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We show that elevated levels of Ret receptor are found in different sub-types of

human breast cancers and that high Ret correlates with decreased metastasis-

free survival. The role of Ret in ERþ breast cancer models was explored

combining in vitro and in vivo approaches. Our analyses revealed that ligand-

induced Ret activation: (i) stimulates migration of breast cancer cells; (ii) rescues

cells from anti-proliferative effects of endocrine treatment and (iii) stimulates

expression of cytokines in the presence of endocrine agents. Indeed, we

uncovered a positive feed-forward loop between the inflammatory cytokine IL6

and Ret that links them at the expression and the functional level. In vivo

inhibition of Ret in a metastatic breast cancer model inhibits tumour outgrowth

and metastatic potential. Ret inhibition blocks the feed-forward loop by down-

regulating Ret levels, as well as decreasing activity of Fak, an integrator of IL6-Ret

signalling. Our results suggest that Ret kinase should be considered as a novel

therapeutic target in subsets of breast cancer.
INTRODUCTION

Rearranged during transfection (Ret) is a member of the receptor
tyrosine kinase (RTK) family that is activated by the glial‐derived
neurotrophic factor (GDNF) family of peptides. These ligands
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binds glycosylphosphatidlyinositol (GPI)‐anchored or soluble
versions of the GDNF receptor a (GFRa) family that act as Ret co‐
receptors. Ret receptor dimers, together with two molecules of
the ligand‐bound co‐receptors form a complex leading to kinase
activation and stimulation of intracellular signalling pathways
influencing proliferation, differentiation andmigration (de Groot
et al, 2006; Morandi et al, 2011).

Germ line gain‐of‐function RETmutations are associated with
familial neuroendocrine tumours andmedullary thyroid cancers;
RET mutations are also found in sporadic medullary and
papillary thyroid carcinoma (Ichihara et al, 2004; Morandi
et al, 2011; Sariola and Saarma, 2003). More recently, oncogenic
RET fusions were identified in lung adenocarcinomas (Kohno
et al, 2012; Suehara et al, 2012; Takeuchi et al, 2012).
Considering breast cancer, RET copy number gains have been
documented (Nikolsky et al, 2008) and RET mutations and
rearrangements have been reported at low frequencies (Kan
et al, 2010; Unger et al, 2010); however, these have not been
examined for transforming ability.

We and others have reported that some breast tumours show
abnormally high wild type Ret RNA and protein and that a sub‐
s is an open access article under
se, distribution and reproduction
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set of these tumours are estrogen receptor‐a positive (ERþ)
(Boulay et al, 2008; Plaza‐Menacho et al, 2010). Here we show
that elevated levels of the Ret receptor are found not only in ERþ
tumours, but in other sub‐types of human breast cancer and that
high Ret levels correlate with decreased metastasis‐free survival.
An important goal of the studies presented here was to explore
the role of Ret in ERþ breast cancer models, combining in vitro
and in vivo approaches. RET is an ER target gene (Boulay
et al, 2008; Frasor et al, 2004; Tozlu et al, 2006) and we have
previously shown that Ret activation enhances estrogen‐
stimulated proliferation (Boulay et al, 2008). We show here
that proliferation of the ERþ MCF7 model is inhibited by
endocrine agents and GDNF addition rescued the proliferative
block. Moreover, Ret stimulation increased pro‐inflammatory
cytokine levels in the presence of endocrine treatment. Indeed,
we uncovered a positive‐feed forward loop that links IL6 and Ret
at the expression level and has functional implications. Both
GDNF and IL6 stimulate migration of breast cancer cell lines and
in vivo inhibition of Ret significantly decreases tumour
outgrowth and the metastatic potential of an ERþ model. Our
results suggest that Ret receptor has an important role in tumour
growth and metastasis and should be considered as a novel
therapeutic target in subsets of breast cancer.
RESULTS

Elevated Ret levels correlate with poor prognosis in breast
cancer patients
Ret receptor levels have been shown to be elevated in breast
tumours (Boulay et al, 2008; Esseghir et al, 2007; Plaza‐Menacho
et al, 2010). In order to assess whether Ret expression correlates
with clinical parameters, immunohistochemistry (IHC) for Ret
was carried out on tumour tissue arrays (TMA) from female
breast cancer patients who underwent surgery at the Medical
University of Vienna between 1988 and 1994. Examples of
negative, moderate and strong Ret staining are shown in Fig 1A.
Controls for Ret antibody specificity are shown in Supporting
Information Fig S1A. Correlations of the Ret‐score with clinical
and histopathological parameters and with different molecular
subtypes are shown in Supporting Information Tables S1 and S2.
High Ret levels (score >60), which were detected in 66 of the 89
cases, significantly correlate with large tumour size (>2 cm;
pT2‐pT4) and high tumour stage. Kaplan‐Meier analyses and
Cox proportional hazards analyses revealed that high Ret levels
were significantly associated with decreased metastasis‐free
survival and overall survival (Fig 1B, C).

Ret activation increases migration and proliferation of ERþ
breast cancer models
To study the role of Ret in ERþ breast cancer, we focused on four
models: human ERþ T47D cells, MCF7 cells and their aromatase‐
expressing derivative (MCF7/Aro) (Boulay et al, 2005), which
respond to the estradiol (E2) precursor androstenedione (D4A);
and the mouse J110 cell line. The latter was established from an
MMTV‐Amplified in Breast Cancer 1 (AIB1) transgenic mouse
mammary tumour (Torres‐Arzayus et al, 2006; Torres‐Arzayus
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
et al, 2010); AIB1 is an ER co‐activator (Li et al, 1997). All four
cell lines are Retþ (Supporting Information Fig S2A) and
form tumours in mice; however, only J110‐induced tumours
(Supporting Information Fig S2B), are metastatic (Torres‐
Arzayus et al, 2010). Thus, with these models we can study
Ret’s role in proliferation, migration and metastasis.

