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Recent human microbiome studies have revealed an essential role of the

human microbiome in health and disease, opening up the possibility of building

microbiome-based predictive models for individualized medicine. One unique

characteristic of microbiome data is the existence of a phylogenetic tree that relates

all the microbial species. It has frequently been observed that a cluster or clusters of

bacteria at varying phylogenetic depths are associated with some clinical or biological

outcome due to shared biological function (clustered signal). Moreover, in many

cases, we observe a community-level change, where a large number of functionally

interdependent species are associated with the outcome (dense signal). We thus

develop “glmmTree,” a prediction method based on a generalized linear mixed model

framework, for capturing clustered and dense microbiome signals. glmmTree uses the

similarity between microbiomes, which is defined based on the microbiome composition

and the phylogenetic tree, to predict the outcome. The effects of other predictive

variables (e.g., age, sex) can be incorporated readily in the regression framework.

Additional tuning parameters enable a data-adaptive approach to capture signals at

different phylogenetic depth and abundance level. Simulation studies and real data

applications demonstrated that “glmmTree” outperformed existing methods in the dense

and clustered signal scenarios.

Keywords: microbiome, phylogenetic tree, kernel method, generalized mixed model, predictive model

1. INTRODUCTION

The human microbiome, the collection of micro-organisms associated with the human body,
has recently attracted substantial scientific interest due to its vital role in human health. For
instance, the human gut microbiome contributes to nutrient metabolism, immune maturation
and modulation, inflammatory cytokine production, and host gene regulation (Ahern et al.,
2014; Schirmer et al., 2016; Pedersen et al., 2016; Fellows et al., 2018). Many diseases have been
linked to dysbiosis of the microbiome ranging from metabolic disorders (e.g., obesity and type II
diabetes) to autoimmune diseases (e.g., rheumatoid arthritis and multiple sclerosis) (Turnbaugh
et al., 2009; Kinross et al., 2011; Cho and Blaser, 2012; Honda and Littman, 2012; Pflughoeft and
Versalovic, 2012; Qin et al., 2012; Chen et al., 2016; Jangi et al., 2016). An abnormal microbiome
has also been implicated in many cancer types such as colorectal, endometrial and esophageal
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cancers (Ahn et al., 2013; Bultman, 2014; Walther-Antonio et al.,
2016; Peters et al., 2017), and a causal link has been emerging
through deep mechanistic studies (Rubinstein et al., 2013;
Bullman et al., 2017). In addition, the individual microbiomes
may modulate drug pharmacokinetics and pharmacodynamics,
contributing to drug response variations among individual
patients (Haiser et al., 2014). Recently, the efficacy of cancer
immune therapy has been shown to depend on the initial
configuration of the gut microbiome (Gopalakrishnan et al.,
2018; Matson et al., 2018; Routy et al., 2018). These findings
open up the possibility ofmicrobiome-based predictivemedicine,
where the microbiome data are used, potentially in conjunction
with other clinic or omics data,to improve the prediction of
relevant clinical outcomes.

A typical microbiome study involves collecting the
microbiome samples, isolating all genomic DNA and sequencing
the DNA using next-generation sequencing technologies.
There are two main approaches to sequence the microbiome:
gene-targeted sequencing and shotgun metagenomic sequencing
(Kuczynski et al., 2011). In gene-targeted sequencing, a
“fingerprint” gene that carries the taxonomic identity (e.g.,
16S rRNA gene) is amplified and sequenced, while in shotgun
metagenomic sequencing all genomic DNA is sequenced.
Although shotgun metagenomics can profile both the taxonomic
and functional content of the microbiome, the targeted approach
has been more routinely employed to study the microbiome
due to its lower cost and established bioinformatics pipelines.
In the targeted approach, the sequencing reads are usually first
clustered into operational taxonomic units (OTUs) based on the
sequence similarity, via either de novo clustering or comparing
to a reference database of OTUs (Edgar, 2013; Chen W. et al.,
2013; Chen X. et al., 2018; Rideout et al., 2014). These OTUs are
assumed to represent biological species at a 97% similarity level.
Recently, the concept of “amplicon sequence variant” (ASV) has
been proposed with the aim to cluster the sequence reads into
a finer taxonomic resolution without the need for a particular
similarity cutoff (e.g., 97%) (Callahan et al., 2016, 2017). After
the clustering process, the sequencing reads from a targeted
sequencing study are usually summarized as a count (abundance)
table of the detected OTUs/ASVs. These OTUs/ASVs are all
phylogenetically related, and a phylogenetic tree that reflects the
evolutionary relationship can be built based on their sequence
divergence (Price et al., 2010). Closely related species usually
have similar biological functions, and they are likely to be
associated with the outcome simultaneously, forming “clustered
signals” (Martiny et al., 2015). These clustered signals can appear
at a varying phylogenetic depth, resulting in clusters of different
sizes (e.g., phyla and genera are at deep and shallow phylogenetic
depths respectively) (Garcia et al., 2014). Thus, the phylogenetic
tree provides important prior knowledge about how these
species are related, which can be used to improve the efficiency
of statistical analyses. Indeed, incorporation of the phylogenetic
tree in the analysis has been instrumental in revealing overall
community structure, identifying covariate-associated bacteria
and improving the power of microbiome-wide testing (Purdom,
2011; Chen et al., 2012; Chen J. et al., 2013; Evans and Matsen,
2012; Xiao et al., 2017; Wang and Zhao, 2017).

