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In this paper we formulated and analyzed an optimal deterministic eco-epidemiological
model for the dynamics of maize streak virus (MSV) and examine the best strategy to
fight maize population from maize streak disease (MSD). The optimal control model is
developed with three control interventions, namely prevention (u1), quarantine (u2) and
chemical control (u3). To achieve an optimal control strategy, we used the Pontryagin’s
maximum principle obtain the Hamiltonian, the adjoint variables, the characterization of
the controls and the optimality system. Numerical simulations are performed using
Forward-backward sweep iterative method. The findings show that each integrated
strategy is able to mitigate the disease in the specified time. However due to limited re-
sources, it is important to find a cost-effective strategy. Using Incremental Cost-
Effectiveness Ratio(ICER) a cost-effectiveness analysis is investigated and determined
that the combination of prevention and quarantine is the best cost-effective strategy from
the other integrated strategies. Therefore, policymakers and stakeholders should apply the
integrated intervention to stop the spread of MSV in the maize population.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Maize (Zea mays L.), is the most important food source and cash crop for over 100 million peoples in Africa (M’mboyi et al.,
2013). It is planted annually over an area of 15.5 million hectares(M’mboyi et al., 2013; Bosque-P�erez, 2000; Magenya et al.,
2008). Maize is one of the main cereals grown by small-scale farmers primary for food and income generation (Mesfin et al.,
1991). Maize streak disease (MSD) caused by Maize streak virus (genus Mastrevirus, family Geminiviridae) is the most
devastating and destructive disease of maize in Sub-Saharan Africa (Mazengia, 2016; Schneider & Anderson, 2010). Maize
streak disease (MSD) is a viral disease which has single-component, circular, single-stranded DNA (Bosque-P�erez, 2000;
Magenya et al., 2008).
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MSD is a major threat to cereal crops amongst MSV transmitted by species of Cicadulina leafhoppers. Globally, 22 species
of Cicadulina leafhoppers have been reported, of which 18 are found in Africa (Bosque-P�erez, 2000). Cicadulina mbila is the
most predominant vector and the most important in the epidemiology of the virus(Bosque-P�erez, 2000) from the known 8
vector of MSV in the genus (Mesfin et al., 1991).

Mathematical modeling has become an important tool in understanding the dynamics of disease transmission and in
decision making processes regarding intervention programs for disease control. To reduce the losses caused by the MSD
different alternative tactics are used such as cultural control, biological control and chemical control (M’mboyi et al., 2013;
Magenya et al., 2008; Karavina, 2014) and stakeholders are encouraged to combine at least two strategies in dealing with the
disease (Jeger et al., 2004; Karavina, 2014).

Currently, vector-borne plant diseases have attracted the interest of many mathematical modeling researchers (Shi et al.,
2014). Ordinary differential equations (ODEs) have been used to model plants infected with viruses (Jeger et al., 1998; Jeger
et al., 2004; Shi et al., 2014; Alemneh, Makinde, & Theuri, 2019a, 2019b). For instance, the authors in (Shi et al., 2014),
formulated and analyzed the dynamics of a vector-borne plant disease model. The study in (Alemneh et al., 2019a, 2019b),
developed and analysed a mathematical model for MSV pathogen interactionwith pest invasion on maize plant. The study in
(Murwayi et al., Owour), formulated and analyzed a dynamical nonlinear plant vector borne dispersion disease model that
incorporates insect and plant population at equilibrium and wind as a parameter of climate change. A mathematical model of
plant disease with the effect of fungicide and obtained that the optimal control can reduce the number of infected hosts
compared to that of without control formulated and analysed by (Anggriani et al., 2018). The study in (Meng & Li, 2010)
developed amodel to combat plant viruses by continuously removing infected plants and replacing themwith healthy plants.
A Mathematical model developed by the authors in (Anggrianiet al., 2017), studied the effects of plant disease transmission
dynamics with roguing, replanting and additional treatment such as curative. An eco-epidemiological deterministic model for
the transmission dynamics of maize MSD in maize plant developed and analyzed by (Alemneh et al., 2019a, 2019b). However,
the study did not consider the optimal control theory and cost-effectiveness analysis.