Ret activation stimulates migration of different cancer types
(Ito et al, 2005; Morandi et al, 2011). We examined the breast
cancer cell lines for Ret‐mediated motility in response to GDNF,
which activates Ret, as shown by an increase in its phospho‐
tyrosine content (pY) [Fig 2A and (Boulay et al, 2008)].
Transwell assays carried out with MCF7 and J110 cells showed
that GDNF treatment significantly stimulated migration (Fig 2B).
T47D cells were tested in a wound‐healing assay following the
addition of GDNF plus GFRa1 (GDNF/GFRa1), since these cells
do not express the Ret co‐receptor (Boulay et al, 2008). Ligand
treatment significantly stimulated migration into the wounded
area (Fig 2C). We also tested T47D cells with lower Ret levels,
using two specific siRNAs (siRNA Ret1 and Ret2) (Boulay
et al, 2008), both of which strongly reduce Ret and the cellular
response to GDNF/GFRa1 (Fig 2D). The two Ret knock‐down
(KD) cell lines fail to migrate in response to ligand treatment,
while the GDNF/GFRa1‐treated siLacZ control cells were
significantly better in filling the wound, in comparison to
non‐treated cells (Fig 2E). In summary, Ret activation stimulates
migration of these breast cancer models.

We have previously shown that GDNF stimulates prolifera-
tion of T47D and MCF7 cells and also enhances their E2‐driven
anchorage‐dependent and ‐independent proliferation (Boulay
et al, 2008). Considering this ER‐Ret interaction, we asked if Ret
activation would impact on the anti‐proliferative effects of
endocrine agents that work by different mechanisms. For these
experiments we used the MCF7/Aro cells in order to analyse
effects of the aromatase inhibitor (AI) letrozole, as well as
fulvestrant that promotes ER degradation and the ER antagonist
tamoxifen (Forbes et al, 2008). Both GDNF and D4A significantly
increased proliferation of the cells (Fig 2F). Treatment with
letrozole, fulvestrant or tamoxifen reversed the proliferative
effects of D4A and simultaneous treatment with GDNF
significantly rescuedMCF7/Aro cells from their anti‐proliferative
effects (Fig 2F), demonstrating that Ret activation interferes with
endocrine agent action.

Transcriptome analysis of MCF7/Aro cells
To gain insight into the pathways that are affected by Ret
activation in the absence or presence of letrozole and
fulvestrant, gene expression profiling analyses were carried
out using RNA from MCF7/Aro cells cultured in the conditions
used in Fig 2F. The array data are available at GEO, accession
number GSE41405. The experimental design, the validation of
selected target genes as well as the tables of the data are shown
in Supporting Information Fig S3A, B and Tables S3, S4.

For a global functional analysis of the data, we used Ingenuity
software to examine the top bio functions and canonical
pathways altered by the treatments (Table 1). In D4A‐treated
cultures, with or without GDNF (GDNFD4A or D4A), changes in
genes associatedwith proliferationwere detected. In the absence
EMBO Mol Med (2013) 5, 1335–1350
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Figure 1. Ret analysis in breast cancer.

A. Representative images of negative, moderate and strong Ret immunohistochemical staining in a tissue microarray of human breast cancer are shown.

B,C. Kaplan–Meier analyses of the metastasis–free survival and overall survival. Patients with a high Ret score (High Ret, n ¼ 66) have a significantly shorter

metastasis-free survival and overall survival rate compared to the low Ret score (Low Ret, n ¼ 23). Hazard ratios (HR) plus corresponding 95% confidence

intervals (95%-CI) and p values, as well as the number of patients at each time point (No. at risk) are depicted.
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of estrogens, GDNF treatment changed genes related to cellular
movement and inflammatory‐related genes (Supporting Infor-
mation Table S3). Similarly, in cultures treated with GDNF plus
fulvestrant (GDNFD4AþFul) genes related to cellular movement
and inflammation were uncovered. Interestingly, fulvestrant
treatment alone increased expression of nine inflammatory‐
related genes and GDNF addition further enhanced their
expression (Table 2 and validation of six in Supporting
Information Fig S3B).

Based on our interest in understanding how Ret activation
impacts on cell motility, three of the cytokines, IL6, CXCL11 and
CXCL10, were tested in migration assays. Results from
the transwell assays showed that only IL6, and not CXCL10 or
CXCL11, induced cell motility (Supporting Information Fig S3C).
EMBO Mol Med (2013) 5, 1335–1350 �
IL6 and Ret form a positive feed‐forward loop that stimulates
migration
In the following experiments we tested if fulvestrant treatment
results in IL6 production, using an ELISA assay on conditioned
medium (CM) of MCF7/Aro cells (Fig 3A). In hormone‐deprived
cultures, moderate IL6 levels were detected and exposure to
GDNF caused a significant increase. IL6 is known to be
negatively regulated by estrogens (Kurebayashi et al, 1997);
accordingly, D4A‐treated cells produce very low amounts of IL6
and GDNF and fulvestrant increased IL6, although non‐
significantly. The strongest and most significant increase in
IL6 was seen in response to fulvestrant þ GDNF (Fig 3A). A
similar trend was observed in CM from MCF7‐treated cells
(Supporting Information Fig S2C). In conclusion, ligand
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1337
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Table 1. Functional clustering of genes changed in MCF/Aro cells after 6‐day treatment with the indicated conditions