To predict an outcome based on microbiome data, general-
purpose machine learning methods, such as Random Forest
and Support Vector Machine, as well as sparse regression
models, such as Lasso (Tibshirani, 1996), MCP (Zhang, 1996),
and Elastic Net (Zou and Trevor, 2005), have been applied
(Knights et al., 2011; Statnikov et al., 2013; Pasolli et al., 2016).
Although these methods are efficient in addressing the high
dimensionality problem, they have a limited ability to exploit the
phylogenetic structure of the microbiome data and hence may
not be optimal if the signals are clustered. Many efforts have
been attempted to incorporate the phylogenetic tree structure
into prediction, mainly by imposing a novel phylogeny/tree-
based smoothness penalty in penalized regression models.
The phylogeny-based penalty encourages similar coefficients
among species with respect to their phylogenetic relationship.
For example, Tanaseichuk et al. (2014) used a tree-guided
penalty to incorporate such structure into a penalized logistic
regression framework. Chen et al. (2015) proposed a tree-based
Laplacian penalty, in addition to a sparse penalty, for both
classification and regression of microbiome data. These methods
favor sparse and clustered signals due to their inherent sparsity
assumption. However, a community-level change has frequently
been observed inmany physiological or pathophysiological states
(Jernberg et al., 2010; Koenig et al., 2011; Milani et al., 2016),
where a large number of functionally dependent species in the
community are jointly associated with the outcome (“dense
signal”). The “dense” signal is usually the consequence of the
perturbation of the underlying microbial network, where species
interact with each other to maintain a steady state (Faust and
Raes, 2012). In such scenarios, although each species may have
a weak effect on the outcome, the joint effects of all species may
be strong. Thus, the sparsity assumption may not be desirable for
“dense” microbiome signals.

In this work, we develop “glmmTree,” a predictive method
based on a generalized mixed model framework, for capturing
clustered and dense microbiome signals. To exploit the potential
phylogenetic relatedness among species, the coefficients of the
species are modeled as random with the correlation structure
defined based on the phylogenetic tree. Other predictive
variables (e.g., age, sex) are assumed to have fixed effects.
One tuning parameter in the phylogeny-induced correlation
structure allows detecting signals at various phylogenetic depths,
and another tuning parameter facilitates differential weighting
according to the species abundances as well as capturing
certain non-linear relationships. Simulation studies and real data
applications demonstrate that “glmmTree” outperforms existing
methods in clustered and dense-signal scenarios.

2. METHODS

2.1. A Phylogeny-Induced Correlation
Structure Among OTUs
Before we develop the predictive model for microbiome data, we
first introduce a phylogeny-induced correlation structure among
OTUs based on an evolutionary model. We use the term “OTU”
throughout to represent a basic analysis unit. Assume that we

Frontiers in Microbiology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 1391

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Xiao et al. glmmTree

have p OTUs on a phylogenetic tree and the patristic distance
between OTU (i.e., the length of the shortest path linking OTU
i and j on the tree) is denoted as dij, the correlation of the traits
between OTU i and j can be modeled using the following trait
evolutionary model (Martins and Hansen, 1997).

Cij(ρ) = e−2ρdij , i, j = 1, . . . , p. (1)

The parameter ρ ∈ (0,∞) characterizes the evolutionary rate.
If ρ = 0, then Cij = 1, ∀i, j, indicating that all the traits are
the same and there is no evolution at all. If ρ → ∞, then
Cij → 0, ∀i, j, indicating that the evolution is so fast that there
is no correlation among the OTUs. In such case, the tree is not
informative. Alternatively, ρ can be interpreted as a parameter
that controls the phylogenetic depth at which the OTUs are
grouped: larger ρ (smaller Cij) groups OTUs into clusters at
a lower phylogenetic depth (a cluster is defined as a group of
highly correlated OTUs). When ρ → ∞, there is no grouping
of the OTUs. Conceptually, the phylogenetic grouping via ρ has
a similar effect as taxonomic grouping, where OTUs at different
taxonomic ranks (e.g., phylum, class, order, family, genus) are
grouped according to their taxonomy. Compared to taxonomic
grouping, the phylogenetic grouping circumvents the difficulty of
the uncertainty in taxonomy assignments and achieves far more
levels of granularities by adjusting ρ.

As the square root of the phylogenetic distance dij is of
Euclidean nature (de Vienne et al., 2011), C(ρ) = (Cij(ρ))p×p is
positive definite by Bochner’s theorem. In the proposed method,

we recommend using e
−2ρd2ij to achieve an even better signal-

grouping effect. Although the positive definiteness of C(ρ) is no
longer theoretically guaranteed, it is positive definite or close to
positive definite for most applications. In case of non-positive
definiteness, we can perform positive definiteness correction
(Higham, 2002).

2.2. glmmTree: A Generalized Linear Mixed
Model Based on a Phylogenetic Tree
We assume that there are n samples with the abundances of
p OTUs being profiled. For the ith sample, let yi denote the
outcome variable of interest, which can be binary or continuous
( e.g., disease status, or body mass index) , zi = (zi1, zi2, . . . , zip)

T

denote the normalized abundance vector of p OTUs (i.e.,
counts divided by the library size) for sample i, and xi =

(xi1, xi2, . . . , xiq)
T be the q × 1 vector for covariates such as

gender, age and other environmental or clinical variables that
have predictive values. The goal is to predict yi by zi and xi.

