesized that

the subjects with comorbid depression would show smaller

frontal and hippocampal volumes (21), while for the subjects

with SUD and obesity we expect smaller frontal and striatal

volumes (22, 23).

Methods

Participants

The study includes 133 subjects with ADHD with and

without the comorbid presence of depression, obesity, or

SUD (men = 57, mean age = 27). The recruitment

took place at Donders Center for Cognitive Neuroimaging,

Nijmegen, Netherlands and Goethe University, Frankfurt am

Main, Germany.

Inclusion criteria were: age between 18 and 55 years,

previously established diagnosis of ADHD, and compatibility

with MRI acquisition. Exclusion criteria were acute mental

illness (excluding the mental comorbidities of focus in the

current study, namely, depression and SUD), serious acute or

chronic physical diseases, pregnancy, as well as exclusion criteria

of the MRI examination. Only patients with at least 4 weeks of

stable medication regimen were included. Stimulants, alcohol,
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and nicotine were stopped on the day of the scan. Patients taking

an antipsychotic medication were excluded. Participants were

examined by a registered psychiatrist in Frankfurt or a trained

research psychologist in Nijmegen. Childhood symptoms in the

German ADHD sample were additionally measured via the

short Wender-Utah-Rating scale [WURS; (24)]. Adult ADHD

symptoms were counted with the Diagnostic Interview for

ADHD in Adults 2.0 (25), which uses the 18 DSM-5 criteria for

ADHD. Participant details can be found in Table 1.

The project was carried out in accordance with the

provisions of the Declaration of Helsinki and the European

Guidelines on Good Clinical Practice, and was approved by the

Ethics Committee of the Medical Faculty of the J.W. Goethe

University Frankfurt amMain (reg. no. 256/16) and in Nijmegen

by Radboud University (reg. no. 2018-4364).

Data acquisition

Structural T1 MPRAGE sequences were acquired on a

Siemens PrismaFit scanner (Nijmegen) or a Siemens Trio Syngo

scanner (Frankfurt). T1 scans were segmented by FreeSurfer

cortical and subcortical segmentation. Quality Control (QC)

was performed using the standardized ENIGMA QC pipeline

(http://enigma.ini.usc.edu/protocols/imaging-protocols/) based

on automatic outlier detection and visual inspection of

segmentation quality.

FreeSurfer segmentation methods

In order to investigate brain morphometry, all structural

MRI scans were segmented into subcortical volumes, cortical

thickness, and cortical surface area by FreeSurfer segmentation.

Structural T1-weighted MRI scans acquired at the two

contributing sites were segmented using standardized and

publicly available ENIGMA imaging protocols (http://enigma.

ini.usc.edu/protocols/imaging-protocols/). The automated

protocols, based on FreeSurfer (version 5.3) segmentations,

are fully validated and allow for maximal uniformity and

comparability across sites. For each participant, left and right

subcortical volumes, cortical thickness, and cortical surface area

measures were calculated. Quality control depended on the

visual inspection of all volume segmentations. Poorly segmented

regions were removed from further analyses.

Machine learning training sample

We used an existing machine learning algorithm that was

previously trained and validated in the very large ENIGMA-

ADHD data cohort to classify subjects with an ADHD diagnosis

from healthy controls on the basis of structural brain data. This

previous study found the predictive accuracy, as measured by

the area under the receiver operating curve, to be.62, indicating

it is significantly better than chance prediction of ADHD or

control status (CI = 0.56–0.69, p = 0.002). Full details of the

model training and operation are available in Zhang-James et al.

(26). The code for generation of the ML model can be found on

https://github.com/ylzhang29/ADHD_MLP and access to the

ENIGMA consortium can be requested through https://enigma.

ini.usc.edu/about-2/.

The ENIGMA-ADHD training data were based on T1-

weighted structural MRI (sMRI) data from 4,183 subjects (adults

and children with and without ADHD) from 35 participating

sites (by Aug. 2019, see 9; 26). Images were processed

using the consortium’s standard segmentation algorithms in

FreeSurfer (V5.1 and V5.3). Details about the processing of

the training data sample are provided in Zhang-James et al.

