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Abstract: The rapid urbanization process brings consequences to urban environments, such poor air
quality and the urban heat island issues. Due to these effects, environmental monitoring is gaining
attention with the aim of identifying local risks and improving cities’ liveability and resilience.
However, these environments are very heterogeneous, and high-spatial-resolution data are needed to
identify the intra-urban variations of physical parameters. Recently, wearable sensing techniques
have been used to perform microscale monitoring, but they usually focus on one environmental
physics domain. This paper presents a new wearable system developed to monitor key multidomain
parameters related to the air quality, thermal, and visual domains, on a hyperlocal scale from
a pedestrian’s perspective. The system consisted of a set of sensors connected to a control unit
settled on a backpack and could be connected via Wi-Fi to any portable equipment. The device was
prototyped to guarantee the easy sensors maintenance, and a user-friendly dashboard facilitated a
real-time monitoring overview. Several tests were conducted to confirm the reliability of the sensors.
The new device will allow comprehensive environmental monitoring and multidomain comfort
investigations to be carried out, which can support urban planners to face the negative effects of
urbanization and to crowd data sourcing in smart cities.

Keywords: outdoor environmental monitoring; wearable sensing technique; urban microclimate;
urban air quality; urban heat island; urban resilience; community resilience

1. Introduction

The urbanization process is continuously increasing, and it is expected that urban
inhabitants will represent 68% of the world’s population by 2050 [1]. At the same time that
people are relocating to dense urban areas, these places are becoming uncomfortable cities,
which increases health and social risks associated with a lower environmental quality [2].

Built environments in cities are typically different compared to rural surroundings,
mainly because of surfaces physical properties. The major consequence is a higher air
temperature in urban environments, and this phenomenon is called the urban heat island
(UHI) [3]. Urban overheating has serious impacts on urban environmental quality and
has been already associated with an increase in the local vulnerability and the heat-related
mortality and morbidity [4]. Air quality is another concern in urban areas due to the
pollution related to anthropogenic activities (e.g., industrial activities and the transport
sector) [5]. Indeed, air pollution is considered the principal environmental risk to hu-
man health nowadays [6], and some studies already stated that air pollution exposure is
associated with higher levels of mortality and higher incidences of cardiovascular and
respiratory diseases [7–10].

The rapid growth in urbanization and its negative consequences have brought new
challenges to urban planners to maintain high living features in these environments [11],
which has increased the attention on urban spaces quality [12]. People are exposed to
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thermal, visual, acoustic, and air quality stimuli simultaneously, but their effects on hu-
mans are generally examined separately [13]. Several studies focused on the outdoors
investigated the influence of thermal stimuli (e.g., air temperature, relative humidity, wind
speed, and solar radiation) on people’s perception in terms of their thermal comfort and
sensation [14–17], and the effects of air pollutants concentrations (e.g., particulate matter,
O3, NOx, and CO) on their air quality perceptions [18–20]. Recent experiments conducted
in indoor environments have already demonstrated the interactions and crossed effects
among different comfort domains [21–25], and this approach is still lacking in the outdoor
studies, which will be addressed in this paper.

Pedestrians’ wellbeing involves all comfort domains; thus, urban environmental
monitoring concerning different comfort domains is needed [26]. Moreover, the complex
morphology and heterogeneity of urban landscapes leads to great variabilities in physical
parameters within the same urban space, and understanding these varieties at small
scales (hyperlocal) is crucial to propose appropriate mitigation solutions that improve life
quality in these environments [27]. To investigate these intra-urban variations, high-spatial-
resolution data are needed [27], and nowadays, the most common methods to get them
with the required precision involve remote sensing using satellite data [28], fixed weather
stations network [29], mobile transects through dedicated equipped vehicles [30], and,
more recently, wearable devices [31].