For a continuous outcome variable, we use the linear mixed
model (LMM) to build the prediction model

yi = β0 + xTi β1 + f (zi; γ )
Tb+ ǫi

b ∼ N(0, σ 2
bC(ρ)), ǫi ∼ N(0, σ 2

ǫ ),
(2)

and, for a binary outcome variable, we use the generalized linear
mixed model (GLMM)

logit(E(yi)) = β0 + xTi β1 + f (zi; γ )
Tb

b ∼ N(0, σ 2
bC(ρ)),

(3)

where β0 is an intercept and β1 = (β1,β2, . . . ,βq)
T is a q × 1

vector of fixed effect regression coefficients for the q covariates,
ǫi is the random error, b = (b1, . . . , bp)

T is a p × 1 vector of
random effect regression coefficients, C(ρ) = (Cij(ρ))p×p is the
phylogeny-induced correlation structure defined in the previous
section, and f (zi; γ ) = (f (zi1; γ ), . . . , f (zip; γ ))

T denotes some
component-wise transformation of the abundance vector with
the parameter γ allowing more modeling capability.

There are two advantages assuming the OTU effects b as
random. Firstly, as the sample size is typically smaller than the
number of OTUs (p > n), treating b as fixed effects will lead to
overfitting on the training data and poor generalization on the
test data. To improve the generalizability of the predictive model,
the regression coefficients b need to be regularized. We thus put
some distributional assumption on b and assume that b comes
from amultivariate normal distribution with variance-covariance
structure σ 2

b
C(ρ). The estimation procedure now switches from

estimating p regression coefficients to estimating the variance
component σ 2

b
, which significantly reduces the number of

parameters. Secondly, treating b as random effects provides
the flexibility to incorporate prior structure information. For
OTU data, the prior information is the phylogenetic relationship
among OTUs, and closely related OTUs have a tendency to have
similar effects. We incorporate such prior information using the
phylogeny-induced correlation structure C(ρ). It should be noted
that the ratio between σ 2

b
and σ 2

ǫ quantifies the joint (additive)
OTU effects.

For the transformation function f (·), we propose using a
power transformation, which is defined as

f (zij, γ ) =

{

z
γ
ij zij 6= 0

0 otherwise

where γ is an unknown constant (γ ≥ 0). Similar to Box-Cox
transformation (Sakia, 1992), it can potentially model a wide
range of non-linear relationships between the OTU abundance
and the outcome. This transformation takes into account the
skewed OTU abundance distribution and allows differential
weighting according to the abundance level. Smaller values of
γ (e.g., 0.1) up-weight less abundant OTUs so that their effects
will not be masked by those dominant OTUs when the signals are
primarily in the less abundant OTU clusters. When γ approaches
0, the OTU abundance data become almost binary. In this case,
only presence/absence of the OTU matters and these dominant
OTUs contribute little to the outcome since they are present in
most samples.

In the model, the regression coefficients β0 and β1, and the
variance components σ 2

b
, σ 2

ǫ need to be estimated from the data.
In principle, the parameters ρ and γ can also be estimated.
However, in our application, we treat them as tuning parameters,
and their optimal values are selected using cross-validation. We
account for potential non-informativeness of the phylogenetic
tree (i.e., signals are not clustered with respect to the tree) by
including a very large value on the search grid of ρ.
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Our phylogeny-based LMM or GLMM can be written in
another form,

g(E(yi)) = β0 + xTi β1 + hi

h = (h1, h2, ..., hn)
T ∼ MVN(0, σ 2

bK(γ , ρ))
(4)

where g(.) is the link function, h are the aggregated OTU effect
(overall microbiome effect) and K(γ , ρ) is a phylogeny-based
kernel matrix by evaluating the kernel function

K(zi, zj; γ , ρ) = f (zi; γ )
TC(ρ)f (zj; γ )

at all pairs of observations. The phylogeny-based kernel function
K(·, ·; γ , ρ) quantifies the similarity between observations in
terms of OTU abundance profile (“microbiome similarity”) while
taking into account the phylogenetic tree structure. Similar
ideas have been used to define ecological distances between
microbiome samples such as the popular UniFrac distance
(Lozupone and Knight, 2005). From (4), we can see that our
model aims to predict the outcome based on the microbiome
similarities while the tuning parameters γ , ρ are used to tailor the
microbiome similarity measure to maximally reflect the outcome
similarity. Since the microbiome similarity is calculated based on
all OTUs, the model is expected to perform best when the signals
are relatively dense, i.e., there are many outcome-associated
OTUs.

Our model is closely related to the kernel machine-based
semi-parametric regression model (KMR) (Liu et al., 2007, 2008)

g(E(yi)) = β0 + xTi β1 + hK(zi), (5)

where the covariate effect is modeled parametrically, and the
overall OTU effect is modeled non-parametrically through an
unknown function hK(·) that belongs to a Reproducing Kernel
Hilbert Space (RKHS) HK generated by the kernel function
K(·, ·). It turns out that the penalized likelihood estimation for
KMR is equivalent to the maximum likelihood estimation in
GLMM.

2.3. Model Estimation
The parameter ρ, controlling the evolutionary rate, and the
parameter γ , controlling the non-linear effect, are treated as
known inmodel estimation. For a continuous outcome, the LMM
is fitted using the restricted maximum likelihood estimation
method (RMLE) as described in Kang et al. (2008). Newton-
Raphson algorithm can be used to find the optimal solution. For
a binary outcome, the GLMM is fitted by the penalized quasi-
likelihood (PQL) method proposed by (Breslow and Clayton,
1993). PQL approximates the high-dimensional integration over
b using the Laplace approximation, and the approximated
likelihood function has that of a Gaussian distribution. Therefore,
the PQL estimate can be obtained by fitting a series of LMMs.
Details of the algorithms can be found in the Supplementary
Note.

