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In this paper, we propose a rapid rigid registration method for the fusion visualization of intraoperative 2D X-ray angiogram (XA)
and preoperative 3D computed tomography angiography (CTA) images. First, we perform the cardiac cycle alignment of a
patient’s 2D XA and 3D CTA images obtained from a different apparatus. Subsequently, we perform the initial registration
through alignment of the registration space and optimal boundary box. Finally, the two images are registered where the distance
between two vascular structures is minimized by using the local distance map, selective distance measure, and optimization of
transformation function. To improve the accuracy and robustness of the registration process, the normalized importance value
based on the anatomical information of the coronary arteries is utilized.,e experimental results showed fast, robust, and accurate
registration using 10 cases, each of the left coronary artery (LCA) and right coronary artery (RCA). Our method can be used as a
computer-aided technology for percutaneous coronary intervention (PCI). Our method can be applied to the study of other types
of vessels.

1. Introduction

Recently, cases of coronary artery disease have significantly
increased owing to the extension of the average life ex-
pectancy and lack of exercise [1, 2]. Coronary artery disease
is caused by the narrowing or closing of the coronary artery
due to the stenosis and metabolic failure of a heart muscle
[2]. A stent enthesis is used as a representative treatment
method. In a stent enthesis, a metal epiploon is inserted and
unfolded into a diseased artery to relieve stenosis [2, 3]. A
stent enthesis is a noninvasive treatment method, which has
advantages for a patient such as the minimization of physical
and mental strain through a minimal incision, control, and

anesthesia. [4]. However, as this treatment depends on 2D
X-ray angiogram (XA) images and 3D vascular structur-
es—which are understood primarily by medical doctors
through intuition and haptic feedback—the accuracy of this
difficult medical procedure is not guaranteed [5]. To com-
pensate for these weaknesses, an assistance method to
register and visualize both preoperative 3D computed to-
mography angiography (CTA) and 2D XA images in real
time has been actively researched.

Extensive research has been performed on the 2D and
3D registration of coronary arteries. Kerrien et al. mea-
sured translational parameters between 2D and 3D images
using normalized cross correlation (NCC) [6, 7]. Distortion
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coefficient, rotational angle, and scaling parameters were
calculated using a calibration procedure. However, the
method required extensive processing time for the ex-
ploration of the whole image during the optimization of
NCC. Additionally, the 2D and 3D images were acquired
from the same equipment. Hipwell et al. proposed a
similarity measurement method using pattern intensity
(PI), gradient correlation, and gradient difference for 2D
and 3D registration with a best neighbor optimization
algorithm [8]. Although this method was accurate, it re-
quired extensive processing time. Metz et al. generated
digitally reconstructed radiograph (DRR) images from
CTA images and registered DRR and XA images using the
NCC similarity measure [9, 10]. To minimize the de-
formation difference of vessels due to the heartbeat, 4D
CTA images taken in multiphase were exploited. However,
4D CTA images are not usually taken in the general
procedure of an intervention because of the high exposure
to radiation compared to 3D CTA images. Additionally, the
initial positions of vessels were manually aligned. Again,
the NCC optimization procedure using a multi-resolution
gradient ascent optimization technique required extensive
processing time. Benseghir et al. performed 2D and 3D
registration by comparing the similarities between a curved
segment which was divided at branching or terminal points
[11]. ,is method used Frechet distance and iterative
closest curve (ICC). ,is method considered the geometric
similarity between curves of vessels instead of only
points—as in ICP. However, the computational efficiency
was significantly degraded when considering multiple
curves. Furthermore, a local minimum may have been
encountered as this method did not consider the global
search. Kaila et al. proposed a Gaussian mixture model of
3D centerlines from biplane XA and CTA images and
maximized a posterior probability for registration using
coherence point drift (CPD) [12] and expectation-maxi-
mization (EM) [13]. ,e robustness of this method was
increased by using vessel diameter and branch point in-
formation. However, it required extensive processing time
for 3D space registration and could not be applied to the
general, single XA image. Kim et al. extracted vascular
centerlines from XA and CTA images and projected 3D
vessels onto 2D vessels for registration [14, 15]. In this
method, the distances between the projected 3D vessels and
2D vessels were minimized by iteratively performing ro-
tation, translation, and scaling transformations. ,e ac-
curacy was further improved by performing thin plate
spline-robust point matching (TPS-RPM) [16], which
considers the local deformation of vessels. However, in this
method, 3D vascular deformation was not considered
because registration was performed only after the center-
lines of 3D CTA vessels were projected onto the 2D images.
,erefore, the topology information of the 3D CTA vessels
was not preserved during registration. Additionally, owing
to the lack of depth information, the convergence of local
minima caused registration errors. Park et al. [17] proposed
an initial registration using the principal axis generation
and alignment with the bounding box such as a chessboard.
For the accurate and fast fine registration, the trilateration