GDNF GDNFD4A GDNFD4A þ Ful D4A
aInduced top bio-functions: molecular and cellular functions (p-value)

Cellular movement

(2.13E�03–6.63E�03)

Cellular growth and proliferation

(3.33E�04–4.02E�02)

Cellular movement (3.13E�04–3.94E�02) Cellular growth and proliferation

(1.00E�08–7.11E�03)

bInduced top canonical pathway (p-value)

Interferon signalling (1.24E�06) Caveolar-mediated endocytosis

signalling (4.53E�03)

Interferon signalling (2.84E�05) Hepatic fibrosis/hepatic stellate

cell activation (2.56E�07)

The induced top bio functions (a2LogFC � 1.0, p < 0.01) and canonical pathways (b2LogFC � 0.5, p < 0.05) to the corresponding conditions (at the top) are

shown. Ingenuity software was used to perform the analysis.

Table 2. Inflammatory genes increased with Fulvestrant � GDNF in 6‐day treated MCF7/Aro cells

Symbol Gene

2LogFC

Ful Ful þ GDNF

IL6 Interleukin 6 3.03 3.37

IL8 Interleukin 8 1.80 2.31

CXCL11 Chemokine ligand 11 1.28 1.99

CXCL10 Chemokine ligand 10 2.70 3.59

TNFAIP3 Tumour necrosis factor, alpha-induced protein 3 2.95 3.02

IKBZ Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 1.63 1.85

TNFRSF21 Tumour necrosis factor receptor superfamily, member 21 1.08 1.33

CXCR4 Chemokine receptor 4 1.61 2.00

IL1R1 Interleukin 1 receptor, type I 3.54 2.16

TNF Tumour necrosis factor, member 2 – 1.00

Inflammatory-related up-regulated genes (2LogFC � 1.0-fold, p < 0.01) in themicroarray assay. The genes validated by qRT-PCR are underlined. 2LogFC: log 2 of

fold change.
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mediated Ret activation stimulates IL6 expression, particularly in
cells treated with fulvestrant.

RET is an ER target gene (Boulay et al, 2008; Tozlu
et al, 2006) and the four ERþ cell lines we are studying
show higher Ret levels in response to steroid hormones
[(Boulay et al, 2008) and Supporting information Fig S2D].
Thus, we were surprised to see that in response to long‐
term D4A þ fulvestrant or E2 þ fulvestrant there were higher
Ret protein levels in MCF7/Aro and J110 cells, respectively,
in comparison to controls (Fig 3B). Since fulvestrant
stimulates IL6 expression, we tested the level of Ret in
Figure 2. GDNF induces cell migration and proliferation of breast cancer cel

A. MCF7, MCF7/Aro and J110 tumour cells were stimulated with GDNF (10 ng/ml)

western blots (WB) or by Ret immonoprecipitations (IP) followed by WB.

B. Chemotactic response of MCF7 and J110 cells to GDNF was measured in transw

with GDNF (10 ng/ml). Migrated cells were fixed and stained. Representative pi

counting 4 fields of duplicate wells in 4 independent experiments. Error bars

C. Serum-starved confluent T47D cultures were scratched and either left in contr

into the wound was monitored for 24 h in 6 regions of the scratch. Recovered

mean � s.e.m. ���p < 0.001 by t-test.

D. Lysates from T47D parental cells, Ret KD (siRet1 and siRet2) and control cells (si

westerns with the indicated antibodies.

E. Ret KD and control T47D cells were assessed in the wound closure assay as d

F. Steroid deprived MCF7/Aro cultures were treated 6 days with GDNF (10 ng/m

letrozole (100 nM), fulvestrant (100 nM) or tamoxifen (100 nM). Proliferation w

values � s.d. �p < 0.05, �� p < 0.01, ��� p < 0.001 by ANOVA using Tukey’s te

EMBO Mol Med (2013) 5, 1335–1350 �
D4A þ fulvestrant exposed cultures treated simultaneously
with an IL6‐ blocking – or a control‐ antibody to see if IL6
might contribute to increased Ret. Indeed, the addition of the
IL6 blocking antibody, but not the control IgG, caused a
decrease in Ret, back to control levels (Fig 3C). MCF7 cells
treated directly with IL6 also show higher levels of Ret RNA
and protein (Fig 3D). Taken together, the results suggest
that there is a feed‐forward Ret‐IL6 loop at the expression
level: Ret stimulation increases IL6 levels and IL6 stimulates
Ret expression. Next we examined if IL6 and Ret are
functionally linked at the migration level.
ls.

for 15 min, lysates were prepared and pY and total Ret levels were analysed by

ell assays. Lower wells contained 0.5% FBS alone (Control) or supplemented

ctures are shown (100�). The mean migrated cell number was determined by

represent s.e.m. �p < 0.05 by t-test.

ol medium or stimulated with GDNF/GFRa1 (10 ng/ml/100 ng/ml). Migration

area was quantified using ImageJ. Results of 3 experiments are shown by the

LacZ) stimulated (þ) or not (�) for 15 min with GDNF/GFRa1 were analysed by

escribed in C. ���p < 0.001 by t-test.

l) or/and the estrogen precursor (D4A, 1 nM) in the absence or presence of

as assessed by counting viable cells. Results are shown as means of triplicate

st.