2.4. Prediction of New Observations
Once the model is fitted based on the training dataset,
prediction can be made on the new observations. In this

section, we describe in detail how to predict the outcome of
new observations to provide more insights into our predictive
model. Suppose we have ntr , nte observations in the training
and test dataset respectively. Let ytr , yte be the outcome vectors
of the training and test dataset respectively, Xtr , Xte be the
design matrices for fixed effects including the intercepts and
Ztr , Zte be the OTU abundance matrices. We further denote
Ktr=f (Ztr; γ )C(ρ)f (Ztr; γ )

T ,Kte=f (Zte; γ )C(ρ)f (Zte; γ )
T and

Ktr,te=f (Ztr; γ )C(ρ)f (Zte; γ )
T , which are the kernel matrices

describing the microbiome similarities. We focus on the
prediction of a continuous outcome and the prediction of a
binary outcome can similarly be made based on the working
LMMmodel at the convergence of the PQL algorithm.

Based on (4), the joint distribution of ytr and yte can be
written as

(

ytr

yte

)

∼ MVN

{(

Xtrβ

Xteβ

)

,

(

6tr 6tr,te

6te,tr 6te

)}

, (6)

where β = (β0,β
T
1 )

T , 6tr = σ 2
b
Ktr +σ 2

ǫ I and 6te = σ 2
b
Kte+σ 2

ǫ I
are variance-covariance matrices for training and test dataset
respectively, and 6te,tr = 6T

tr,te = σ 2
b
Ktr,te is the covariance

matrix between training and test dataset. From the linear model
theory, the conditional distribution of yte on ytr is given by

(yte|ytr) ∼ MVN(Xteβ + 6te,tr6
−1
tr (ytr − Xtrβ), 6te

−6te,tr6
−1
tr 6tr,te). (7)

Thus, the prediction of yte can be obtained based on

ỹte = E[yte|ytr]

= Xteβ + 6te,tr6
−1
tr (ytr − Xtrβ).

Plugging in the estimates of β , σ 2
b
and σ 2

ǫ based on the training
dataset, we obtain the final prediction as

ŷte = Xteβ̂ + 6̂te,tr6̂
−1
tr (ytr − Xtrβ̂).

Note that the prediction formula can also be written in terms of
the random effects b:

ŷte = Xteβ̂ + f (Zte; γ )b̂,

where b̂ is the best linear unbiased predictor (BLUP), which
is a smoothed estimate with respect to the phylogenetic tree
(Supplementary Note).

The “glmmTree” software is available at “https://github.com/
lichen-lab/glmmTree.”

3. SIMULATION STUDIES

3.1. Simulation Strategy
We carried out extensive simulations to evaluate the performance
of glmmTree for both continuous and binary outcomes. For
the continuous outcome, we simulated 100 independent samples
in the training set and 200 independent samples in the test
set. For the binary outcome, we simulated 50 cases and 50
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controls in the training set, and 100 cases and 100 controls
in the test set. We used a Dirichlet-multinomial distribution
to simulate OTU counts and generated the outcome based on
the abundances of several selected OTU clusters. To objectively
evaluate our predictive model, we performed a parameter sweep
and investigated the effect of the cluster size (phylogenetic depth),
the number of clusters (signal density) and the abundance level
of the clusters on the prediction performance. The simulation
studies were aimed to reveal the scenarios under which ourmodel
performed favorably and also identify potential “blind spots” of
our model.

3.1.1. Simulating OTU Abundance Data
We generated the OTU counts using a Dirichlet-multinomial
distribution with the parameters (the mean proportion vector
and the dispersion parameter φ) estimated based on a real OTU
dataset from a study of the microbiome of the human upper
respiratory tract (Charlson et al., 2010; Chen and Li, 2013), which
contains the counts of 778 OTUs from 60 samples, together
with a phylogenetic tree describing the evolutionary relationship
among the 778 OTUs. For each sample, the total read count was
drawn from a negative binomial distribution with mean 5000
and dispersion 25. The OTU counts were normalized into OTU
proportions (z) by dividing the total read counts.

3.1.2. Constructing Outcome-Associated OTU

Clusters
The underlying relationship between the outcome and the
microbiome is complex. The outcome-associated OTUs
(“aOTUs”) can be clustered at different phylogenetic depths
(deep or shallow), creating OTU clusters (“aClusters”) of
different sizes. It is also possible that the aOTUs are simply not
phylogenetically related. In such case, each aOTU constitutes an
aCluster of size 1. The signal density (number of aClusters) can
also vary depending on the outcome. Finally, aClusters can be
abundant or rare since both rare and abundant taxa have been
observed to associate with the outcome. We thus studied the
effects of all these parameters in the simulation.

To construct aClusters with a different level of cluster size,
signal density and abundance, 778 OTUs were first grouped into
m clusters based on their patristic distances on the phylogenetic
tree.

We assumed that there were mc (m × s%) aClusters and
s% represents the signal density. For given m and mc, we
chose aClusters of different abundance level (a). The simulation
strategy is illustrated in Figure 1 and the detailed settings for
cluster size, signal density and abundance are presented below:

• Cluster size (m):
The 778 OTUs were partitioned into m clusters using

the partitioning-around-medoids (PAM) algorithm based on
the patristic distances among OTUs (Chen et al., 2012). We
considered m ∈ (10, 100, 778), representing large, medium
and small OTU clusters, and aClusters were selected from
these OTU clusters. Note that when m=778, the aOTUs are
not phylogenetically related and the phylogenetic tree is not
informative for prediction.