On the other hand, fewer studies have investigated the dynamic optimization, or optimal control of plant diseases. From
this, the work in (Kinene et al., 2015), formulated a mathematical model to investigate the transmission dynamics of Cassava
brown streak disease and the cost-effectiveness of the control measures. Two time dependent controls(spraying with
chemicals and uprooting & burning of infected plants) are used in the model and they found that uprooting and burning of
infected plants is cost effective strategy. The Study in (Hugo et al., 2019), formulated amathematical model for optimal control
and cost-effectiveness analysis of tomato yellow leaf curl virus disease. The other work in (Collins& Duffy, 2016), developed a
deterministic differential equation model with optimal control and investigated the impacts of foliar diseases on maize plant
population. To the best of our knowledge, an eco-epidemiological SIHY maize streak virus dynamical model with application
of optimal control and cost-effectiveness technique has not been done. Therefore, in this paper we are interested in filling this
gap.

The work starts by developing an optimal control model for the model developed by (Alemneh et al., 2019a, 2019b), to
study the optimal and cost-effective integrated strategy from all possible combinations of maize streak virus control stra-
tegies that were proposed by (Magenya et al., 2008; Karavina, 2014; Martin & Shepherd, 2009; Alegbejo et al., 2002). In this
study we proposed time-dependent control strategies, namely (i) prevention, (ii) quarantine(uprooting and burning) and (iii)
chemical control on the model in (Alemneh et al., 2019a, 2019b). In the study Pontryagin’s Maximum Principle was used to
derive necessary conditions for the optimal control of the disease. Further, we used Incremental cost-effectiveness ratio to
investigate the cost-effectiveness of all possible combinations of the proposed strategies to decide themost efficient approach
for reducing MSV with minimum costs.

We organized the rest of the work as follows: Section 2, devoted in formulation and description of the MSVmodel with its
time dependent control intervention strategies is presented. In Section 3, we prove the existence of optimal control for the
model. On the other hand, in Section 4, the formulation of Hamiltonian and optimality system using Pontryangin’s Maximum
Principle is done. In Section 5, we illustrate the numerical simulation results on the control strategies. The cost effectiveness
analysis intervention strategy in Section 6 using incremental cost-effectiveness ratio (ICER) is performed. Lastly in Section 7
brief conclusion is presented.

2. Model formulation

The disease transmission considers two different populations, the Maize population N1(t) and the leafhopper vector
populationN2(t). Each of the subpopulations has two sub classes: susceptible and infected. At time t, let S(t) denotes the
density of the susceptible maize, and I(t) denotes the density of the infected maize, So that

N1ðtÞ ¼ SðtÞ þ IðtÞ (1)
The susceptible and infected leafhopper vector densities are denoted by H(t) and Y(t), respectively. Thus

N2ðtÞ ¼ HðtÞ þ YðtÞ (2)
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Table 1
Description of parameters of the MSV model (3).

Parameter Description

b1 Predation and infection rate of infected leafhopper on susceptible maize plant
b2 Predation and infection rate of susceptible leafhopper on infected maize plant
b Conversion rate of infected leafhopper
q Recruitment rate of susceptible leafhopper
K Carrying capacity
C Half saturation rate of susceptible leafhopper with infected maize plant
A Half saturation rate of susceptible maize with infected plant
m1 Death rate of infected maize
m2 Death rate of susceptible leafhopper
m3 Death rate of infected leafhopper
r Intrinsic growth rate of maize population
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In the absence of leafhopper population and with no MSV disease, the maize population grows logistically with intrinsic
growth rate r and environmental carrying capacity K(K > 0). When the disease presents in maize population, the infected host
population contributes to the susceptible host population growth towards the carrying capacity K(K > 0). The susceptible
leafhopper vectors are recruited at rate q and by eating infected maize plant at a rate b2 moved to infected leafhopper
subpopulation. The natural death rate for susceptible and infected leaf hoper is m2 and m3 respectively.

Susceptible plants are move to the infected subclass following contacts with infected leafhopper at a per capita rate b1. If
the maize plant once became infected, never recovers and gives zero or very low yield of maize. The maize plant population
has natural death rate m1. Further more, the disease can not transmitted horizontally and vertically in both populations and it
is not genetically inherited. The predation functional response of the leafhopper towards susceptible maize assumed
Michaelis-Menten kinetics and used a Holling type II functional form with predation and infection coefficient b1, b2 and half
saturation constant A and C. The description of the parameters are found in Table 1.8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

dS
dt

¼ rS
�
1� Sþ I

K

�
� b1SY
Aþ S

dI
dt

¼ b1SY
Aþ S

� m1I

dH
dt

¼ q� b2IH
C þ I

� m2H

dY
dt

¼ bb2IH
C þ I

� m3Y

(3)