Remote sensing has been used to investigate the land surface temperature and its rela-
tion to land cover, mainly associated with the UHI problem [28,32–34]. An advantage of this
technique is the large spatial coverage of satellites and the repetitive data acquisition [32].
However, some satellite-based observations lack temporal or spatial granularity [2]. A
more common approach to characterizing a city in terms of physical parameters is based
on fixed weather stations, which provides long-term monitoring that allows verifying
temporal variations in the environment [35,36]. Nevertheless, a large number of weather
stations are required to catch the spatial variability of the urban environment, and this is
not available many times because of equipment high initial and maintenance costs and local
constraints [31]. The required data granularity can be achieved through dedicated vehicles
equipped with monitoring systems [30,37,38]. This technique results in shorter monitoring
campaigns (different from the other methods) to minimize the errors related to mixing
spatial and temporal data variability, and it is limited to roadways and parking areas [27].
Despite this, mobile transects are the most suitable method to collect high-spatial-resolution
data to evaluate the urban environment heterogeneity, and they allow identifying specific
discomfort or pollution sources [31].

To overcome the limitation of road vehicle monitoring, portable/wearable devices to
measure physical parameters from a pedestrian perspective have been proposed recently.
A wearable device is a tool with strong sensing, processing, storage, and communication
capabilities that can be worn by the user [39]. Its great advantage is the possibility to
catch the user’s real exposure and enable outlining the spatial–temporal variation of the
environmental parameters [40]. In this field, Pigliautile and Pisello [27,31] developed a
wearable system that consists of a miniaturized weather station and a GPS settled upon a
bike helmet. It monitors the air temperature, relative humidity, wind speed and direction,
global solar radiation, atmospheric pressure, lighting, and CO2 concentration and can
be used while walking and biking. Chokhachian et al. [41] presented a mobile station
that measures the air temperature, relative humidity, wind speed, globe temperature,
and global solar radiation, besides a GPS. All sensors are carried in a backpack by a
person that walks through a specific path. Nakayoshi et al. [42] created a wearable device
that monitors environmental parameters (air temperature, relative humidity, wind speed,
and short- and long-wave radiation) and physiological (skin temperature, pulse rate,
and body motion). Saoutieff et al. [43] and Deng et al. [44] created wearable devices
with the objective to monitor the user’s exposure to air pollutants. Xu et al. [45] used a
miniaturized device while walking to map an intra-urban PM2.5 concentration distribution.
Liu et al. [46] detected pollutant sources and the respective emission rates through several
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mobile users equipped with sensors. Dam et al. [47] developed a wearable air-quality
sensor to investigate people’s exposure to air pollution and collect the geographic position,
air temperature, relative humidity, and ozone, carbon monoxide, and particulate matter
concentrations. All these portable/wearable devices are suitable for deep analyzing one
comfort domain but lack monitoring parameters related to other ones. Future comfort
investigations should focus on the interactions between domains, and for this purpose,
monitoring systems should be able to measure various environmental parameters related
to different comfort domains. Besides, according to Salamone et al. [48], wearable sensing
techniques dedicated to environmental monitoring should also consider ergonomic design
principles and present user-friendly solutions.

Considering this background, a new wearable monitoring system was developed,
capable to monitor key physical parameters in outdoor environments on a hyperlocal
scale. This article introduces this new wearable device, which measures the air quality,
thermal, and visual factors with a high spatial resolution from a pedestrian standpoint for
the first time in this field. The characteristics of the system and its embedded sensors were
presented, along with several tests that were conducted to verify the reliability and the
potential of such a new sensing technique.

2. Theoretical Background

The urban lifestyle is influenced by the quality of outdoor environments, as these
spaces accommodate several social, cultural, and commercial activities, which raises the
importance of providing attractive and comfortable outdoor places [12]. However, the
urbanization process intrinsically brings negative consequences to environmental quality,
as the UHI [3] and air pollution [5]. These issues are worsened when combined with the
phenomena caused by global warming, such as heat waves (HWs). HWs refer to a period of
unusual extreme hot weather persisting for certain consecutive days [49] and are becoming
more intense, frequent, and longer due to the continued warmer climate [50], being the main
cause of weather-related deaths [51]. Some studies have already reported the synergistic
interaction between the UHI and HWs. In detail, HWs intensify the impacts and affect the
spatial and temporal variability of the UHI [49,52–54]. The UHI also interacts with HWs
by extending the duration of hot conditions [55]. Therefore, the combined effects with the
UHI make the consequences of HWs even more harmful in urban environments [56].