• Signal density (s%): We selected s% ∈ (10%, 20%, 40%)
for m=10, s% ∈ (1%, 5%, 25%) for m=100 and s% ∈

(1%, 5%, 30%) for m=778 to represent low, medium and high
signal density respectively. The number of aClusters mc was
taken to be the integer part ofm× s%.

• Abundance (a): Given m and mc, we had
(m
mc

)

choices
of aClusters. To obtain low, medium and high abundance
level, we randomly picked mc clusters from m clusters 1000
times and recorded their cumulative abundances at (t =

1, · · · , 1000). We chosemc aClusters of high, medium and low
abundance with abundance max(at), median(at), min(at), t =
1, ..., 1000, respectively.

3.1.3. Generating the Outcome Based on the

Abundance of AClusters
Denote Cl as the set containing the indices of the lth aCluster,
l ∈ {1, · · · ,mc}, and ηi be the expected outcome value for sample
i. We first generated ηi based on the following linear relationship

ηi = β0 +

mc∑

l = 1

(
∑

k ∈Cl

zik)bl

bl ∼ N(0, σ 2
b )

(8)

For a continuous outcome,

yi = ηi + ǫi, ǫi ∼ N(0, σ 2
ǫ ) (9)

For a binary outcome,

πi =
eηi

1+ eηi

yi ∼ Bernoulli(πi)

(10)

Note that we assigned the same coefficient for OTUs within the
same cluster to create clustered signals. The variance σ 2

b
can

be adjusted to control the signal-to-noise ratio. Without loss of
generality, σ 2

b
was set to be 2 for the continuous outcome and 4

for the binary outcome. The error variance σ 2
ǫ for the continuous

outcome was chosen to be 1
4var(Zb) so that the OTUs jointly

explain 80% of the outcome variability.
To study the prediction performance under potential non-

linearity, we also simulated non-linear relationships, where we
use f (zik) instead of zik to generate the outcome. We specifically
investigated when f (zik) = z0.5

ik
, which attenuates the effect of

highly abundant OTUs, and f (zik) = 1(if zik 6= 0), which
represents the scenario where only the presence/absence of the
OTU affects the outcome.

3.2. Competing Methods, Model Selection
and Evaluation
3.2.1. Competing Methods
We compared glmmTree to Lasso, MCP and Elastic Net (Enet),
three sparse regression models with no consideration of the
phylogenetic structure. Particularly, Elastic Net encourages
the data-driven smoothing via L2 penalty. We also compared
glmmTree to a phylogeny-constrained sparse regression
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FIGURE 1 | Illustration for the simulation strategy. We simulate outcome-associated OTU clusters (aClusters) of different cluster size (top to bottom) and signal

density (left to right). We also vary the abundance level of the aClusters (not shown).

model (Chen et al., 2015) as a representative of tree-structure
penalized regression models. The method uses the same
phylogeny-induced correlation structure as in glmmTree but
encourages the phylogeny-driven smoothing based on the
inverse correlation matrix instead of the usual Laplacian
matrix. We thus termed it Sparse Inverse Correlation
Shrinkage method (SICS). Besides those sparse regression
models, we also compared glmmTree to Random Forest
(RF), which has been demonstrated a superior prediction
performance in various microbiome datasets. Finally, we
compared to a regular kernel-based GLMM (glmmTree.Reg)
to evaluate the benefit of exploiting the phylogenetic tree in
prediction.

3.2.2. Model Selection and Evaluation
For glmmTree, the tuning parameters (γ , ρ) are used to control
the phylogenetic depth and non-linear effect and need to be
tuned. We searched ρ on the grid {0, 2−5, 2−4, 2−3, · · · , 24, 25}

︸ ︷︷ ︸

11

while γ was tuned on the grid {0, 0.01, 0.1, 0.3, 0.5, 0.7, ..., 1.9}
︸ ︷︷ ︸

12

.

glmmTree.Reg was achieved by fixing ρ at a very large value (104).

Box 1 | Tuning parameter settings in different methods.

• Lasso: glmnet R package, all parameters were set as the default.

• Elastic Net: glmnet R package, all parameters were set as the default.

• MCP: ncvreg R package, all parameters were set as the default

• SICS: glmgraph R package, the search grid for ρ was the same as

glmmTree, the tuning parameter for the smoothness penalty was selected

from {0, 2−5, 2−4, 2−3, · · · , 24, 25}
︸ ︷︷ ︸

11

, other parameters were set as default.

• Random Forest: randomForest R package, parameters were set as

default.

The details of specific software packages used and their parameter
settings for competing methods are shown in Box 1.