with nonnegative initial conditions S(0) ¼ S0, I(0) ¼ I0, H(0) ¼ H0, Y(0) ¼ Y0.
Now, we introduced time dependent controls on the model (3), to identify policies that control MSD epidemic. We apply

control strategies on the model with the following assumptions. The first strategy is prevention strategy (u1) that protect
susceptible from contacting the disease. Hence, it minimize or eliminate infected leafhopper-susceptible maize contacts by a
factor (1 � u1(t)). The control function u2(t) represents the control effort on the quarantine (i.e uprooting and burning) of
infectious maize individuals. When infectedmaize individuals in the field are uprooted and burned, it increases their removal
rate by u2(t) which again reduces infected maize -susceptible leafhopper contacts by a factor (1 � u2(t)). We have a third
control variable u3(t) for the leafhopper population. The insecticide chemical harms the entire population of leafhopper by
raising their mortality rate by u3(t). On the time interval [0, tf], the control functions are performed. We used Pontryagin’s
Maximum Principle to determine the situations under which disease eradication can be attained in a finite moment. After
incorporating the assumptions of the controls u1, u2 and u3 in MSV model (3), we obtain the optimal control model:8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

dS
dt

¼ rS
�
1� Sþ I

K

�
� ð1� u1Þ

b1SY
Aþ S

dI
dt

¼ ð1� u1Þ
b1SY
Aþ S

� ðu2 þ m1ÞI

dH
dt

¼ q� ð1� u2Þ
b2IH
C þ I

� ðu3 þ m2ÞH

dY
dt

¼ ð1� u2Þ
bb2IH
C þ I

� ðu3 þ m3ÞY

(4)
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2.1. Positivity of solution and boundedness

Its given that N1(S, I) ¼ S(t) þ I(t). Differentiating N1 and simplifying, we get the expression

dN1

dt
¼ rS

�
1� Sþ I

K

�
� m1I;

� rS� m1I:

¼ Sðr þ 1Þ � ðSþ m1IÞ;
� 2ðr þ 1Þ � 9N1:

where 2 ¼ max{S(0), K} and 9 ¼ min{1, m1}. Then
dN1

dt
þ 9N1 � 2ðrþ1Þ; (5)
After solving equation (5) and evaluating it as t / ∞, we got;

Uh ¼
n
ðS; IÞeR2

þ : N1ðtÞ�
2

9
ðrþ1Þ

o
:

Similarly, for leafhopper population N2(H, Y) ¼ H(t) þ Y(t), we get

dN2

dt
¼ q� m2H � m3Y ;

� q� xN2:

Where x ¼ min(m1, m2). Then
dN2

dt
þ xN2 � q; (6)
After solving equation (6) and evaluating it as t / ∞, we got;

Uv ¼
n
ðH;YÞeR2

þ : N2ðtÞ�
q
x

o
:

Therefore, the feasible solution set for the MSV model given by

U ¼ Uh � Uv ¼
n
ðS; I;H;YÞ2R4

þ : N1ðtÞ�
2

9
ðrþ1Þ;N2ðtÞ�

q
x

o
: (7)
Hence, U is positively invariant region, inside which the model is considered to be epidemiologically meaningful and
mathematically well-posed. Therefore, with in the region the solution of model (3) is bounded.

Theorem 2.1. Let U ¼ fðS; I;H;YÞ2R4 : Sð0Þ >0; Ið0Þ >0;Hð0Þ >0;Yð0Þ >0g . Then the solution set (S(t), I(t), H(t), Y(t)) of
system (3) is positive for all t � 0.

Proof. From the first equation of the model

dS
dt

¼ rS
�
1� Sþ I

K

�
� b1SY
Aþ S

;

� rS
�
1� S

K

�
:

Then we have
dS

S
�
1� S

K

� � rdt;

0
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SðtÞ � KSð0Þ
e�rtðK � Sð0ÞÞ þ Sð0Þ:
As t / ∞, we obtain 0 � S(t) � K. By using the same procedure, we obtained

IðtÞ � Ið0Þe�m1t � 0;HðtÞ � Hð0Þe�m2t � 0; YðtÞ � Yð0Þe�m3t � 0:
Thus all solutions of the model are positive for all t � 0. ,
3. Existence of optimal control

The ultimate aim is to find the optimal level of the intervention targeted to minimize infection and cost of the controls. In
order to achieve this, the following objective functional is considered:

J ¼
Ztf
t0

�
d1I þ d2Y þ 1

2

�
w1u

2
1 þw2u

2
2 þw3u

2
3

��
dt (8)

where tf is the final time, d1 and d2 are balancing constant coefficients of the infected maize and infected leafhopper
respectively while w1, w2 and w3 are weight coefficients for each individual control measure. We choose a nonlinear cost on
the controls based on the assumption that the cost takes nonlinear form (Alemneh, 2020; Alemneh et al., 2020; Osman et al.,
2020a). The goal is to find the optimal control triple (u*1;u

*
2, u

*
3) such that:

J
�
u*1;u

*
2;u

*
3
	 ¼ minfJðu1;u2;u3Þjðu1; u2;u3Þ2Ug;

where the control set U ¼ fðu1;u2;u3Þ j uiðtÞ is measurable on [0, tf], 0 � uiðtÞ � 1; i ¼ 1;2;3g.
The basic setup of the optimal control problem is to check the existence of the optimal controls. Thus, using the result from

(Fleming & Rishel, 1976) the existence of an optimal control pair can be proved.

Theorem 3.1. Given system (4) with (S0, I0, H0, Y0) � (0, 0, 0, 0), and objective functional J(u) of (4), then there exists an optimal
control ðu*1;u*2;u*3Þ and state solutions (S*, I*, H*, Y*) that minimizes J(u) over U i.e

J
�
u*1; u

*
2;u

*
3
	 ¼ minfJðu1;u2;u3Þjðu1;u2;u3Þ2Ug

The Proof is based on the following assumptions given in (Fleming & Rishel, 1976):

(i) The set of controls and corresponding state variables is nonempty.
(ii) The measurable control set is convex and closed.
(iii) The right hand side of the state system is bounded by a linear function in the state and control.
(iv) The integrand g(x, u) of the objective functional is convex on U.
(v) There exist constants a1, a2 > 0, and b* > 1 such that the integrand of the objective functional satisfies

g � a1

��
ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2

�b*

2 � a2

Proof.

(i) We proved the boundedness of the model in Subsection 2.1. Fromwhich it follows that the solutions of the state system
are continuous and bounded for each admissible control functions in U. Further, the right hand side functions of the
model equation (4) satisfies the Lipschitz conditionwith respect to state variables. Hence, from Theorem 9.2.1 of Lukes
in (Lukes, 1982), the solutions of system (4) exist. Thus, the set U is non empty.

(ii) It suffices to write U ¼ u1 � u2 � u3. So that u1 � u2 � u3 is bounded and convex ct 2 [0, tf].
(iii) By definition, each right hand side of system (4) is continuous. All variables S, I, H, Y and u are bounded on [0, tf]. To

prove the boundedness, we used themethod in (Burden et al., 2004). To do sowe use the fact that the supersolutions of
system in equation (4) given by:
173



H.T. Alemneh, A.S. Kassa and A.A. Godana Infectious Disease Modelling 6 (2021) 169e182
dŜ
dt

¼ rŜ

d̂I
dt

¼ b1Ŝ

dĤ
dt

¼ qþ b2Ĥ

dŶ
dt

¼ bb2Ĥ

(9)

are bounded on a finite time interval. System (9) can be written as

� ¼

2
6666666666664

dŜ
dt

d̂I
dt

dĤ
dt

dŶ
dt

3
7777777777775
¼

2
664

r 0 0 0
b1 0 0 0
0 0 b2 0
0 0 bb2 0

3
775
2
664
Ŝ
Î
Ĥ
Ŷ

3
775þ

2
664
0
0
q
0

3
775 (10)

The system is linear in finite time with bounded coefficients, and therefore the supersolutions Ŝ; Î;Ĥ, and Ŷ are uniformly
bounded. Since the solution to each state equation is bounded, we see that,

f ðt; � ; uÞ �

2
6666666666664

dS
dt
dI
dt
dH
dt
dY
dt

3
7777777777775
¼

2
664
r 0 0 0
b1 0 0 0
0 0 b2 0
0 0 bb2 0

3
775
2
664
bSbIbHbY

3
775þ

2
664
0
0
q
0

3
775 � K1 �þK2

where K1 depends on the coefficients of the system. Thus, the assumption holds.

(iv) The integrand of the cost functional

JðI;Y ;uÞ ¼ d1I þ d2Y þ 1
2

�
w1u

2
1 þw2u

2
2 þw3u

2
3

�

is the sum of convex function and hence convex with respect to control variables.