(27). FreeSurfer standard segmentation was conducted as

described in the ENIGMA protocol. Final sMRI features used

in the classification modeling were 151 variables including 34

cortical surface areas, 34 cortical thickness measurements, and

7 subcortical regions from each hemisphere, and intracranial

volume (ICV).

For the current study, the algorithm was applied to

our new comorbidity cohort, rendering a BRS for each

subject, indicating the likelihood that the subject was

affected by ADHD. Average BRS scores were used in the

current study to test whether predictive accuracies for the

ADHD diagnostic status would differ between subjects

with ADHD and comorbid diagnoses of SUD, obesity,

or depression.

Machine learning feature preprocessing,
algorithms, and model evaluation

The machine learning classifier reported by Zhang-James

et al. (26) was used to calculate a risk score for ADHD

based on the aforementioned subcortical and cortical thickness

and surface area segmentations to study differences between

comorbidity subgroups of patients with ADHD (Figure 1).

As a first data reduction step before the training of the

classifier, principal factors factor analysis (PFFA) was performed

with varimax rotation on all the 151sMRI features in the

original ENIGMA-ADHD training set, and identified 46

factors that explained > 90% of the total variance in the

training set. The original study compared the performance

of the 46 non-correlated factors with the original 151 sMRI

features and determined that models that used the PFFA

factors as input features achieved better performance than

the original sMRI features. Therefore, in the current study,

we computed the 46-factor scores for all the subjects in our

comorbidity cohort based on the PFFA from the ENIGMA

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.869627
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://github.com/ylzhang29/ADHD_MLP
https://enigma.ini.usc.edu/about-2/
https://enigma.ini.usc.edu/about-2/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


van Rooij et al. 10.3389/fpsyt.2022.869627

TABLE 1 Participant characteristics.

ADHD ADHD with comorbid disorders

Number of participants (N) 32 101

Age (years) mean= 27,72 (min= 18, max= 43) mean= 33,84 (min= 18, max= 55)

Site (N)

Nijmegen 5 56

Frankfurt am main 27 45

Sex (N)

Female 14 62

Male 18 39

Number of comorbidities (N)

1 42

2 50

3 9

Type of comorbidities (N)

Obesity 64

Depression 71

SUD 34

Overlap of comorbidities (N)

Depression 17

Obesity 19

SUD 9

Depression+ Obesity 4

Depression+ SUD 13

Obesity+ SUD 32

Depression+ Obesity+ SUD 8

Medication use (N)

Stimulants (i.e. Ritalin, Concerta) 7 23

Atomoxetine 2

Antidepressants 2

Other 3

training set. The factor scores were also scaled based on

the training set’s minimum and maximum values before the

prediction algorithm was used, as described in Zhang-James

et al. (26).

The final ensemble multilayer perceptron (MLP) neural

network models reported in Zhang-James et al. (26) were

tested on the input PFFA features from our comorbidity

cohort. Specifically, the model was re-trained on the original

ENIGMA-ADHD training and validation sets and tested on

our comorbidity cohort. The MLP model uses a sigmoid

function in the final layer to generate a continuous brain risk

score (BRS), which assesses the probability for each individual

to be diagnosed with ADHD. The final predicted BRS was

based on a bootstrap averaging (bagging) ensemble of MLP

models (26).

The primary outcome measure in the current study was

therefore the BRS for each subject, indicating a likelihood that

each subject would be classified as affected by ADHD. Given that

all our subjects have an ADHD diagnosis (both in the comorbid

and non-comorbid groups), correct prediction would mean the

algorithm classifies all the subjects as “affected”.