method and Powell’s optimization were performed.
However, there is a disadvantage that the alignment of the
cardiac cycles between two images is not taken into account
and should be adjusted manually. Additionally, the prin-
cipal axis used in the initial registration and the trilater-
ation method caused registration errors due to the
difference of the 2D and 3D segmentation, noise, etc. in the
process of generation.

To address these limitations, in this paper, we propose a
fast and accurate registration method for intraoperative 2D
XA and preoperative CTA images of the same patient. Our
method consists of three steps. First, to minimize the dif-
ferences between two images, alignment of the cardiac cycle
is performed based on electrocardiography (ECG) in-
formation. Second, a simulation environment is built similar
to the acquisition timing based on DICOM (digital imaging
and communications in medicine) information, and the
gross transformation mismatch is corrected by optimal cube
registration, including vessels. As this initial registration
aligns the global rotation, scaling, and translation parame-
ters between two images, it does not require distance map
generation for the entire image. As such, the region of the
distance map that uses local distance propagation is mini-
mized. Following initial registration, faster and more robust
convergence to the optimal value is achieved as the search
space is limited to near the optimal value. ,e subsequent
fine registration employs the selective distance measurement
as a similarity measure to find the optimal transformation
parameters and to minimize the distance between vessels.
During fine registration, the importance value according to
the anatomical structure of vessels is defined and exploited,
resulting in more robust registration which is not affected by
the difference of 2D and 3D segmentation, noise, etc. ,e
proposed method minimizes unnecessary operations and
enables fast and accurate registration by optimizing the
performance of each step. We use 20 clinical datasets to
evaluate the performance of our method in comparison to
the registration accuracy, speed, and robustness achieved by
Kim et al. [15] and Park et al. [17].

,e remainder of this paper is organized as follows.
Section 2 describes the proposed registration method of 2D
and 3D images—this procedure consists of three processing
steps. Section 3 presents the experimental results, followed
by concluding remarks and a discussion of future work in
Section 4.

2. Registration Method between 3D and
2D Images

,e proposed method consists of the following steps, which
are illustrated in Figure 1. For the registration of 3D CTA
and 2D XA images of the same patient, each obtained from a
different apparatus, cardiac cycle alignment and spatial
alignment should first be performed. ,e ECG information
of the 3D CTA and 2D XA images is used for this purpose.
Subsequently, using DICOM information, we align the
registration space by applying the environment while the 2D
XA image is acquired into the 3D CTA image. However, as
displacement information is missing from the DICOM
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information, an optimal boundary box is used to com-
pensate for the lack. In order to perform fine registration,
local distance propagation is performed to generate a 2D
local distance map, and registration between the 3D CTA
and 2D XA images is performed through an optimization
process that uses selective distance measurement. In our
method, the overall registration process uses a 3D centerline
extracted from the 3D CTA image [18, 19] and 2D centerline
extracted from the 2D XA image [20]. We input the nor-
malized importance value into the 3D centerline and use it
for registration. ,is feature reduces the probability of
convergence to the local minimum, which allows for more
robust convergence.