(v) There exist constants a1, a2 > 0 and b* > 1 such that the integrand L of the objective function

LðI;Y ;uÞ ¼ d1I þ d2Y þ 1
2

�
w1u

2
1 þw2u

2
2 þw3u

2
3

�
� a1

2

�
u21 þu22 þu23

�
� a2

where a1 ¼min{w1,w2, w3}; b* ¼ 2, a2 > 0 and d1, d2 > 0. Thus, this assumption is justified. Therefore, there exists an optimal
control that minimizes the objective function.
174



H.T. Alemneh, A.S. Kassa and A.A. Godana Infectious Disease Modelling 6 (2021) 169e182
4. The Hamiltonian and optimality system

We used Pontryangin’s Maximum Principle(Pontryagin, 1987) to drive the necessary conditions that an optimal control
must satisfy. This principle converts the system in equation (4) and equation (8) into a problem of minimizing point-wise
Hamiltonian (M), with respect to u1(t), u2(t) and u3(t) as:

MðS; I;H;YÞ ¼ dJ
dt

þ l1
dS
dt

þ l2
dI
dt

þ l3
dH
dt

þ l4
dY
dt

MðS; I;H;YÞ ¼ d1I þ d2Y þ 1
2

�
w1u

2
1 þw2u

2
2 þw3u

2
3

�

þl1



rS
�
1� Sþ I

K

�
� ð1� u1Þ

b1SY
Aþ S

�

þl2



ð1� u1Þ

b1SY
Aþ S

� ðu2 þ m1ÞI
�

þl3



q� ð1� u2Þ

b2IH
C þ I

� ðu3 þ m2ÞH
�

þl4



ð1� u2Þ

bb2IH
C þ I

� ðu3 þ m3ÞY
�

Where li, i ¼ 1, 2, 3, 4 are the adjoint variable associated with S, I, H, and Y to be determined suitably applying the principle
(Pontryagin, 1987).

Theorem 4.1. For an optimal control set u1, u2, u3 that minimizes J over U, there are adjoint variables, l1, …, l4 such that:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

dl1
dt

¼ �
�
r
�
1� 2Sþ I

K

�
� ð1� u1Þ

b1AY

ðAþ SÞ2
��

l1 � ð1� u1Þ
b1AY

ðAþ SÞ2
l2

dl2
dt

¼ �d1 þ
rS
K
l1 þ ðu2 þ m1Þl2 þ ð1� u2Þ

b2CH

ðC þ IÞ2
l3 � ð1� u2Þ

bb2CH

ðC þ IÞ2
l4

dl3
dt

¼
�
ð1� u2Þ

b2I
C þ I

þ m2 þ u3

�
l3 � ð1� u2Þ

bb2I
C þ I

l4

dl4
dt

¼ �d2 þ ð1� u1Þ
b1S
Aþ S

l1 � ð1� u1Þ
b1S
Aþ S

l2 þ ðu3 þ m3Þl4
With transversality conditions, li(tf) ¼ 0, i ¼ 1, …, 4. Furthermore, we obtain the control set ðu*1;u*2;u*3Þ characterized by

u*1 ¼ maxf0;minð1;j1Þg
u*2 ¼ maxf0;minð1;j2Þg
u*3 ¼ maxf0;minð1;j3Þg
Where

j1 ¼ b1SY
w1ðAþ SÞ ðl2 � l1Þ

j2 ¼ b2IH
w2ðC þ IÞ ðbl4 � l3Þ þ

l2I
w2

j3 ¼ l3H þ l4Y
w3
Proof. The adjoint equation and transversality conditions are standard results from Pontryagin’s maximum principle
(Pontryagin, 1987). We differentiate Hamiltonianwith respect to state S, I, H and Y respectively gives then the adjoint system:
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

dl1
dt

¼ �dM
dS

¼ �
�
r
�
1� 2Sþ I

K

�
� ð1� u1Þ

b1AY

ðAþ SÞ2
��

l1 � ð1� u1Þ
b1AY

ðAþ SÞ2
l2

dl2
dt

¼ �dM
dI

¼ �d1 þ
rS
K
l1 þ ðu2 þ m1Þl2 þ ð1� u2Þ

b2CH

ðC þ IÞ2
l3 � ð1� u2Þ

bb2CH

ðC þ IÞ2
l4

dl3
dt

¼ �dM
dH

¼
�
ð1� u2Þ

b2I
C þ I

þ m2 þ u3

�
l3 � ð1� u2Þ

bb2I
C þ I

l4

dl4
dt

¼ �dM
dY

¼ �d2 þ ð1� u1Þ
b1S
Aþ S

l1 � ð1� u1Þ
b1S
Aþ S

l2 þ ðu3 þ m3Þl4
With transversality conditions, li(tf) ¼ 0, i ¼ 1, …, 4. Similarly, following the principle (Pontryagin, 1987), the character-
ization of optimal controls u*1;u