2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1339



A

Tubulin-

- IL6

0
1
2
3
4
5
6
7

Control IL6

A
bs

ol
ut

e
va

lu
es

Ret/Actin

*

Ret-

D

*

*

B

Ret-

Actin-

J110MCF7/Aro

Ret-

Tubulin-
-150

-150

KDaKDa

)lm/gp(6LIMC

DMSO
Deprivation 2.09 ± 2.11
GDNF 7.95 ± 3.62

DMSO
Δ4A 0.42 ± 0.33
Δ4A+GDNF 1.80 ± 1.02

Fulvestrant
Δ4A 5.28 ± 4.39
Δ4A+GDNF 13.00 ± 3.27

MCF7

MCF7/Aro

-50
-50

KDa

-50

-150

pY1062Ret-
-150

C

Tubulin-

MCF7/Aro

IgG Anti-IL6

-150

KDa

-50

Ret-

pY1062Ret-
-150

Figure 3. Fulvestrant, IL6 and Ret interactions.

A. IL6 levels (pg/ml) were measured by ELISA in 4-day conditioned medium (CM) of MCF7/Aro cultures treated as indicated. Results represent the mean � s.d. of

triplicate determinations from 3 independent experiments. �p < 0.05 by t-test.

B. Steroid-deprived MCF7/Aro or J110 cells were treated 6 or 3 days, with 10 nM D4A or E2, respectively, in the presence or absence of 100 nM fulvestrant.

Lysates were analysed by WB with the indicated antibodies.

C. Steroid-deprived MCF7/Aro cells were treated for 6 days with EtOH (�) or 10 nM D4A � 100 nM Fulvestrant, in the presence of IgG control or IL6-blocking

(Anti-IL6) antibodies at 1 mg/ml. Lysates were analysed by WB with the indicated antibodies.

D. Serum-deprived MCF7 cells were treated 24 h with IL6 (100 ng/ml). Total RNA was extracted and qRT-PCR was performed with Ret and actin specific primers.

Cell lysates were analysed by WB with the indicated antibodies. �p < 0.05 by t-test.

Research Article www.embomolmed.org
Ret inhibition reduces breast cancer metastasis

1340
As GDNF, IL6 treatment significantly increased migration of
MCF7 cells (Fig 4A), J110 cells (Supporting Information Fig S2E)
and T47D cells, as previously shown (Badache and
Hynes, 2001). We used two Ret selective kinase inhibitors,
NVP‐BBT594 (Boulay et al, 2008) and NVP‐AST487 (Akeno‐
Stuart et al, 2007) that block GDNF‐induced Ret activation
(Fig 4B and Supporting Information Fig S4A) to examine motility
in response to IL6 and GDNF. The Ret inhibitors reduced GDNF‐
induced migration (Fig 4A and Supporting Information Fig S4B),
but not EGF‐induced migration (Fig 4C). Interestingly, the Ret
inhibitors also blocked IL6‐stimulated migration (Fig 4A and
Supporting Information Fig S4B). Moreover, the effect of
combined IL6 þ GDNF on migration was the same as individual
treatments and, in response to NVP‐BBT594, returned to basal
levels (Fig 4A). These results suggest that IL6 requires Ret for
stimulating motility, a conclusion that is strengthened by
showing that Ret KD MCF7 cells [shRet1, characterized in
(Boulay et al, 2008)] are unable to migrate in response to IL6;
while control LacZ1 cell do migrate (Fig 4D). In the final
experiment, we asked if the IL6 that we have shown (Fig 3A) is
present in the CM of fulvestrant þ GDNF treated cells,
stimulates migration. To test this, we used the IL6 blocking
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
antibody that inhibits IL6‐induced migration (Fig 4E) and found
that the migration of fulvestrant þ GDNF treated cells is also
significantly blocked (Fig 4E). Taken together these results show
that IL6 and GDNF function together through the Ret receptor to
stimulate migration.

Why do IL6 and GDNF both require Ret for migration? One
simple explanation would be that IL6 activates Ret. At least in
cells treated for short‐term with ligands, this does not appear to
be the case. Ret receptor phosphorylation only increased in
response to GDNF and not to IL6 (Fig 4B and Supporting
information Fig S4A). On the other hand, IL6, but not GDNF,
increased gp130 phosphorylation (Supporting Information Fig
S4C). In summary, the results suggest that IL6 and GDNF
activate their respective receptors, but cooperate to stimulate
migration, a finding that will be further analysed later in the
paper.

In vivo Ret inhibition or knock‐down reduces tumour growth
We examined the in vivo role of Ret in tumour growth in the
T47D and J110 models. For T47D, two independent pools of
shLacZ control T47D cells (shLacZ1 and shLacZ4) and shRet
T47D cells (shRet1.5 and shRet8.1) [described in (Boulay
EMBO Mol Med (2013) 5, 1335–1350
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independent experiments; error bars represent s.e.m. �p < 0.05 by t-test.

D. Serum-deprived MCF7 KD (shRet1) or control (shLacZ1) cells were seeded into the upper chamber of a transwell. Lower wells contained 0.5% FBS alone

(control) or supplemented with IL6 (100 ng/ml). Migrated cells were quantified as in panel A. Data shown are the mean for three independent experiments;

error bars represent s.e.m. �p < 0.05 by t-test.

E. Steroid-deprived, serum-deprived MCF7 cells were seeded into the upper chamber of a transwell. Lower wells contained 0.5% FBS medium plus E2

(10 nM) þ fulvestrant (100 nM) (E2 þ Ful), GDNF (10 ng/ml) or IL6 (100 ng/ml). An IL6 blocking antibody or IgG control antibody were added at 1 mg/ml.