Tuning parameter selection was based on five-fold cross-
validation (CV), where the training samples were randomly
divided into five folds with four folds used for model fitting
and the remaining one for calculating some CV criterion. We
used PMSE (Predicted Mean Square Error) as the CV criterion
for a continuous outcome and AUC (Area Under the Curve)
for a binary outcome. Once the optimal values of the tuning
parameters were selected, we fit the model using all training
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sample (n=100) and then evaluated the prediction performance
on the test dataset (n=200). Although we used PMSE and
AUC for tuning parameter selection, we focused on R2, which
quantifies the correlation between the predicted outcome and
the observed outcome and ranges from 0 (no correlation) to
1 (perfect correlation), to evaluate the prediction performance.
Specifically, for a continuous outcome, R2 is defined as

R2 =
{
∑nte

i = 1(ŷte,i − ŷte)(yte,i − yte)}
2

∑nte
i = 1(ŷte,i − ŷte,)

2
∑nte

i = 1(yte,i − yte)
2
,

where ¯̂y, ȳ are the sample means. For the binary-version R2,
we substitute ŷte,i with the predicted probability P̂te,i. Each
simulation was repeated 50 times and means and standard errors
were reported.

3.3. Simulation Results
3.3.1. Results for the Continuous Outcome.
We first evaluated the performance of different methods across
different cluster sizes and signal densities when the abundance
of the aClusters was high (Figure 2). We observed a general
decrease in performance for all methods when the signal density
increased. This trend is explained by a result of decreasing
individual effects as we increased the number of aOTUs since
we fixed the percentage of variability explained by OTUs ( 80%)
across parameter settings. The reduction in individual effects
was unfavorable for all methods. When the aCluster was large,
i.e., the signals were highly clustered, glmmTree outperformed
other methods substantially. Particularly, glmmTree had a
clear advantage over glmmTree.Reg, which did not account
for the phylogenetic structure, indicating the benefit of using
phylogenetic information to improve prediction. It was also
significantly better than the sparse regression methods and
RF across different levels of signal density. The unfavorable
performance of these sparse regression methods was due to
the weak individual effects of these aOTUs in the large cluster.
In such “many OTUs, weak effects” scenario, sparse regression
methods tended to have a low sensitivity and specificity to
identify these aOTUs, which led to poor prediction performance.
As the cluster size decreased, the phylogenetic signal became
weaker, and the difference of performance between glmmTree
and other methods diminished accordingly. However, glmmTree
still performed better than sparse regression methods when
the signal was dense. This was due to the fact that glmmTree
did not assume sparsity in the model, and when the signal
became dense, the irrelevant OTUs did not seriously corrupt
the overall microbiome similarity, upon which the glmmTree
was based. It should be noted that glmmTree and glmmTree.Reg
had performance similar to those sparse regression methods
in their most unfavorable setting, where a small number of
phylogenetically non-related OTUs were associated with the
outcome (Figure 2A, upper left). The comparable performance
is explained by the high abundance of the aOTUs, which
dominated those rare and less abundant OTUs in determining
the microbiome similarity.

As we decreased the abundance of the aClusters to be
“medium” (Figure 2B), glmmTree still excelled in highly

clustered signals across different signal densities, but its
prediction performance deteriorated significantly as the signal
density became lower and the size of aCluster became smaller.
When the signals were not phylogenetically related (Figure 2B,
top row), sparse regression models and RF performed better
than glmmTree. As these phylogenetically non-related signals
grew more sparse, glmmTree had very low predictive power. A
similar trend was observed when the abundance of aClusters was
“low” (Figure S1). In this scenario, the phylogeny-regularized
sparse regression method (SICS) outperformed the other sparse
regression methods. In summary, no methods dominates in
all settings and glmmTree has a performance edge over other
competing methods when the signal is dense, clustered and/or
abundant.

In glmmTree, we included two tuning parameters γ , which
up-weights or down-weights the effect of abundant OTUs,
and ρ, which controls the phylogenetic depth of the signal.
These two tuning parameters are used to exploit various signal
structures for microbiome data. It is interesting to observe the
patterns of the selected values across simulation settings. We
plotted the distribution of selected γ and ρ values over the
fifty simulation runs across different levels of cluster size, signal
density and abundance for the continuous outcome (Figure 3 ).
As expected, smaller values of γ tended to be selected for “low-
abundance” scenarios, where the outcome was associated with
less abundant aClusters. Smaller γ values up-weighted the effects
of less abundant OTUs and hence amplified their weak signals
(Figure 3A). γ had the stronger impact when the phylogenetic
signal was weak (i.e., the OTUs were less phylogenetically
related). On the other hand, smaller ρ values were selected for
larger clusters, where the signals were at a deeper phylogenetic
depth (Figure 3B). Therefore, the inclusion of these two tuning
parameters improved the model flexibility.

To study the robustness of glmmTree to tree mis-specification,
we generated “noisy” trees by randomly permuting different
percentages of the rows/columns of the tree-induced distance
matrices. As we increased the percentage from 25 to 75%,
the performance of glmmTree decreased accordingly, but it
was still more powerful than glmmTree.Reg, which did not
use tree information (Figure S2). As the tuning parameter ρ

approaches infinity, glmmTree is reduced to glmmTree.Reg.
Therefore, the performance of glmmTree is expected to be close
to glmmTree.Reg when the tree is severely mis-specified. We
next studied the performance of glmmTree under much lower
percentages of variability explained by OTUs (50% and 33%). As
we lowered the signal-noise-ratio (SNR), the performance of all
methods deteriorate but the same trend has been observed as in
the high SNR scenario (Figure S3).

3.3.2. Results for the Binary Outcome.
We repeated the same simulations for the binary outcome and
present the results in Figure 4 and Figure S4. Compared to
the continuous outcome-based simulations, the performance
for all methods deteriorated faster when the aClusters became
less abundant and more sparse. Nevertheless, a similar trend
persisted: glmmTree had the best performance under clustered
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FIGURE 2 | R2 for continuous-outcome simulations across different levels of cluster size and signal density. The abundance of associated OTU clusters is chosen to

be high (A) and medium (B). Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal

density, respectively.