Statistical analyses

As stated in the introduction, we formulated three

hypotheses to test for the effects of comorbidity on structural

brain morphometry, as operationalized by FreeSurfer

segmentations of subcortical volumes, cortical thickness,

and cortical surface area. First, we compared patients with

and without comorbidity. Second, we looked for a linear

effect of comorbidity (none, one, two, or three). Third, we

compared by F-test contrast all eight subgroups of different

combinations of depression, SUD, or obesity. All tests

included age, gender, and site as covariates. Intracranial

volume (ICV) was added as an additional covariate in all the
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FIGURE 1

Application of the ML ensemble classifier algorithm, which was used to estimate the BRS for ADHD in our current sample based on the ENIGMA

cohort data, and then applied to classify di�erent comorbidities in ADHD.

models, with subcortical volume as the dependent variable.

The first two tests were defined as t-tests and the third one

as F-test.

We calculated differences in medication use between the

comorbidity subgroups with a univariate general linear model

in R (R Core 27). Comorbidity (SUD, obesity, and depression)

was used as a dependent variable, whereas medication type

(stimulant, atomoxetine, antidepressant, none, other) was

used as an independent variable with age, sex, and site

as covariates.

Results

Freesurfer results

In accordance with the three research questions, three sets

of models were run in R. Each model used each segmentation

of subcortical volume, cortical thickness, and surface area

as separate independent variables. The first model set tested

for differences between participants with ADHD and no

comorbidities and those with any comorbidity. The second

model set tested for group differences between participants

with ADHD and all comorbidities (cumulatively). The third

model set tested for individual differences among subjects with

ADHD, ADHD + depression, ADHD + obesity, and ADHD

+ SUD.

The summarized results of themodels are depicted in Table 2

(full results are depicted in Supplementary Tables 1, 2). The

analyses show an uncorrected group difference between subjects

with solely ADHD and ADHD + any comorbidity in the right

putamen (B = −6.933, p =0.022), left bank of the superior

temporal sulcus (B =0.005, p = 0.009), and middle temporal

sulcus (B = 0.004, p = 0.023). Similarly, the model testing

differences between solely ADHD and ADHD + all cumulative

comorbidities showed uncorrected group differences in the right

and left rostral middle frontal (B = −0.052, p = 0.033; B =

−0.068, p = 0.004 respectively), superior frontal (B = −0.072,

p = 0.003; B = −0.057, p = 0.01), right pars triangularis (B =

−0.071, p= 0.007), lateral orbitofrontal (B=−0.055, p= 0.044)

and left pars opercularis (B = −0.051, p = 0.046), and caudal

middle frontal (B=−0.064, p= 0.014), indicating lower cortical

thickness in frontal areas associated with more comorbidities.

These effects did not survive multiple comparisons corrections

with a stringent pFDR-correction.

No effects of the different comorbidities on medication

use were observed. As an exploratory follow-up analysis,

medication use (as an ordinal variable sorted by type: stimulant,

atomoxetine, antidepressant, none, other) was also subsequently

added as a predictor in all ROIs that showed an uncorrected
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TABLE 2 FreeSurfer results on cortical thickness and subcortical volumes (only uncorrected significant values are displayed.

H1: Any Comorbidity H2:

Cumulative

comorbidities

H3: Specific

comorbidity

effects

H1: Any

Comorbidity

H2:

Cumulative

comorbidities

H3: Specific

comorbidity

effects

Right

hemisphere

B p-value B p-value Left hemisphere B p-value B p-value

Frontal Frontal

Superior

frontal

0.001 0.427 −0.072 0.003 ADHD<ADHD+

Obesity

Superior frontal 0.001 0.564 −0.057 0.010 ADHD<ADHD+

Obesity

Rostal middle

frontal

0.001 0.557 −0.052 0.033 ADHD<ADHD+

Obesity

Rostal middle frontal 0.001 0.474 −0.068 0.004

Pars orbitalis −0.001 0.794 −0.069 0.071 ADHD<ADHD+

Obesity

Pars orbitalis 0.003 0.197 −0.019 0.582

Pars

triangularis

−0.001 0.407 −0.071 0.007 ADHD<ADHD+

Obesity

Pars triangularis 0.001 0.437 −0.045 0.084

Lateral

orbitofrontal

0.001 0.588 −0.055 0.044 Lateral orbitofrontal 0.003 0.081 −0.033 0.206

Caudal middle

frontal

0.000 0.958 −0.032 0.207 Caudal middle frontal 0.000 0.908 −0.064 0.014

Cingulate Cingulate

Rostal anterior

cingulate

0.002 0.498 −0.086 0.031 Rostal anterior cingulate −0.001 0.546 −0.089 0.016

Temporal Temporal

Temporal pole 0.004 0.264 0.134 0.028 Temporal pole 0.000 0.925 −0.091 0.177

Bankstats 0.003 0.166 −0.024 0.470 Bankstats 0.005 0.009 0.014 0.635

Striatal Striatal

Putamen 5.148 0.468 9.499 0.934 ADHD<ADHD+

Obesity

Putamen 1.417 0.844 16.556 0.887

Pallidum −6.933 0.022 −40.530 0.421 Pallidum −1.614 0.569 −56.925 0.210

Amygdala 0.654 0.799 10.075 0.808 Amygdala 0.300 0.908 13.401 0.750 ADHD<ADHD+

Obesity

Bold values indicate p-values below 0.05 (uncorrected). No observed FDR-corrected p-values were lower than 0.2.
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significant effect as depicted in Table 2. No significant effects of

medication use on any brain measure were found.

Machine learning results

TheML algorithm-predicted BRS of ADHDwas, on average,

0.57, indicating that the algorithm, on average, found more

evidence that the subjects were diagnosed with ADHD than

that they were unaffected (t = 15.58, p < 0.001). However,

no differences were observed between any of the comorbidity

groups, so the addition of comorbidities did not influence the

accuracy of this prediction. Neither any, all, or each of the

comorbidities were associated to BRS (any: t= 0.445, p= 0.656,

Cohen’s d = 0.18, Cohen’s d CI = −0.21–0.59; all (cumulative):

t = 0.879, p = 0.381, Cohen’s d = 0.15, Cohen’s d CI =

−0.3–0.62; every: f = 0.04, p = 0.986). The post hoc power

analyses indicate that the power achieved for the F-test was

1-β = 0.05, limiting the interpretability of the lack of effects.

BRS was not associated with site or sex, and neither was the

BRS correlated with childhood symptoms of ADHD (WURS-k)

(refer to Supplementary Figures).

Discussion

Our segmentation analyses show some small effects of

comorbidities on decreased cortical thickness in the frontal areas

of the brain, but none of these effects survive the correction for

multiple comparisons due to the large number of segmentations

tested.

We found nominally significant reductions in the cortical

thickness of several parts of the frontal lobe especially in

the rostral middle gyrus in patients with a higher number

of comorbid disorders independent of specific disorder type.

This points to mechanisms that may be related to a general

psychopathology (p)-factor (28) in the disease process leading

to a pattern of common underlying structural brain changes

associated with presence of mental disorders, which could

become more pronounced in the presence of multiple comorbid

disorders. In fact, a recent review article (18) reports a

finding of decreased frontal cortical thickness in subjects with

ADHD and comorbid depression, SUD, or obesity; this is in

line with a p-factor model but in contrast to our current

findings. Additionally, we observed some nominally significant

reductions in frontal cortical thickness mainly in the ADHD

+ obesity group, suggesting some differentiation between

comorbidities in their association with specific structural brain

alterations in the superior and medial frontal cortices. These

results, however, also did not survive more stringent correction

for multiple comparison (FDR correction).

Similarly, the ML algorithm had a predictive accuracy of

0.57, indicating an above-chance level for a correct ADHD

diagnosis across all the subjects. However, this did not

differentiate between subjects with solely ADHDor subjects with

ADHD and comorbidities. Therefore, an ML model trained to

differentiate between subjects with ADHD and healthy controls

in the ENIGMA-ADHD dataset does not differentiate between

subjects with just ADHD and ADHD + comorbidities. This

indicates that the features used by this data-driven algorithm to

predict ADHD status are not the same features that are altered

in subjects with comorbidities. Therefore, using this approach,

we find no evidence that the underlying morphometric features

underlying ADHD and comorbid disorders are similar.