*
2;u

*
3 (i.e the optimality equations) are obtained based on the conditions:

vM
vu1

¼ vM
vu2

¼ vM
vu3

¼ 0
Thus, we get

vM
vu1

¼ w1u1 þ
b1SY
Aþ S

l1 �
b1SY
Aþ S

l2

vM
vu2

¼ w2u2 � Il2 þ
b2IH
C þ I

l3 �
bb2IH
C þ I

l4

vM
vu3

¼ w3u3 � l3H � Yl4
Setting vM
vui

¼ 0 at u*i ; i ¼ 1;2;3, the results are

u*1 ¼ b1SY
w1ðAþ SÞ ðl2 � l1Þ;u*2 ¼ b2IH

w2ðC þ IÞ ðbl4 � l3Þ þ
l2I
w2

and u*3 ¼ l3H þ l4Y
w3

:

When we write by using standard control arguments involving the bounds on the controls, we conclude

u*1 ¼
8<
:

j1; if 0<j1 <1;
0; if j1 � 0;
1; if j1 � 1

;u*2 ¼
8<
:

j2; if 0<j2 <1;
0; if j3 � 0;
1; if j3 � 1

;u*3 ¼
8<
:

j3; if 0<j3 <1;
0; if j3 � 0;
1; if j3 � 1
In compact notation

u*1 ¼ maxf0;minð1;j1Þg; u*2 ¼ maxf0;minð1;j2Þg; u*3 ¼ maxf0;minð1;j3Þg
The optimality system is formed from the optimal control system (the state system) and the adjoint variable system by
incorporating the characterized control set and initial and transversal condition
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dS
dt

¼ rS
�
1� Sþ I

K

�
� �

1� u*1
	 b1SY
Aþ S

dI
dt

¼ �
1� u*1

	 b1SY
Aþ S

� �
u*2 þ m1

	
I

dH
dt

¼ q� �
1� u*2

	 b2IH
C þ I

� �
m2 þ u*3

	
H

dY
dt

¼ �
1� u*2

	 bb2IH
C þ I

� �
u*3 þ m3

	
Y

dl1
dt

¼ �
�
r
�
1� 2Sþ I

K

�
� �

1� u*1
	 b1AY

ðAþ SÞ2
��

l1 �
�
1� u*1

	 b1AY

ðAþ SÞ2
l2

dl2
dt

¼ �d1 þ
rS
K
l1 þ

�
u*2 þ m1

	
l2 þ

�
1� u*2

	 b2CH

ðC þ IÞ2
l3 �

�
1� u*2

	 bb2CH

ðC þ IÞ2
l4

dl3
dt

¼
��
1� u*2

	 b2I
C þ I

þ m2

�
l3 �

�
1� u*2

	 bb2I
C þ I

l4

dl4
dt

¼ �d2 þ
�
1� u*1

	 b1S
Aþ S

l1 �
�
1� u*1

	 b1S
Aþ S

l2 þ
�
u*3 þ m3

	
l4

u*1 ¼ max


0;min

�
1;

b1SY
w1ðAþ SÞ ðl2 � l1Þ

��

u*2 ¼ max


0;min

�
1;

b2IH
w2ðC þ IÞ ðbl4 � l3Þ þ

l2I
w2

��

u*3 ¼ max


0;min

�
1;

l3H þ l4Y
w3

��

li

�
tf
�

¼ 0; i ¼ 1;…;4 Sð0Þ ¼ S0 ; Ið0Þ ¼ I0 ;Hð0Þ ¼ H0 ; Yð0Þ ¼ Y0
4.1. Uniqueness of the optimality system

Due to the a priori boundedness of the state, adjoint functions and the resulting Lipschitz structure of the ODEs, we can
obtain the uniqueness of solutions of the optimality system for the small time interval. Hence the following theorem.