2.1. Matching of the Cardiac Cycle Using the ECG
Information. ,e preoperative 3D CTA image may be
acquired at any time during the cardiac cycle. Conversely,
the intraoperative 2D XA images are acquired continu-
ously. As such, a difference in vascular shape can occur
between the images due to the different acquisition times in
the registration process. ,erefore, as shown in Figure 2,
the process of matching the image acquisition times should
first be performed.

In order to match the CTA and XA image acquisition
times, an R-R interval is extracted from the ECG curve of
the XA image and frames corresponding to the interval
are distinguished. Subsequently, the cardiac cycle ac-
quisition time of the CTA image is matched to the most
similar frame of XA image. If it is matched with multiple
frames, that by which the error is most minimized
through comparison of the 3D and 2D centerlines is
selected.

2.2. Setting of the Importance Value according to Anatomical
Structure of the Vessel. In this study, to improve the ac-
curacy and robustness of registration, we input the nor-
malized importance value based on the anatomical
information of the coronary arteries into the 3D cen-
terline extracted from the CTA image. We reflect the
standardized anatomical information of coronary arteries,
as recommended by the Society of Cardiovascular
Computed Tomography (SCCT) [21], to ensure a general
applicability. ,e importance value is applied by dividing
the coronary arteries into main branch and sub-branch.
,e main branch is defined as RCA, LAD, and LCX based
on the skeletonization information of Han et al. [18, 19].
Each main branch is divided into three areas of proximal,
mid, and distal based on SCCT coronary segmentation
information. Unlike the main branch, a sub-branch is not
clearly distinguishable. Based on the main branch and
SCCT coronary segmentation information, it is distin-
guished whether an unclear sub-branch exists mutually
for each of the proximal, mid, and distal regions. If the
number of sub-branches in each area is small or the same,
it is considered to be an active sub-branch; otherwise, it is
regarded as an inactive sub-branch. ,e importance value
of the main branch is assigned to [1, 0.1] from the
proximal to distal, as shown in Figure 3. ,e active sub-
branch is gradually decreased from the bifurcation point
of the main branch. ,e inactive sub-branch is assigned a
value of 0.1.

,e importance value of the 3D centerline enables the
division of the main and sub-branches of the vessel. ,is
feature reduces registration errors that converge to the local
minimum because of low importance or unnecessary sub-
branches. As such, it is possible to achieve robust
registration.

2.3. Initial Registration between 2D and 3D Images. For
multimodality image registration, alignment of the regis-
tration spaces should first be performed. For this purpose,
we apply DICOM information obtained from the C-arm (the
imaging apparatus of the 2D XA image) to the extracted
centerline of the 3D CTA image. Subsequently, it is possible
to quickly and accurately align the registration spaces of the
2D XA and 3D CTA images, using equation (1), for the
initial registration:
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(1)

where x andy are the coordinates of the 2D image,
X, Y, andZ are the coordinates of the 3D image, f is the
focal length, mx and my are the pixels/mm, which are used
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Figure 1: Registration of 3D CTA and 2D XA images.
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when converting physical space into pixel space, px and py

denote the principal points, and r and t denote the variables
used for rotation and translation, respectively. Table 1 shows
the DICOM parameter information used in the initial
registration.

However, because the DICOM information obtained
from the C-arm lacks translation variable information, it is
necessary to acquire an estimated value. For this reason, we
calculate the minimum and maximum values of the x and
y axes of the projected 3D and 2D centerlines; then, we
create a boundary box with (xmin, ymin) and (xmax, ymax) as
the vertices, respectively. In addition, in order to consider
a heartbeat and the geometric transformation in the
registration process, we generate an optimal boundary box
with added margin e, as shown in Figure 4. Subsequently,
an initial estimate value of the translation variable is
obtained by matching the optimal boundary boxes of the
two images.