As the ML model was based at least in part on adolescent

brains, this might indicate that comorbid disorders and their

brain changes that come later in life are not captured by the ML

model because it represents a different developmental trajectory.

In addition, one could argue that the disorders are not simple

extensions of a dysregulated ADHD-developmental trajectory;

therefore, our ML model does not pick up different subgroups.

Several further limitations should be considered when

discussing our study. First, the limitations of the ML model

described by Zhang-James et al. (26) apply to our study. The

ENIGMA mega-analysis combined heterogeneous data from

many sites. Finally, there was a gender difference in children

and adolescents. Zhang-James et al. (26) therefore discusses

whether there is increased noise in the combined dataset that

makes it difficult to classify patients with ADHD. Furthermore,

our study only considers structural morphometrics. Data

such as resting-state connectivity or DTI based connectivity

metrics could be a promising alternative. In contrast to our

univariate analyses of FreeSurfer-segmented brain regions, an

individual risk score cannot elucidate the specific contribution

of individual brain regions. A general drawback in our study

is the lack of control group, i.e., can our analyses and models

differentiate between subjects with ADHD and subjects without?

This has been evaluated in detail in Zhang-James et al.

(26) using the ENIGMA-ADHD cohort consisting of subjects

across the lifespan and indicating that the ML model does

indeed significantly differentiate subjects with ADHD from

controls. These results were obtained in an average younger

sample than the current study. If the ML model captures

some ADHD-related developmental aspect, it might be more

strongly correlated with childhood symptoms. However, our

analysis did not indicate that symptom load in childhood (as

measured by the WURS-k questionnaire) was correlated with

the model’s estimation. Furthermore, our study did not evaluate

systematically differentML-models like deep neural networks vs.

Gaussian processes. A different ML model might have detected

differences between ADHD comorbidities. However, the goal

of the current study was to specifically evaluate a previously

tested model (26), as our dataset is too small to estimate a

separate ML model. In line with this limitation comes the fact

that we did not make use of a more fine-grained voxel- or vertex-

based analysis technique in our ML-model, but we relied on the
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parcellation scheme of FreeSurfer. As the best strategy in terms

of sensitivity and validity is still unclear, we choose to stay with

the previously evaluated model (26). Lastly, it should be noted

that the sample size of the current study was quite limited to

establish differences between several classes of comorbidities.

Both the test accuracy of the ML algorithm and the statistical

power of the segmentation analyses will benefit from larger

sample sizes to detect potential subtle anatomical differences.

The post hoc power analyses also indicate low tomoderate power

for the FreeSurfer analyses (1-β = 0.1–0.2). Therefore, a more

extensive sample may aid in uncovering subtle severity-related

effects on brain structure.

An innovative part of our study is the use of an ML-model

for generating a predictive ADHD brain risk score. This has

parallels in recent studies trying to use the ENIGMA dataset

as a weighting prior for a brain risk summary measure, e.g., in

schizophrenia (29) but not in ADHD. Future studies are needed

to compare the simple morphometric brain risk measures in

ADHD to our ML Gaussian process model, which might be over

the higher sensitivity of ML models.

To conclude, it is notable that neither the morphometric

ML-model nor the univariate FreeSurfer-Segmentation

models were effective in predicting ADHD and comorbid

disorders. However, we do not think that the current results

should be interpreted as definitive evidence that there are

no effects on individuals with ADHD depending on type

or number of comorbid disorders. Future studies might

further investigate specific tasks, e.g., reward-learning,

and look for relationships with ADHD symptoms. For

example, there are alternate approaches with specific tasks,

e.g., functional connectivity that may prove better. Indeed,

a recent article by our group demonstrated that striatal

rs-fMRI-connectivity is able to distinguish between the

number of comorbidities aka the disorder “load” (18),

indicating this modality as a potential target for future

analyses.
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