Boosting UHI effects during HWs impacts thermal comfort and heat-related morbidity
(e.g., heat exhaustion and heat stroke) and mortality [4]. Health risks are intensified
for more vulnerable groups, such as elderly and very young people, subjects with pre-
existing medical conditions, low-income groups, ethnic minorities, and socially isolated
individuals [57]. Moreover, during HWs, the concentration of air pollutants rises, which
also aggravates health risks [58]. Poor environmental quality demands precise interventions
to reduce health risks and improve people wellbeing. However, the heterogeneity of
urban environments causes hyperlocal variation on microclimate conditions that should be
assessed to recommend personalized and specific measures adequate to each place [59].
This analysis requires high-spatial-resolution data to identify microscale variations in the
physical parameters [27].

Remote sensing from satellite images is a common method for environmental moni-
toring. Despite allowing repetitive data acquisition, satellite images are not continuously
obtained because of satellite movements. Hence, this technique guarantees continuous
spatial data but lacks data on temporal continuity [60]. For this reason, sometimes this
method is combined with in situ measurements at a ground level at weather stations
that can be used to validate remote sensing information or enhance the identification of
temporal variations of physical parameters [27]. In fact, in situ measurements permit
continuous monitoring but commonly do not offer high-spatial-resolution data due to the
limited number of weather stations [60]. Besides, weather stations are rarely placed within
urban areas, and measurements out of these environments are not representative of the
urban core [61].
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As stated before, a suitable solution to identify the spatial and temporal variation
of physical parameters at the same time is the use of wearables for environmental mon-
itoring. However, the current studies using this technique usually encompass only one
environmental physics domain in the monitoring. Furthermore, the success of a wearable
device depends on the proper selection of sensors that should be adequate for continuous
monitoring, even in the short term. For instance, the temperature and relative humidity
are usually measured with microelectromechanical system (MEMS) sensors. MEMS are
significantly smaller than traditional hygrometers and have integrated amplification and
analogue-to-digital convertor (ADC) circuitry [62]. The wind speed is frequently measured
with ultrasonic anemometers, which have the advantages of no mechanical structure, no
start-up wind speed limitation, and a wide measurement range regarding mechanical and
pitot-tube anemometers [63].

For the continuous monitoring of gas concentrations, electrochemical sensors are
the most used models. In the case of NO2 and O3 detection, electrochemical sensors are
small-sized and allow detecting low parts per billion (ppb) concentration levels [64]. Other
techniques lead to larger sensors or detect gas concentrations only around the parts per
million (ppm) level [64]. CO2 sensing is usually performed with electrochemical sensors
and non-dispersive infrared (NDIR) sensors. NDIR CO2 sensors usually have superior
long-term stability and high gas specificity, and they represent the largest part of advanced
CO2 sensors [65]. PM concentrations are hard to measure, because different techniques can
result in divergent results [66]. The standard method to measure PM concentrations is the
gravimetric method, that is, sampling PM on filters and weighing them before and after
the collection, and it is usually presented in daily values as the PM collection occurs in a
period of nominally 24 h [67]. For continuous monitoring, laser scattering processes are
one of the most used techniques to measure PM concentrations [68].

3. New Wearable Equipment for Monitoring Outdoor Environments
3.1. General Overview

The developed system was an innovative wearable device for monitoring physical
parameters in outdoor environments on a hyperlocal microclimate scale, from a pedestrian’s
perspective. The equipment consisted of a set of sensors joined in a kind of backpack, as
shown in Figure 1. The backpack design was chosen, because it is more comfortable for the
user since the ergonomic design is one of the main aspects that should be considered in
wearable devices [48]. The system counts with a GPS that allowed registering the spatial
variability of the parameters and making more granular monitoring, a great advantage in
comparison to fixed weather stations. This wearable may also be useful for microclimate
monitoring in historical cities and protected and sensitive areas, where only a few streets
may be acceded by classical vehicles.