2.4. Generation of 2D Distance Map by Local Distance
Propagation. In our method, as the global displacement
between 2D and 3D centerlines is aligned during initial
registration, a distance map for the entire area is un-
necessary. To generate a 2D distance map, we consider

eight-neighbor relations for distance propagation, as
shown in equation (2). Let DP(i) be the propagated dis-
tance value of the pixel at the i-th position through the
Euclidean distance, and the minimum distance value is

Figure 3: Representation of importance value according to the
anatomical structure of the coronary arteries.
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Figure 4: Generation of the optimal boundary box.

Table 1: DICOM parameter information.

Keyword Tag
Positioner primary angle (0018, 1511)
Positioner secondary angle (0018, 1510)
Imager pixel spacing (0018, 1164)
Distance source to detector (0018, 1110)
Distance source to patient (0018, 1111)

3D phase

2D + t X-ray

10 20 30 40 60 70 80 90

Figure 2: Matching process of the cardiac cycle using the ECG information.
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allocated through comparison with the existing/conven-
tional distance value. A distance dmax is assigned to the
pixels whose value is not propagated:

DP(i) � min min
j∈8− neighbors(i)

DP(j),DP(i)􏼠 􏼡. (2)

Figure 5 shows a 2D local distance map. ,e line
displayed in white indicates the centerline extracted
from the 2D XA image. ,e pixels having the same
distance value from the centerline are displayed in the
same color.

It is possible to measure one-step distance trans-
formation, and it becomes unnecessary to calculate the
distance of pixels with a distance value d> dmax. ,erefore,
the processing time required to generate the distance map is
minimized.

2.5. Similarity Measurement through Selective Distance
Measurement. To identify similarities between the 3D and
2D centerlines, we use the distance value that is commonly
used in the evaluation function of feature-based registration.
,e evaluation function has a minimum value when the 3D
and 2D centerlines are aligned. For measurement of the
evaluation function, we use the average of absolute distance
difference (AADD), as shown in the following equation:

AADD �
1
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(3)

where NC is the total number of 3D centerlines projected
onto the 2D XA image, 3p2Dcenterline(i) denotes the i-th
position of the 3D centerline projected onto the 2D XA
image, αi is the importance value of 3p2Dcenterline(i), and
2Dcenterline(i) denotes the 2D local distance map. In our
method, the 3D centerline is superimposed upon the 2D
local distance map [22], enabling the map to be utilized for
the distance measurement between the two centerlines. As
such, the processing time required to measure similarities
between the centerlines is minimized.

2.6. Optimization of Transformation Function. Even if the
same environment is applied at the XA image acquisition
time using the DICOM information, initial registration
errors can occur because of differences in protocols between
imaging devices or other external factors. In order to reduce

these errors, fine registration is subsequently performed
using the transformation function of Powell’s optimization
method [23].

,e transformation function consists of a translation
vector (Tx, Ty, and Tz) on the x, y, and z axis directions and
a central rotation vector (Rx, Ry, and Rz) on the x, y, and z

axes, respectively. Optimization of transformation vectors
simultaneously is inefficient with respect to both processing
time and accuracy. In order to optimize the efficient
transformation function, the translation-only TT and rigid
transformation TR are sequentially performed, as shown in
the following equation:
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where c � cos(θ) and s � sin(θ). In this study, once the
initial registration is performed, the rotation and translation
vectors in the transformation function are restricted as
shown in equation (5). Additionally, we apply Powell’s
optimization method [23] to converge to the optimal po-
sition. As such, it is possible to enable fast and accurate
registration:
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where thR and dmax represent the threshold of rotation and
translation vectors, respectively. ,ese values are experi-
mentally determined.

D = 0

D = dmax

Figure 5: Generation of the 2D local distance map.
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Table 2: LCA data for the XA and CTA images used in the experiment.