After 24 hours, migrated cells were quantified as in panel A. Data shown are themean of three independent experiments; error bars represent s.e.m. �p < 0.05,
��p < 0.01 by t-test.
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et al, 2008)] were injected into mammary fat pads of E2 pellet‐
bearing nude mice and tumour growth was monitored over
50 days. Tumours formed by the two shRet KD cell lines grew
significantly slower than the two control shLacZ cell lines
(Fig 5A), showing that Ret is required for robust in vivo T47D
tumour growth.

Upon injection of J110 cells into fat pads of FVB females,
mammary tumours arise after 2–3weeks. In this model we tested
the effect of the Ret kinase inhibitor NVP‐AST487 on tumour
outgrowth. Once tumours averaged 100 mm3, mice were
randomized to receive daily treatment with vehicle control, or
the inhibitor, for 12 days. In the NVP‐AST487 treated mice there
was a significant reduction in outgrowth kinetics, resulting in
EMBO Mol Med (2013) 5, 1335–1350 �
reduced tumour weight at the end of the experiment (Fig 5B).
Taken together, these results show that Ret activity contributes
significantly to tumour outgrowth potential in both the T47D and
J110 breast cancer models, strengthening our hypothesis that
Ret kinase could be a novel target in breast cancer.

Effects of Ret inhibition alone or combined with endocrine
agents on J110 tumour growth and metastases
Next, we tested the sensitivity of J110 tumours to the endocrine
agents fulvestrant (Fig 5C) and tamoxifen (Supporting Informa-
tion Fig S5), alone or combined with the Ret inhibitor. NVP‐
AST487 treatment blocked Ret activity, as shown by the decreased
pY1062 Ret levels in comparison to control tumour lysates
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1341
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(Fig 5D, upper panel) and had a significant inhibitory effect on
tumour outgrowth (Fig 5C, red line). Similar to the Ret inhibitor,
fulvestrant also significantly blocked J110 outgrowth (Fig 5C, blue
line); as expected IHC on tumour sections revealed lower ERa
levels in the fulvestrant treated group, compared to controls
(Fig 5D, lower panel). J110 tumours, which are known to be
relatively tamoxifen insensitive (Torres‐Arzayus et al, 2006),
initially responded to treatment; however, after 3 weeks tamoxi-
fen‐treated and control tumours were not significantly different in
size (Supporting Information Fig S5A, B).

For the combination studies, after 10 days of fulvestrant or
tamoxifen treatment alone, the mice were divided into two
groups, one that continued on endocrine agents only and one
that received fulvestrant, or tamoxifen, plus NVP‐AST487 for the
remaining treatment time (arrow combo‐ in Fig 5C and
Supporting Information Fig S5C). This schedule was chosen
since we hypothesized that endocrine therapy might expose a
role for Ret, thereby increasing sensitivity to Ret inhibition. This
proved not to be the case, since the addition of NVP‐AST487 to
fulvestrant or to tamoxifen did not result in any additional effects
on tumour outgrowth kinetics, or size, at the end of the
treatment (Fig 5C and Supporting Information Fig S5B, C,
respectively). Finally, lung metastases were examined. For each
of the inhibitor‐treated groups, the number of metastatic foci in
the lungs was counted and the data were normalized and
expressed as the metastatic index, i.e. number of foci/tumour
weight. Inhibition of Ret alone or with fulvestrant significantly
blocked metastatic spread, whereas fulvestrant treatment alone
did not significantly decrease the metastatic index, although
there was a trend (Fig 5E). Tamoxifen had no effect on tumour
dissemination; the metastatic index was the same as the vehicle
control group (Fig 5F). Strikingly, the addition of the Ret
inhibitor to tamoxifen caused a strong reduction in the
metastatic index (Fig 5F). Thus, Ret inhibition significantly
blocks tumour growth of the T47D and J110 models. Moreover,
inhibition Ret significantly lowers metastatic potential of J110
tumours, when alone or combined with endocrine agents.

Signalling analysis on J110‐tumours
Our next experiments were aimed at uncovering pathways that
contribute to Ret’s anti‐tumour and anti‐metastatic activity.
Figure 5. Ret knock‐down (KD) or Ret inhibition reduces in vivo tumour grow

A. Independent T47D Ret KD cell lines (shRet1.5 and shRet8.1) or control cell line

(n ¼ 6–8). Growth was monitored for 48 days and tumour size was calculate

B. Groups of 100 mm3 J110-tumour bearing FVB/N mice were randomized and tre

NVP-AST487 (50 mg/Kg/day); tumour weight at the end of the experiment w

C. Groups of J110-tumour bearing mice were randomized and treated with vehicl

10 days (combo arrow), the fulvestrant-treatment group was randomized to c

tumour volume was determined every 2 days. Points represent mean � s.e.m

D. Upper panel, lysates from J110 tumours harvested 8 h after the last treatmen

indicated antibodies. Lower panel, tumours from vehicle- or fulvestrant-treate

Representative pictures of four tumours are shown (400�). Scale bars: 12 mm

E. Quantification of metastatic foci in lungs from animals at experiment termin

analysed. Number of foci was normalized by tumour gram at the experiment-e

tumour gram). �p < 0.05 by Mann–Whitney test.