The system measured several environmental parameters, such as air temperature,
relative humidity, atmospheric pressure, wind velocity and direction, global solar radiation,
illuminance, particulate matter concentrations (PM1.0, PM2.5, and PM10), and CO2, O3,
and NO2 concentrations. Even though the sensors are suited for outdoor uses, they are
protected from direct sunlight with 3D printed customized boxes (except the wind, solar
radiation, and illuminance sensors). These boxes were specifically designed to allow natural
ventilation and do not influence the sensors’ measurements. They were easily detachable
from the wearable system, which facilitated its maintenance.
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Figure 1. The new wearable system developed for monitoring outdoor environments: (a) front view;
(b) back view; (c) system usage during a monitoring campaign.

All sensors were connected to a control unit that collected, stored and sent data to
the cloud via Wi-Fi. The system designed was modular, which meant that sensors can be
replaced in the future without changing the control unit platform. The control unit power
was supplied by a battery that guaranteed more than two hours of autonomy. When the
system was turned on, the user could get connected via Wi-Fi with a smartphone, laptop, or
any other portable device that supported this connection. Once connected, the user could
see a dashboard with sensors measurements in real time and could start an environmental
data-recording session. The system dashboard was thought to be user-friendly to facilitate
real-time monitoring. When the system was used in the recording mode, the physical
parameters were registered every five seconds, and when the registration stopped, the
system generated a .csv file with all the measurements. Figure 2 presents the system
architecture, and Figure 3 shows the system dashboard (with the air temperature, relative
humidity, and pressure sensor as examples) when the wearable monitoring equipment was
connected to a smartphone.
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Figure 3. Dashboard to visualize real-time data.

3.2. Sensors Details

The sensors were selected to have the desired specifications and power consump-
tion to conduct non-permanent monitoring with sizes and weights appropriate for the
primary purpose of the equipment, that is, environmental monitoring from a pedestrian’s
perspective. Figure 4 shows the position of each sensor in the wearable system, and Table 1
presents their technical information.
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Table 1. Technical specifications of each sensor in the new wearable monitoring equipment.

ID (Figure 2) Parameter Monitored Sensor Model Technical Specifications

1 Air temperature BME280
Operation range: −40 ◦C–85 ◦C

Absolute accuracy: ±1 ◦C at
0–65 ◦C

1 Relative humidity (RH) BME280

Operation range: 10%–90% at
0–65 ◦C

Absolute accuracy: ±3% at
20%–80% RH

Response time: 1 s

1 Atmospheric pressure BME280
Operation range:

300 hPa–1100 hPa at 0–65 ◦C
Sensitivity error: ±0.25%

2 Wind velocity CV7-V

Operation range: 0.25 Kt–80 Kt
Sensitivity: 0.25 Kt
Resolution: 0.1 Kt

Output update: 2 per second

2 Wind direction CV7-V
Sensitivity: ±1◦

Resolution: 1◦

Output update: 2 per s

3 Global solar radiation SP-510-SS

Measurement range:
0–2000 W/m2

Calibration uncertainty: ±5%
Detector response time: 0.5 s

Spectral range: 385 nm–2105 nm

4 Illuminance SE-421
Measurement range: 0–150,000 lx

Calibration uncertainty: ±5%
Response time: 0.6 s

5 CO2 concentration TDS0037

Accuracy: ±2% at 20 ◦C
Pressure: 1 bar

Applied gas: 2.5% volume CO2
Response time t90: <30 s at 20 ◦C

6
Particulate matter

concentrations (PM1.0,
PM2.5, and PM10)

PMS5003

Effective range (PM2.5 standard):
0–500 µg/m3

Resolution: 1 µg/m3

Maximum consistency error
(PM2.5 standard): ±10 µg/m3 at

0–100 µg/m3; ±10% at
100–500 µg/m3

Total response time: <10 s

7 O3 concentration OX-A431

Sensitivity (nA/ppm at 1 ppm
O3): −200 to −650

Response time (t90 (s) from zero
to 1 ppm O3): <80 s

7 NO2 concentration NO2-A43F

Sensitivity (nA/ppm at 2 ppm
NO2): −175 to −500

Response time (t90 (s) from zero
to 2 ppm NO2): <80 s

Range (ppm NO2 Limit of
Performance Warranty): 20 ppm

8 GPS unit NEO-M8 Horizontal spatial accuracy: 2.5 m

The chosen sensor for the temperature, relative humidity, and atmospheric pressure
was a MEMS sensor developed for mobile applications. The wind sensor was an ultrasonic
anemometer. Global solar radiation was measured with a traditional pyranometer, as well
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as a light sensor, which is a regular model suitable for outdoor applications. The CO2
sensor used the NDIR principle.