Case
XA CTA

Positional primary
angle

Positional secondary
angle

Imager pixel
spacing

Source to
detector

Source to
patient

Imager pixel
spacing

Slice
thickness

1 0 − 38 0.244 990 649.23 0.358 0.5
2 57.5 − 30 0.258 1208 765 0.335 0.75
3 47.5 17.2 0.258 1027 765 0.353 0.75
4 6.7 45 0.258 1202 765 0.304 0.75
5 35 29 0.293 990 668.152 0.390 0.5
6 41.35 16.93 0.258 − 1000 765 0.339 0.75
7 − 0.8 36.6 0.288 1070 720 0.332 0.5
8 − 34 − 30 0.293 1050 726.053 0.332 0.5
9 6.9 − 43.5 0.258 1176 765 0.337 0.75
10 − 33 − 32 0.293 1120 744.444 0.390 0.5

Table 3: RCA data for the XA and CTA images used in the experiment.

Case
XA CTA

Positional primary
angle

Positional secondary
angle

Imager pixel
spacing

Source to
detector

Source to
patient

Imager pixel
spacing

Slic
thickness

11 − 20.7 − 20.6 0.287 1089 720 0.351 0.5
12 − 35.6 1.7 0.287 990 720 0.351 0.5
13 − 37.4 − 0.5 0.287 1026 720 0.351 0.5
14 19.3 − 24.2 0.287 1050 720 0.351 0.5
15 40.5 10 0.258 999 765 0.304 0.75
16 43.1 − 0.38 0.259 1194 810 0.313 0.75
17 − 33.1 0 0.259 1079 810 0.333 0.6
18 36 − 3 0.293 1000 691.899 0.390 0.5
19 39.39 8.66 0.258 949 765 0.353 0.75
20 39.5 5.9 0.258 − 1000 765 0.390 0.75

(a)

(b)

Figure 6: Registration process and results. Initial registration, distance map, and fine registration results of (a) LCA and (b) RCA.
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3. Experimental Results

In this study, we implement the proposed algorithm in C++
on a PC using Visual Studio 2010, installed on a Windows7
64bit operating system.,e experiments are performed with

an Intel® Core™ i7 3.4GHz CPU and 8GB of main memory.
We test our method on 10 XA LCA and 10 XA RCA images
from 20 patients.,e XA and CTA data are obtained using a
Philips digital C-arm and Siemens SOMATOM definition
flash. ,e image size of each XA and CTA image is 512× 512

Figure 7: 2D/3D registration results.

Figure 8: Centerline color representation according to the depth of the vessel.

Computational and Mathematical Methods in Medicine 7



pixels.,e acquisition rate of the XA image is 15 fps. Tables 2
and 3 contain specific information on the remaining 2D XA
and 3D CTA images.

3.1. Evaluation of Registration Accuracy. ,e parameters for
the rotation and translation vector threshold thR and dmax of
the transformation function are 12° and 13mm, respectively.

Table 4: Average centerline, marker, and bifurcation error after registration using the proposed method.

LCA+RCA (mm) LCA (mm) RCA (mm)
Centerline 1.2520 1.1340 1.3700
Marker 1.4587 1.3528 1.5647
Bifurcation 1.8001 1.6853 1.9149

(a)

(b)

Figure 9: Registration results using the previous method and our method. (a) Ground truth (mask), ground truth (centerline), proposed
method, and Kim et al. [15]. (b) Ground truth (mask), Ground truth (centerline), proposed method, and Park et al. [17].
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,e parameter is obtained by semiautomatic registration
using the additional 2D-3D dataset, which is twice the mean
of themeasurements. Figure 6 shows the result of the process
applying the proposedmethod of the LCA of case 9 and RCA
of case 18.