F. Quantification of metastatic foci in lungs from animals at experiment termin

n ¼ 6–10 mice were analysed. Number of foci was expressed as indicated in

EMBO Mol Med (2013) 5, 1335–1350 �
Tumour sections from: vehicle, fulvestrant, NVP‐AST487 and
fulvestrant þ NVP‐AST487 treatment groups were analysed by
IHC for proliferation and apoptosis, using phospho‐histone 3
(pH3) and cleaved caspase‐3 (CC3), respectively (Supporting
Information Fig S6A). In line with the outgrowth results, tumour
sections from all treatment groups showed a significant decrease
in pH3‐positive cells, in comparison to control tumours, but
none of the treatments caused a significant increase in apoptosis
(Supporting Information Fig S6B). Thus, fulvestrant and NVP‐
AST487 function by blocking proliferation. Moreover, neither
treatment alone or combined had a strong effect on tumour cell
survival.

A reverse phase protein array (RPPA) analyses (van Oostrum
et al, 2009) was also performed on tumours from inhibitor‐
treated mice. A number of antibodies were tested, however,
consistent changes were only observed in the ratio of phospho‐
Fak/Fak and phospho‐Stat3/Stat3 in tumours from the NVP‐
AST487‐treated group (Supporting Materials and Methods and
unpublished observation). These results were confirmed and
expanded on, by carrying out western analyses on multiple
tumour lysates from independent experiments. Ret inhibition
alone or combined with tamoxifen, but not fulvestrant, caused a
significant decrease in the ratio of pY576/577Fak/Fak levels.
Western analyses on representative tumours and the quantifi-
cation of multiple analyses are shown in Fig 6A and Supporting
Information Fig S5D. The striking decrease of pY576/577Fak/
Fak levels in the tamoxifen þ NVP‐AST487 treated tumours
(Supporting Information Fig S5D) could contribute to the strong
block in metastasis observed with this treatment (Fig 5F).

IHC for pY705Stat3 showed that there was a significant
decrease in tumours from the NVP‐AST487 treatment group
(Fig 6B). Western analysis on tumour lysates showed that NVP‐
AST487 treatment alone, or combined with fulvestrant or
tamoxifen caused a significant decrease in the pY705‐Stat3/
Stat3 ratio compared to controls; neither of the endocrine agents
alone affected pY705Stat3 levels (Fig 6A and Supporting
Information Fig S5D). We also examined Erk and Akt activation
status. pT202/Y204Erk levels are high in J110‐tumours and
neither Ret inhibition, nor the endocrine agents affected Erk
activity (Fig 5D and unpublished observation). pS473Akt levels
are also high in the tumours and only Ret inhibition caused a
th and metastasis in breast cancer models.

s (shLacZ1 and shLacZ4) were injected in E2-pellet-bearing BALB/c nude mice

d. �p < 0.05 by t-test.

ated 12 days daily with vehicle (N-methylpyrrolidone/PEG300) or Ret inhibitor

as determined (n ¼ 8–9). Bars represent mean � s.e.m. �p < 0.02 by t-test.

e, Ret inhibitor NVP-AST487 (50 mg/kg/day) or fulvestrant (3 mg/week). After

ontinue with fulvestrant or combination treatment (Fulvestrant þ AST487);

. A representative experiment of 2 is shown. �p < 0.05 by t-test.

t with vehicle or inhibitor (AST487) (panel B), were analysed by WB with the

d mice (panel C) were harvested and paraffin sections were stained for ERa�
.

ation (panel C). Two independent experiments with n ¼ 9–15 mice were

nd and represented as metastatic index (media � s.d of number of lung foci/

ation (Supporting Information Fig S5C). Two independent experiments with

E. �p < 0.05 by Mann–Whitney test.
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Figure 6. Protein analyses on J110 tumours.

A. Tumour lysates from 3 mice per treatment group (experiment shown in Fig 5C) were analysed by WB using the indicated antibodies. On the right,

quantification of additional western analyses with the indicated phospho-protein/protein was performed using imageJ in 7–20 independent tumours for each

group, from 2–3 independent experiments. Data shown are the mean � s.e.m. �p < 0.05 or ��p < 0.01 by Mann–Whitney test.

B. Tumours from vehicle- or NVP-AST487-treated mice were harvested at the end of the experiment (Fig 5C). Paraffin blocks were prepared and sections were

stained for pY705Stat3 (pStat3, 400�). The proportion of the tumour area showing pStat3 immunoreactivity was quantified using ImageJ. For each group

n ¼ 10 tumours from two independent experiments were examined and five fields per tumour were analysed. ��p < 0.01 by Mann–Whitney test.

Representative pictures are shown. Scale bars: 12 mm.

C. J110 cells were stimulated or not with GDNF (10 ng/ml) and IPs performed with a Ret specific antibody followed byWB analyses using Ret and Fak antibodies.