The sensors dedicated to monitoring NO2 and O3 concentrations were the only ones
with specific operational requirements, because the electrochemical sensors to measure NO2
and O3 concentrations available in the market require a preheating time to operate properly.
As the developed monitoring system aimed to perform even short-term measurements,
long preheating times were not suitable for it; thus, the sensors chosen were the ones
with lower preheating time requirements (two hours), according to the manufacturer’s
specifications. A dedicated power supply unit was developed only to preliminarily switch
on these sensors (belonging to the same module; number 7 in Figure 4) and to provide
energy for this preheating process without compromising the battery autonomy of the
whole monitoring system. Another concern regarding electrochemical sensors was the
cross-sensitivity among O3 and NO2. The solution adopted was to combine the two sensors,
as NO2-A43F responded only to NO2 and OX-A431 measured both gases concentrations.

The only sensor that required postprocessing data was the one that measured PM
concentrations. A sensor based on laser scattering processes was chosen. Data should be
corrected using the mean daily values quantified through the gravimetric method, ideally,
in a place close to the one where the monitoring with the wearable system was performed.
The correction was a simple multiplication of the measurement by a factor. The factor was
the ratio between the mean PM value detected with the wearable system and the respective
daily mean value measured through the gravimetric method.

3.3. Methods to Verify the Sensors Reliability

The system reliability was checked through comparisons between its sensors and
selected reference systems, i.e., a climate chamber, a factory-calibrated compact all-in-one
weather station [2], and some individually calibrated sensors. The air temperature, relative
humidity, wind velocity, and CO2 concentration were compared to those in a climate
chamber. The choice for checking the reliability of these sensors in the climate chamber
was made because of the possibility to quickly vary the parameters inside it. Therefore,
it would be possible to verify how the sensors responded to these variations. The solar
radiation, the pressure, and the GPS were compared with the compact weather station. The
illuminance and PM concentrations were compared to individual calibrated sensors. NO2
and O3 sensors were factory-calibrated, so their reliability was not verified.

These comparisons were performed through simultaneous measurements of the de-
veloped equipment and the references. The simultaneous monitoring inside the climate
chamber lasted four hours, with exception for verifying the wind velocity. For this parame-
ter, a separate test was performed inside the chamber with a fan positioned at the same
distance of the wearable monitoring system and the climate chamber sensor.

With the compact weather station, the monitoring was performed at a fixed point on a
rooftop twice, during midday and at sunset (about two hours and a half each), to check
the reliability of the solar radiation sensor in both conditions. The GPS was checked in a
45 min route with the wearable system and the compact weather station.

The illuminance from the wearable device was compared to that from a calibrated
luxmeter that recorded values every one minute. This test was performed inside a room
and lasted about one hour. The light conditions were changed during this period (turning
the lamps on and off and opening and closing the window shutter) to check how fast the
luxmeter in the wearable responded to these variations.

The PM sensor reliability was verified in comparison to those of the sensors in a
fixed weather station. This station measured PM2.5 and PM10 concentrations continuously
through optical methods, like the one used in the wearable system, and daily through
the standard gravimetric technique, which allows correcting the measurements from the
wearable system. The simultaneous monitoring for checking the PM sensor reliability lasted
two weeks. The sensor from the wearable system was allocated inside a perforated box
that allowed ventilation but protected it from heavy rainfall, and it was directly connected
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to an electrical grid for a continuous power supply. As PM1.0 was not monitored by this
reference, the reliability of this measurement was not verified.