Figure 7 shows the results of the proposed method for
cases 1 through 20. In Figure 7, the first and second rows
show the LCA results, whereas the third and fourth rows
show the RCA results. ,e centerline color denotes depth
information: shallow and deep vessel positions are indicated
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Figure 10: Average centerline, marker, and bifurcation error after registration using the previous methods and our method.
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Figure 11: Average execution time of registration using the previous methods [15, 17] and our method.
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by blue and red, respectively, as shown in Figure 8. It is
possible to visually confirm that the vessels of the pre-
operative 3D CTA and intraoperative 2D XA images are
well-aligned, as shown in Figure 7.

To evaluate the accuracy of our algorithm, we compare
the registration results of our method with the ground
truth—manually annotated by the experts. ,e error of
average difference is found to be minimal, even if it is
aligned with an incorrect vessel. In this study, we use
additional markers to measure the robustness of regis-
tration. ,e markers are manually input by the 3 experts
on the 3D centerline and ground truth for the same
corresponding point, respectively. ,e robustness of
registration is measured using the average of distance
difference (ADD) between markers, as shown in the fol-
lowing equation:

ADD �
1

M
􏽘

M

i�1
E pi − qi( 􏼁, (6)

where p and q represent the markers of the 3D centerline
and the ground truth, E(p − q) represents the Euclidean
distance between p and q, and M represents the number of
markers. 10 pairs are used for each patient.

Table 4 shows the accuracy and robustness results of the
proposed method. It can be seen that performance related to
the RCA is lower than that of LCA. ,is is because the
variability of the RCA exceeds that of the LCA. As such, even
if the same patient’s data are used, the registration error of the
RCA will be higher than that of the LCA.

3.2. Comparison with the PreviousMethod. In this study, we
compare the registration accuracy and speed of our
method with those of the methods suggested by Kim et al.
[15] and Park et al. [17]. Experiments are performed on the
same environment and data. For the accuracy evaluation,
the ADD between the registration result and the ground
truth is measured for the centerline, marker, and bi-
furcation points. ,e centerline accuracy results for the
proposed method, Kim et al. [15], and Park et al. [17] are
1.2520mm, 1.2237mm, and 1.4098mm, respectively.
,ese values are observed to be numerically similar.
However, as shown in Figure 9(a), the bifurcation points
do not align in Kim et al. [15], where some vessels converge
to a local minimum in a nonrigid registration process [15].
Additionally, the registration method proposed by Park
et al. [17] shows the incorrect registration result due to the

local error in the initial and correction registration process
using the principal axis as shown in Figure 9(b).

Figure 10 shows the accuracy and robustness results of
the proposed method and previous methods. ,e proposed
method is observed to be generally more accurate than the
previous methods. In particular, accurately depicted vessel
bifurcations are important for the precise insertion of
surgical instruments and to understand the structure of the
vessel during PCI. ,erefore, if the accuracy is low, the
vessel structure becomes difficult to analyze and
understand.

Figure 11 shows the average execution times for reg-
istration using the proposed and previous methods. ,e
average execution times of registration for the proposed
method, Kim et al. [15], and Park et al. [17] are 0.2970 s,
1.7063 s, and 0.6712 s, respectively, in 20 clinical datasets.
,is demonstrates that the execution speed of the proposed
method is faster than that of the previous methods. In this
study, we perform fast and robust initial registration
through the effective utilization of DICOM information.
Additionally, we reduce the distance map generation time
through local distance propagation. In the fine registration
process, as initial registration has been performed, the
search space for registration is restricted. As such, it is
possible to further reduce the computation time. ,e
proposed method minimizes unnecessary operations and
enables fast and accurate registration by optimizing the
performance of each step.