WB on whole cell extracts (WCE) with the indicated antibodies is also shown.
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significant decrease in Akt activity (Figs 5D, 6A and Supporting
Information Fig S5D). Taken together, the results show that Ret
inhibition alone significantly blocked the activation status of
Fak, Stat3 and Akt. NVP‐AST487 combined with both
fulvestrant and tamoxifen caused a decrease in pStat3 levels;
while lower pFak levels were only seen in the NVP‐AST487 þ
tamoxifen treated group.
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Fak is an integrator of IL6 and Ret signalling and is required for
migration
The decrease in Fak and Stat3 activity in J110 tumours treatedwith
theRet inhibitorwas studied inmore detail in the cell lines. Fak has
been shown to signal downstream of Ret, and Fak/Ret complexes
have previously been identified in MCF7 cells (Plaza‐Menacho
et al, 2011). We examined Ret IPs from J110 cell lysates and
EMBO Mol Med (2013) 5, 1335–1350
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detected a constitutive Ret‐Fak complex, which was present in
lysates from control and GDNF‐treated cultures (Fig 6C). Next, Fak
activation in response to GDNF and IL6 was examined. Both
ligands induced an increase in pY576/577 Fak levels in MCF7 and
J110 cells (Fig 7A). Treatment with NVP‐AST487 blocked not only
GDNF’s ability to stimulate Fak, but also the effect of IL6 (Fig 7A,
left panel). Stat3 was also examined and pY705Stat3 levels were
found to increase in response to IL6 (Fig 7B, C), but not to GDNF
(unpublished observation). Notably, treatment with both Ret
kinase inhibitors (NVP‐AST487 or NVP‐BBT594) significantly
lowered IL6‐induced Stat3 activation (Fig 7B, C). Moreover, in
shRet1 KD MCF7 cells, IL6‐induced pY705Stat3 levels were not
significantly induced in comparison to the induction observed in
shLacZ control cells (Fig 7D). Thus, IL6 not only requires Ret for
inducing motility (Fig 4A), but also to activate Fak and Stat3.

IL6 signals through Jak kinases to activate Stats. Predictably,
treatment with the Jak1/2 inhibitor INCB18424 (ruxolitinib)
prevented IL6‐induced Stat3 phosphorylation (Fig 7B, C).
Moreover, the Jak1/2 inhibitor blocked GDNF and IL6 motility
in transwell assays (Fig 7E). Finally, we tested the Fak inhibitors
NVP‐TAE836 and PF573228. NVP‐TAE836 prevented IL6 and
GDNF from stimulating Fak phosphorylation (Fig 7A), and Fak
inhibition blocked migration (Fig 7F). Unexpectedly, IL6‐
induced Stat3 activation was also blocked by both Fak inhibitors
(Fig 7B–C). Thus, IL6 depends on Fak as well as Ret to activate
Stat3, results that could underpin IL6’s requirement for Ret to
stimulate migration.

In summary, our results show that IL6 and Ret are linked at
the expression level and the functional level (Fig 8A). In the
tumour setting, we hypothesize that IL6 contributes to increased
Ret expression, and Ret in turn helps maintain IL6 expression,
thereby forming a positive feed‐forward loop. To test this
hypothesis we measured IL6 and Ret levels in J110 tumours. In
cultured J110 cells, treatment with tamoxifen and fulvestrant
significantly stimulates IL6 RNA expression (Supporting Infor-
mation Fig S3D). However, in endocrine treated J110 tumours,
there was no consistent increase in IL6 RNA, although there was
a trend in the fulvestrant group (Fig 8B). The most striking
effects were seen on Ret RNA levels, which were lower in
tumours treated with NVP‐AST487 alone or combined with the
endocrine agents (Fig. 8B). Thus, we speculate that in vivo, Ret
inhibition blocks the feed‐forward loop by lowering Ret levels
and this contributes to decreased proliferation and decreased
metastatic potential by blocking Fak activity (Fig 8A).
DISCUSSION

Targeting RTKs with antibodies or small molecular inhibitors is a
clinically validated approach for cancer therapy. In breast
cancer, the ErbB2 specific antibody trastuzumab is now
routinely given in combination with chemotherapy to ErbB2/
HER2‐positive breast cancer patients and has had a significant
impact on patient mortality (Gianni et al, 2011). However, only a
sub‐set of patients are eligible for this treatment, making it
essential to uncover additional RTKs that could be useful in
breast cancer therapy; Ret might be one such RTK.
EMBO Mol Med (2013) 5, 1335–1350 �
Ret was discovered as an outlier kinase in breast cancer, with
unexpectedly high expression levels detected in many breast
tumours (Boulay et al, 2008; Esseghir et al, 2007; Kothari
et al, 2013; Plaza‐Menacho et al, 2010). Unlike thyroid or lung
tumours that carry oncogenic Ret, as fusion proteins or with
activating mutations, Ret appears to be wild type in breast
cancer. We show here that Ret levels significantly correlate with
large tumour size and high tumour stage. Importantly the
Kaplan‐Meier analyses revealed that high Ret levels were
significantly associated with decreased metastasis‐free and
overall survival. Considering the in vivo models, we show that
Ret inhibition significantly decreases T47D and J110 primary
tumour outgrowth and the metastatic potential of J110 tumours.
Our results suggest that Ret receptor has an important role in
tumour growth and metastasis.

The mechanisms that contribute to elevated Ret levels in
breast cancer are not known. RET copy number gains have been
described (Nikolsky et al, 2008) andmight play a role. Moreover,
RET is an ER target gene (Boulay et al, 2008; Frasor et al, 2004;
Tozlu et al, 2006) and an analysis of >200 breast tumours
showed a significant association between Ret RNA levels and ER
positivity (Esseghir et al, 2007).We present here in vivo evidence
of Ret’s ER regulation, since Ret levels are decreased in
tamoxifen‐treated J110 tumours. However, the control of Ret
expression appears complex since fulvestrant treatment did not
result in a decrease. Indeed, we discovered that Ret was actually
increased in tumour cells cultured in fulvestrant. Co‐treatment of
these cells with an IL6 blocking antibody decreased Ret levels,
showing that the IL6 produced in response to fulvestrant was
responsible for the effect. Thus, we have uncovered a novel
mechanism whereby IL6 controls Ret expression. We can only
speculate on the mechanism, but find it interesting to consider a
role for Fak. As shown here, and elsewhere (Plaza‐Menacho
et al, 2011), Ret forms complexes with Fak and in some cancer
models it has been shown that in Fak’s absence Ret is degraded
(Sandilands et al, 2012). In summary, Ret expression is subjected
to multiple inputs affecting its RNA and protein levels. Factors
like steroid hormones and cytokines, which are present in the
tumour environment, are likely to contribute to Ret expression,
which might help explain why our TMA analysis showed that
elevated Ret levels were found in different molecular sub‐types
of breast tumours (Supporting Information Fig S1B, C).