FIGURE 3 | Distribution of the selected tuning parameter γ (A) and ρ (B) across different levels of cluster size, signal density and abundance for continuous-outcome

simulations. Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal density, respectively.

and dense signals, and abundant aClusters further improved its
performance.

3.3.3. Accommodation for Non-linear Signals
The conclusions in the previous simulations were based on
linear signals. Since the relationship between the microbiome
and the outcome is very complex, traditional linear models
may fail to capture non-linear microbiome effects. Besides the

differential weighting function, the tuning parameter γ can also
accommodate a wide range of non-linear effects. To illustrate
this point, we performed additional simulations based on non-
linear signals and compared the prediction performance to
glmmTree with a fixed gamma value (γ=1). Specifically, we
investigated two types of non-linear relationships, in which the
outcome was generated based on (1) the OTU presence/absence
and (2) square-root transformed OTU abundances, respectively.
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FIGURE 4 | R2 for binary-outcome simulations across different levels of cluster size and signal density. The abundance of associated OTU clusters is chosen to be

high (A) and medium (B). Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal density,

respectively.

Without loss of generality, we set the scenario to be high
abundance, large cluster and low signal density. The simulation
results are presented in Figure 5. Clearly, glmmTree achieved a
significantly higher R2 than glmmTree without γ tuning in both
non-linear scenarios for both continuous and binary outcomes.
When the outcome depended on the OTU presence/absence,
glmmTree without γ tuning was powerless: the R2 was close to
0. In contrast, glmmTree with γ tuning performed substantially
better since γ was usually tuned to be close to 0 to accommodate
such non-linearity. When the outcome depended on the square-
root transformed OTU abundances, glmmTree without γ tuning
achieved some predictive power, but was still much less
powerful than glmmTree with γ tuning. Therefore, glmmTree
can also capture non-linear signals with the imbedded power
transformation.

4. APPLICATION OF GLMMTREE TO
PREDICTING CHRONOLOGICAL AGE
BASED ON THE HUMAN GUT
MICROBIOME

We applied glmmTree to a study investigating how the gut
microbiome differs across age and geography (Yatsunenko et al.,
2012). The study consisted of 531 individuals, among which
115 individuals were from Malawi, 100 individuals were from
Venezuela, and 316 individuals were from the USA. The gut
microbiota of these individuals was profiled using 16S rRNA
gene targeted sequencing. The dataset was available for download
from Qiita (https://qiita.ucsd.edu/) with study ID 850, where the

sequence data was processed by the QIIME pipeline (reference-
based approach). A total of 14,170 OTUs were produced for this
dataset. To demonstrate the performance of glmmTree, we used
the 316 individuals from the USA for age prediction.

The complexity of the real data required us to properly
normalize, transform and filter the data before applying various
predictive tools. Let (cij)p×n be the observed count matrix. We
carried out a series of pre-processing steps before applying
various prediction methods:

1. Sample filtering to remove outlier samples. We calculated the
Bray-Curtis distance between samples. Denote djk the distance
between sample j and k. For each sample j, we calculated the
median distance from sample j to other samples, denoted as
mj = Mediank 6=j(djk). An outlier index oj for sample j was
defined as oj = mj/Mediank(mk). We removed samples with
oj > 2 (8 samples removed).

2. OTU filtering to remove less informative and noisy OTUs
and reduce dimensionality. We imposed two filters: (1) OTU
prevalence < 10%, and (2) Median non-zero counts < 10.

3. Normalization to address variable library sizes. We used
GMPRnormalization, which is developed specifically for zero-
inflated count data (Chen L. et al., 2018). For each sample, we
calculated a GMPR size factor sj and the normalized counts
were then divided by sj. The normalized counts are denoted as
(c̃ij)p×n.

4. Winsorization to replace outlier counts. For each taxon i, we
calculated the 97% quantile q0.97i based on c̃ij(j=1 · · · n), and
replaced c̃ij > q0.97i with q0.97i . This procedure has shown
to be effective in reducing false positives in the context of
differential abundance analysis (Chen J. et al., 2018).
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FIGURE 5 | The ability of glmmTree to capture non-linear effects through the tuning parameter γ . glmmTree with tunable γ (red) is compared to glmmTree with fixed

γ = 1 (blue). R2 is used to evaluate the performance for continuous (A,B) and binary (C,D) outcomes when the outcome is generated based on OTU

presence/absence (A,C) and square-root transformed OTU abundances (B,D).

5. Transformation to reduce the influence of highly abundant
taxa counts. We used the commonly used square-root
transformation.

6. We further used square-root transformation on the
continuous age variable to better capture the underlying
relationship.

These proprocessing steps were used to make the microbiome
data more amenable to predictive modeling, and could improve
the performance of sparse regression methods such as Lasso
(Figure S5). After the processing steps, we were left with 308
individuals and 1087 OTUs. We first evaluated the prediction
performance by treating age as a continuous outcome. To
demonstrate the performance with binary outcomes, we classified
the individuals into three age groups: baby (age ≤ 3 years, n =

54), child (3< age< 18 years, n = 125) and adult (age≥ 18 years,
n = 129), and evaluated the prediction performance based on
the baby and child age group. The guidance of the group division
and choice was based on the observation that the microbiome
change begins to slow down after three years old, and the
child microbiome is more similar to the adult microbiome
(Yatsunenko et al., 2012). We included the prediction of baby
vs. child in the main text and the prediction of child vs. adult in
the Supplementary File.