,e registration method proposed by Kim et al. [15]
attempts to improve accuracy through deformation of
part of the vessel. However, it converges to the local
minimum at the wrong place in a region with a local
error, resulting in incorrect registration results. In par-
ticular, because a 3D centerline is projected once onto a
2D image and registration is performed only in 2D, the
topology information of the 3D centerline extracted from
a 3D CTA image cannot be preserved. In the registration
method proposed by Park et al. [17], the overall regis-
tration process is influenced by the principal axis, thereby
causing incorrect registration results for some dataset.
Alternatively, in this study, we input the normalized
importance value into the 3D centerline and use it for
registration. ,is feature reduces the probability of
convergence to the local minimum, which allows for
more robust convergence. Furthermore, we can perform
more accurate and robust registration between the 3D
and 2D centerlines by preserving the topology in-
formation of the 3D centerline.

Table 5: Comparison of previous studies with our method.

Author Modality Dimensionality No. of test subjects Registration accuracy Processing time
Kaila et al. [13] Biplane XA/CTA 3D-3D 7 1.41mm (RMSE1) N/A

Khoo and Kapoor [24] Biplane XA/CTA 2D-3D 6 3.8mm (RMSD2) 0.4 s
2.31mm (RMSD2) 15 s

Liu et al. [25] XA/CTA 2D-3D 10 0.6201pix (MPE3) 20 s
Park et al. [26] XA sequence 2D-2D 9 7.02mm (TRE4) N/A
Our method XA/CTA 2D-3D 20 1.252mm (ADD5) 0.297 s
RMSD, root-mean-square distance; RMSE, root-mean-square error; MPE, mean projective error; TRE, target registration error; ADD, average of distance difference.
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Table 5 shows the comparison of the previous
methods with our method. ,e table shows that our
number of test subjects exceed the other papers pre-
sented lately. Accuracy assessment metrics vary from
paper to paper, and the target annotations (e.g., manual
segmentation of vessels) also have a large variation so
that it is very hard to find global criteria for comparison.
However, we have tried to measure the accuracy, ro-
bustness, and clinical applicability of the registration by
measuring the centerline, marker, and bifurcation of the
vessel, respectively. As a result of the measurement, it
can be confirmed that our method performed accurate,
robust, and fast vessel registration with large test sub-
jects. As such, our method can be used as a computer-
aided technology for PCI.

4. Conclusion

To compensate for the limited 3D structure and depth in-
formation in 2D XA images, in this paper, we proposed a fast
and accurate registration method for the fusion visualization
of intraoperative 2D XA and preoperative 3D CTA images of
the same patient. ,e proposed method consisted of three
steps, namely, cardiac cycle alignment, initial registration,
and fine registration.

First, to minimize the differences between two images
according to the cardiac cycle, the cardiac cycles of the two
images were aligned based on ECG information. Sub-
sequently, a simulation environment was built similar to the
acquisition timing, and the gross transformation mismatch
was corrected by optimal cube registration, including ves-
sels. An acquisition environment of 2D XA images in C-arm
equipment was applied to 3D CTA images using DICOM
information. As such, it was possible to quickly and accu-
rately align the registration environment. An optimal
boundary box was generated and aligned for the 3D and 2D
vascular centerlines by rapidly compensating translational
mismatch. As the initial registration aligned the global ro-
tation, scaling, and translation parameters between the two
images, this method lead subsequent registration to faster
and more robust convergence to the optimal value. Addi-
tionally, themethod did not require distancemap generation
for the whole image. As such, the region of the distance map
using local distance propagation wasminimized. During fine
registration, the importance value according to the ana-
tomical structure of vessels was defined and exploited,
resulting in more robustness. ,e proposed method mini-
mized unnecessary operations and enabled fast and accurate
registration by optimizing the performance of each step.,e
experimental results showed registration errors of the whole
vessel, anatomical landmarks, and branching points to be
1.252mm, 1.458mm, and 1.709mm, respectively. ,e av-
erage processing time was 0.297 s. ,e proposed method
performed fast and accurate registration between 2D XA and
3D CTA images, demonstrating the potential to provide
doctors with substantial assistance during cardiac in-
tervention. Future work will focus on a 2D+ t/3D regis-
tration method by considering the correlation between
2D+ t XA images.
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