Theorem 4.2. For t2 [0, tf], the bounded solutions to the optimality system are unique. For the Proof of the theorem (Fister et al.,
1998).
5. Numerical simulations

In this section, we studied numerically the effects of optimal control strategies such as prevention strategies, quarantine
and chemical control of infected maize in the spread of MSV. The solution of the optimal control problem was obtained by
solving the optimality system of state and adjoint systems through forward?backward sweepmethod.We start by solving the
state equations with an initial guess for the controls over the simulated time using forward fourth order Runge-Kutta scheme.
Then we proceed solving the adjoint equations by backward fourth order Runge-Kutta scheme using the current iteration
solutions of the state equation and the transversality conditions. The controls continues to be updated by combining from the
previous result of the controls with the characterization. The solution of the state and adjoint system is repeated by the
updated controls. This condition continues repeatedly up to when consecutive iterations are close enough each other
(Workman & Lenhart, 2007).

Next, we investigate numerically the effect of the optimal control strategies on the spread of MSV which incorporate more
than one intervention are ordered below and compared pairwise:

C Strategy A: Using prevention (u1) and quarantine (u2) but without chemical control (u3)
C Strategy B:Using prevention (u1) and chemical control (u3) but without quarantine (u2)
C Strategy C: Using quarantine (u2) and chemical control (u3) but without prevention (u1)
C Strategy D: Using all the three controls prevention (u1), quarantine (u2) and chemical control(u3)
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We used balancing constants d1 ¼ 40, d2 ¼ 5, w1 ¼100, w2 ¼ 40 and w3 ¼ 200 for simulation of MSV disease model with
optimal control and also for cost-effectiveness analysis. In addition to this, we used S(0)¼ 1000, I(0)¼ 20, H(0)¼ 100, Y(0)¼ 0
as initial values in addition to parameter values in Table 2.

5.1. Strategy A: control with prevention and chemical control

Prevention and chemical control are used to optimise the objective functional J while the other control (u2) is set to zero.
Fig. 1 shows that, the number of infected maize goes down in the specified time and the number of infected leafhopper
decreased as compared to without control case. Therefore, this strategy is effective in eradicating the disease from the
community in a specified period of time.

5.2. Strategy B: control with prevention and quarantine

We used prevention and quarantine controls as intervention strategies to optimise the objective function J while we set
the chemical control u3, to zero. We observed from Fig. 2, that optimal control of the combination of prevention and quar-
antine helps to bring down the infectious maize in the specified time as well as decrease the number of infectious leafhopper
population. Therefore the strategy helps to eradicate the disease in the maize community.

5.3. Strategy C: control with quarantine and chemical control

We used quarantine and chemical as intervention strategy to optimise the objective functional J. Fig. 3 shows that, the
number of infective maize decreased in the specified time and the number of infective leafhopper reduced compared to no
control which helps in eradicating the disease from the community in a specified period of time.

5.4. Strategy D: control with prevention, quarantine and chemical control

We now implement all the three controls interventions to optimise the objective functional J. Fig. 4 shows that the number
of the infectious maize decrease at the specified time and infected leafhopper population reduced as compared with no
control due to the intervention strategies. Therefore, applying this strategy helps to eradicate MSD from the maize field in
specified period of time.

6. Cost-effective analysis

To rank the implemented strategies in terms of their cost we used cost-effectiveness analysis. To achieve this, we used
incremental cost-effectiveness ratio (ICER), which is done dividing the difference of costs between two strategies to the
difference of the total number of their infections averted (Alemneh et al., 2020; Osman et al., 2020b). The total number of
infections averted for each strategy is estimated by subtracting total infections with control fromwithout control. To get the

total cost of each strategy, we used their respective cost function
� �

1
2

�
w1u21;

�
1
2

�
w2u22, and

�
1
2

�
w3u23

�
to calculate over

the time of intervention. We used the parameter values in Table 2 and apply ICER technique, first we ordered the intervention
strategies for pairwise comparison as in Table 3 from A to D with increasing order of effectiveness.

First, we compared the cost effectiveness of strategy A and B.

ICERðAÞ ¼ 1074:50067
633:9179

¼ 1:695

2088:9449� 1074:50067

ICERðBÞ ¼

1872:19088� 633:9179
¼ 0:8192

Table 2

Parameter values for the MSV model.