We compared glmmTree to SICS, Lasso, MCP, Elastic Net
and Random Forest. Tuning parameter selection was based on
cross-validation (CV) as in the simulation.

To have an objective evaluation of the prediction
performance, we randomly divided the dataset fifty times
into five folds: four folds were used for training (with nested

CV) and the remaining one fold for testing. R2 and PMSE

were used as metrics for the continuous outcome, while R2

and AUC were used for the binary outcome. The results are
presented in Figure 6. glmmTree achieved the best performance

for continuous age prediction as indicated by the highest
R2 and lowest PMSE, followed by SICS and Elastic Net. For

baby vs. child prediction, glmmTree still achieved the highest
R2 and AUC, followed by Elastic Net and Random Forest.

For child vs. adult prediction, glmmTree and Elastic net
achieved the best performance (Figure S6). To verify if the

improvement of prediction was significant, we performed
paired Wilcoxon signed-rank tests between glmmTree and
other methods based on R2, PMSE and AUC obtained from
the fifty random divisions. For continuous age prediction,

glmmTree achieved significantly higher R2, and significantly
lower PMSE than other methods (P-value < 0.05). For baby

vs. child prediction, glmmTree achieved significantly higher
AUC than other methods, and significantly higher R2 than other
methods except Elastic Net. For child vs. adult prediction,

glmmTree achieved significantly higher AUC and R2 than other
methods except Elastic net. Overall, glmmTree performed the

best for both the continuous and binary age outcome on this
dataset.
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FIGURE 6 | Performance comparison for age prediction. All USA samples are used in continuous age prediction (A,B). Binary prediction is based on the two age

groups: baby (0 to 3 years old) and child (3 to 18 years old) (C,D). Red dashed line indicates the median value of various performance measures for glmmTree.

5. DISCUSSION

One of the challenges for predictive modeling of microbiome
data is the utilization of the phylogenetic tree. As microbiome
profiling experiments produce increasingly higher taxonomic
resolutions such as strain-level resolution (Truong et al., 2015;
Callahan et al., 2016), incorporating the phylogenetic tree
information becomes even more important. The phylogenetic
tree provides a principled way to pool signals and directs the
analysis to the most relevant parameter space, which is essential
to counter the “curse of dimensionality.” Previous work indicates
that predictive models could benefit from the incorporation of
the phylogenetic tree through the use of tree-induced smoothness
penalty (Tanaseichuk et al., 2014; Chen et al., 2015; Wang and
Zhao, 2017). These models usually induce a sparse solution and
are hence efficient to detect sparse and clustered signals. In
this work, we propose to utilize the phylogenetic tree to detect
dense and clustered signals. This is achieved by assuming the
OTU effects as random in a GLMM framework, and that the
OTU random effects follow a multivariate normal distribution
with the correlation structure defined based on the phylogenetic
tree.

We performed comprehensive simulations to investigate
the performance of the proposed method at varying cluster
sizes, signal densities and taxa abundances. Simulation studies
demonstrated that glmmTree favors dense and clustered signals
or signals from abundant OTUs, compared to sparse regression
models, which has a competitive performance for sparse signals,
particularly from those less abundant OTUs. By using a
power transformation, glmmTree can capture a wide range of
non-linear effects including the biologically relevant scenario
where the outcome depends on the presence/absence of the
OTUs. Human microbiome studies have frequently found
that the species richness (α-diversity) were associated with
some phenotypic traits (Le Chatelier et al., 2013). Therefore,
capturing the signals on the presence/absence level should not be
overlooked.

Our work is closely related to the recently proposed
kernel penalized regression framework (Randolph et al., 2015),
which provides a theoretic framework to incorporate a variety
of extrinsic information, such as phylogeny, into penalized
regression models. For microbiome data applications, Randolph
et al. (2015) illustrated their method using a kernel-based
on UniFrac distances. In our work, we took a further step
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and optimized the microbiome-based kernel to be capable of
capturing clustered signals at various phylogenetic depth as well
as accommodating non-linearity. Moreover, our model is based
on the generalized linear model, which can handle non-Gaussian
outcomes while adjusting for covariates easily.

As the microbiome field matures, more complex study designs
such as family and longitudinal studies have been used to
study the human microbiome in relation to various clinical
and biological variables. These studies are efficient to control
potential confounders such as genetics and diet, and are also
more powerful than studies based on independent sampling.
Although our framework is developed mainly for independent
data, it could be modified to accommodate such clustered data
by incorporating additional cluster-level random effects. Similar
algorithms (i.e., PQL) could be used to fit these multiple random
effects model.

The effectiveness of the proposed method depends on the
reliability of the phylogenetic tree, which can be very noisy
or non-informative. Although our method is robust to tree
mis-specification via the tuning parameter ρ, its performance
will not be optimal if the tree is severely mis-specified. In
this case, other types of kernels without using the tree, such
as the radial basis function (RBF) kernel (Shawe-Taylor and
Cristianini, 2004), may be more powerful. A composite kernel
that combines the tree-based and non-tree-based kernels may
increase the robustness of our method for detecting various
kinds of dense signals. Furthermore, since the underlying signal
structure is unknown for real applications, an ensemble approach
incorporating representative prediction methods targeted to

different signal structures (e.g., dense vs. sparse) is more likely
to provide an even more robust prediction. We leave these
extensions as our future work.
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