The data registered simultaneously with the new system and the references were
compared through graphs, the root-mean-square error (RMSE), and the coefficient of
variation (CV). The RMSE was defined as the standard deviation of the differences between
the expected and predicted samples [69]; it measured the mean error between the reference
systems and the new one, comparing the records made at the same time. It had the same
unit as the considered parameter. The RMSE was calculated according to Equation (1):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (1)

where yi is the measurement from the reference system, ŷi is the measurement from the
developed wearable system, and n is the number of measurements.

The CV provided a measurement of how close the values measured by the developed
system were to the data obtained with the reference systems. It was expressed in a per-
centage [70], so the less the CV, the more reliable the sensor. It was calculated according
to Equation (2):

CV =
RMSE

y
, (2)

where ȳ is the mean of the values measured by the reference system.

4. Results and Discussions
4.1. Georeferenced Monitoring

The GPS reliability was checked by performing a route with the compact weather
station and the new system. From the starting point, it walked around a building, then
to the endpoint and finally back to the starting point. Figure 5 shows the records from
both systems. The arrows indicate the directions of the walk. It was noticed that in the
green open area the paths are overlaid, while at the beginning and end of the path, near the
buildings, there were some differences between the systems. However, this divergence was
not larger than the accuracy of the GPS unit in the wearable device (2.5 m). The greatest
differences were identified in the first three minutes of walking. Therefore, it was confirmed
that the GPS of the developed wearable system was reliable, but it is important to wait
three minutes after turning it on to register the positions more accurately.

4.2. Hygrothermal and Air Quality Monitoring

Figure 6 shows the measurements performed inside the climate chamber for four hours.
They were performed to check the reliability of the air temperature, relative humidity, and
CO2 concentration sensors. The shaded areas around the temperature and relative humidity
indicate the accuracy of each sensor, according to the manufacturer. These three parameters
followed the same curve patterns to what were recorded by the climate chamber, especially
the temperature sensors that presented values very close to the reference ones. Even though
the measurements by the other sensors did not seem close to those by the reference system,
the RMSEs and the CVs among the samples were acceptable (Table 2), proving the reliability
of the sensors. During this monitoring, the wearable equipment was maintained in a fixed
spot inside the chamber, and for keeping the equipment in a vertical position, sensor 2 for
the temperature and the relative humidity was slightly covered by the equipment underside.
This should explain why the air temperature and the relative humidity registered by sensor
2 were less close to those by the reference values than those by sensor 1. Despite this, the
RMSE and the CV were still acceptable for this sensor.
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Table 2. Root-mean-square error (RMSE) and coefficient of variation (CV) of the developed wearable
system parameters compared to those of the reference systems.

Parameter Monitored RMSE (lx) CV

Air temperature by sensor 1 (◦C) 0.46 2%
Air temperature by sensor 2 (◦C) 1.74 9%

RH by sensor 1 (%) 2.70 7%
RH by sensor 2 (%) 4.20 11%

CO2 concentration (ppm) 49.42 12%
Wind velocity (m/s) 0.65 17%

Solar radiation at midday (W/m2) 37.70 6%
Solar radiation at sunset (W/m2) 15.83 11%