Parameter symbol Value Source

b1 0.45 Bosque-P�erez (2000)
b2 0.04 Bosque-P�erez (2000)
q 0.02 Alemneh et al. (2019a, 2019b)
K 10, 000 Alemneh et al. (2019a, 2019b)
m1 0.008 Alemneh et al. (2019a, 2019b)
m2 0.0303 Magenya et al. (2008)
m3 0.0303 Magenya et al. (2008)
b 0.45 Alemneh et al. (2019a, 2019b)
A 0.4 Alemneh et al. (2019a, 2019b)
C 0.6 Alemneh et al. (2019a, 2019b)
r 0.0005 Alemneh et al. (2019a, 2019b)
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Fig. 1. Simulations of the MSD model with prevention and chemical controls.

Fig. 2. Simulations of the MSD model with prevention and quarantine controls.
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The comparison between strategies A and B indicate that strategy A is strongly dominated and is more costly than strategy
B as ICER(B) < ICER(A) then strategy A is excluded in set of alternative hence B and C are compared.

ICERðBÞ ¼ 2088:9449
1872:19088

¼ 1:11577

2213:69825� 2088:9449

ICERðCÞ ¼

1877:9344� 1872:19088
¼ 21:7207
Similarly, from ICER (B) and ICER (C) we can see that strategy C is strongly dominated and more costly than B as
ICER(B) < ICER(C) then strategy C is excluded in set of alternative hence B and D are compared.

ICERðBÞ ¼ 2088:9449
1872:19088

¼ 1:11577
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Fig. 3. Simulations of the MSD model with quarantine, and chemical controls.

Fig. 4. Simulations of the MSD model with prevention, quarantine, and chemical controls.

Table 3
Number of infections averted and total cost of each strategy.

Strategy Description Total infections averted Total cost (USD)

A Prevention and chemical 633.9179 $1074.50067
B Prevention and quarantine 1872.19088 $ 2088.9449
C Quarantine and chemical 1877.9344 $ 2213.69825
D Prevention,quarantine and chemical 1880.7669 $ 2248.8348

H.T. Alemneh, A.S. Kassa and A.A. Godana Infectious Disease Modelling 6 (2021) 169e182
ICERðDÞ ¼ 2248:8348� 2088:9449
1880:7669� 1872:19088

¼ 18:6438
The comparison shows that ICER(B) < ICER(D), hence strategy D is more costly and excluded in the set of alternatives.
Therefore, we conclude that strategy B(Prevention and quarantine) is the cheapest of all compared strategies, whichmeant

it is the most cost-effective for MSD control interventions strategy’s.
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7. Discussions and conclusions

In this study, a deterministic mathematical model with optimal control for the dynamics of MSV was formulated and
analyzed to find the best strategy for controlling MSD inmaize population.We derived and analyzed the necessary conditions
for optimal control strategies using Pontryagin’s maximum principle (Hugo et al., 2019; Alemneh, 2020). With the principle,
we obtained the Hamiltonian, the adjoin variables, the characterization of the controls and the optimality system. For
minimizing the spread of MSD, we used intervention strategies such as Prevention (u1), quarantine (u2) and chemical control
(u3) as it is suggested by (Magenya et al., 2008; Martin & Shepherd, 2009). In Section 5, we numerically analyzed the opti-
mality system by considering the different integrated strategies. It shows that each approach has the power to manage
disease transmission, which is correlated with a similar result for tomatoes and cassava diseases (Kinene et al., 2015; Hugo
et al., 2019). In Section 6, we numerically investigated cost-effectiveness to determine, the least and the most expensive
strategies by using ICER. From the pairwise result, the integrated disease management strategy called prevention and
quarantine is the best cost-effective strategies in terms of cost as well as environmentally welcoming and health benefits(Not
poisonous to the soil environment and humans). Present results were agreed with the findings on tomato disease (Hugo et al.,
2019). The work done by (Kinene, Luboobi, Nannyonga,&Mwanga, 2015) on cassava concluded that uprooting& burning is a
cost-effective strategy that is close to one of our outcomes even though it is a single strategy. The other half strategy pre-
vention, agrees with the findings of study (Anggriani et al., 2018) on plant disease. However, they recommended without
applying cost-effectiveness and this made strategy may not be a cost-effective.

To conclude, we established an optimal control SIHY model for Maize streak virus disease with three time dependent
control strategies. We obtained the optimality system of the optimal control model. The Numerical results clearly directs that
each integrated management strategy have a power to combat the disease. However, from the cost-effectiveness analysis
report, prevention and quarantine is the cost-effective integrated strategy from the other options to mitigate MSD in maize
plant.
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