Pressure by sensor 1 (hPa) 1.53 0.2%
Pressure by sensor 2 (hPa) 0.76 0.1%

Illuminance (lx) 11.46 3%
PM2.5 (µg/m3) 2.37 31%
PM10 (µg/m3) 7.03 38%

The reliability of the wind velocity sensor was assessed in the same climate chamber,
but in a separate experimental session. A fan was positioned at the same distance as the
wearable equipment and the chamber sensor, and a 30 min monitoring was performed. The
results indicated an RMSE equal to 0.65 m/s and a CV of 17%, with the values measured by
the wearable system being slightly higher. This variation was quite high in comparison to
those measured by the others. However, an accurate comparison of an air-velocity sensor
was much more challenging due to the high variability of the wind field. Even if it was
tried to position the wearable and reference sensors at the same distance from the fan, if one
sensor was a few millimeters closer, the measurement could be affected. For this reason,
this variation was considered acceptable for this sensor.
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Figure 7 shows the comparisons of the solar radiations during midday and at sunset
measured by the wearable sensor, which were compared to those of the compact weather
station. There was a good relation between the developed wearable system and the
reference. The wearable equipment gathered slightly higher values, compared to the
reference, during the midday campaign (Figure 7a). However, then RMSEs and the CVs
(Table 2) for these cases were very low (CV lower than 10%), showing a good approximation
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between the sensor and the reference. It was noted that the lower the solar radiation, the
more accurate the values registered by the wearable equipment. However, attention should
be paid to the lowest values when the sensor wrongly registered values close to zero. It
could be related to the sensor sensitivity. Therefore, even if the solar radiation sensor is
reliable, it is not appropriate for measurements when this parameter is less than 100 W/m2.
In fact, these values characterize the beginning of the night, a period of the day when
usually solar radiation is not a significant parameter to describe the outdoor environment.
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The pressure sensors were also assessed in contrast to the compact weather station
and presented the lowest CV values among all the sensors (less than 1%), showing that the
pressure measurements with the wearable were very consistent.

The PM sensor was evaluated with a calibrated sensor installed in a fixed weather
station. The continuous measurements from the wearable system and the calibrated sensor
were both made with the optical method. Then, they were corrected with the daily values
measured with the gravimetric technique. The measurement trends of the wearable sensor
and the reference system was the same, that is, both sensors responded in the same way to
PM concentration variations. However, the CV values were higher than 30% for both PM2.5
and PM10. The box protecting the sensor from the wearable system could have interfered
with the measurements and enlarged these differences. However, other studies have already
reported that PM concentration can diverge when registered with different sensors, even if
they are all based on the optical principle [71,72], which makes the continuous monitoring
of these parameters harder. In detail, the studies stated that sensors’ performances can
vary with different PM sources and background concentrations, temperatures, relative
humidity values, and rainfalls [71,72]. Then, due to these hindering factors and the fact that
the sensor in the wearable system followed the same trend as the one in the fixed weather
station, this CV was considered acceptable.

4.3. Visual Monitoring

The luxmeter was compared with an isolated calibrated sensor that recorded illumi-
nance values every one minute. Figure 8 presents the results of the monitoring, which
lasted around two hours. The sensors’ measurements were very close to each other, and the
comparison between them resulted in an RMSE equal to 11.46 lx and a CV of 3%, proving
the illuminance sensor in the wearable system is reliable.
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Figure 8. Illuminance registered by the developed wearable system and the reference luxmeter.

This system was developed to fill a gap of devices that monitors physical parameters
related to different comfort domains in high-spatial and -temporal resolutions. Even though
no tests combining measurements from all sensors were performed, individual assessments
confirmed the reliability of all of them. Further developments should provide a complete
monitoring campaign evaluating the performance of the whole wearable equipment at the
same time.

5. Conclusions

This paper presented a new wearable device that monitored several environmental
parameters related to the air quality in the thermal and visual domains on a hyperlocal scale.
The system performed counts with a GPS that associated a precise geographic position
to each measurement, allowing detecting the intra-urban variations of all the factors it
measured. This wearable device is also helpful for microclimate monitoring in historical
cities and protected and sensitive areas, where monitoring systems based on vehicles
cannot accede to some streets. The system recorded the measurements every five second,
which permitted evaluating temporal data variation, but its user-friendly dashboard also
enabled easy environmental real-time monitoring. Various tests were conducted to confirm
the reliability of each sensor, and the system provided consistent measurements among all
of them.

For the very first time, a wearable device dedicated to the environmental monitoring
of three environmental domains was presented. The monitoring performed with this
system will support carrying out multidomain comfort studies in outdoor environments.
Moreover, it enables a comprehensive characterization of urban spaces that can be effective
in identifying environmental vulnerabilities and risks and, consequently, framing resilience
plans, which can help urban planners to improve cities’ livability and to establish strategies
to boost the experience of tourist spots, for example. Future developments should focus on
comprising the acoustics domain in outdoor environmental monitoring by measuring the
sound pressure level and evaluating the sound spectrum.
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