Considering Ret and its migratory function in developmental
processes (Schuchardt et al, 1994) and in cancer (Ito et al, 2005;
Morandi et al, 2011), a major goal of our work was to study the
role of Ret in a metastatic breast cancer model. We chose J110
cells since they are Retþ/ERþ and the primary mammary
tumours resulting from their injection into fat pads spontane-
ously metastasize to lungs and other organs (Torres‐Arzayus
et al, 2010). Clinical (Morandi et al, 2013) as well as
experimental evidence (Jan et al, 2012; Kang et al, 2010;
Plaza‐Menacho et al, 2010) suggest that Ret activation could
have a negative impact on endocrine therapy response. Our own
experiments showing that GDNF treatment rescued MCF7/Aro
cells from three different endocrine agents also point in this
direction. This led us to hypothesize that in the J110 model, the
combination of a Ret inhibitor with an endocrine agent might
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1345
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have better anti‐tumour activity compared to the individual
treatments. In vivo, we show that J110 tumours are sensitive to
fulvestrant, but not to tamoxifen treatment. However, we did not
see any further effect on tumour outgrowth when combining the
Ret inhibitor with the endocrine treatments. Although disap-
pointing, these experiments revealed the strong effect that Ret
inhibition has on metastatic dissemination, which was particu-
larly striking in the tamoxifen þ NVP‐AST487‐treated tumours.
Tamoxifen alone had no effect on tumour dissemination, but
adding the Ret inhibitor caused a strong reduction in the
metastatic index. Thus, for J110 tumour gowth, tamoxifen‐
insensitivity is dominant even in the presence of a Ret inhibitor;
but Ret activity is absolutely required for J110 tumour cell
dissemination to the lungs.

Our discovery of a positive feed‐forward loop between the
inflammatory cytokine IL6 and Ret that links them at the
expression, as well as the functional level is novel. Functionally,
we show that migration is a biological read‐out of the Ret‐IL6
interaction. The major intracellular mediator of migration and
metastasis appears to be Fak, which links the IL6 and Ret
pathways and is essential for their migratory effects. While we
did not find a direct interaction of Ret and the IL6 co‐receptor
gp130 in our analyses, it is possible that Ret‐complexed Fak is
primed to respond to gp130 activation. Indeed, the initial step in
Fak activation is release of the intra‐molecular interaction
between the FERM domain and the kinase domain (Frame
et al, 2010). Considering that Ret binds directly to the FERM
domain (Plaza‐Menacho et al, 2011), its binding might release
the negative interaction. Since we show that Jak kinase is also
required for migration downstream of both receptors, a transient
complex of the IL6 and Ret receptors and their associated kinases
might form in response to ligand treatment (Fig 8C Model).
Importantly, we show that in vivo inhibition of Ret, either by
lowering its expression level or activity, significantly blocked
tumour outgrowth potential of both ERþ models. In J110
tumours, Ret inhibition lowered Ret RNA and protein expression
as well as pFak and pStat3 levels and this was associated with a
strong decrease in metastatic spread. The pathway that we have
uncovered might be generally relevant for Ret expressing breast
tumours and could influence growth as well as migration and
tumour cell dissemination.

Taken together, our studies are important since they suggest
that blocking Ret kinase not only decreases tumour growth, but
also impacts on themetastatic potential of the tumour cells. In our
Figure 7. Analysis of pFak, pStat3 and migration in breast tumour cells.

A–C. Cultures of MCF7 or J110 cells were pre-incubated with DMSO or the indica

AST487 (100 nM) and NVP-BBT594 (50 nM), or Jak1/2 INCB18424 (1 mM). C

ml) were analysed by WB using the indicated antibodies.

D. Ret KD MCF7 cells (shRet1) and control cells (shLacZ1) were stimulated 15 m

antibodies. On the right, quantification of the western analyses was perfor

mean � s.e.m. �p < 0.05 by t-test.

E. Serum-deprived MCF7 cells were pre-incubated with DMSO or the Jak1/2 in

transwells. Lower wells contained 0.5% FBS alone (Control) or supplemented

and counted. Data shown are the mean of three experiments; error bars re

F. Confluent cultures of T47D cells were pre-incubated with DMSO or the Fak i

(10 ng/ml/100 ng/ml) or left untreated. The recovered area of the wound w

experiments are shown by the mean � s.e.m. ��p < 0.01 by t-test.
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analyses we concentrated on Retþ/ERþ models, showing that
blocking Ret has significant anti‐tumour activity. In the future, it
will be interesting to test the impact of blocking Ret in other sub‐
types of breast cancer, particularly in ErbB2/HER2 positive and
basal‐likemodels. In summary, the results we present suggest that
the Ret kinase might be an attractive and novel therapeutic target
in selected groups of breast cancer patients.
MATERIALS AND METHODS

Tumour tissue microarray (TMA)
Two TMAs from 108 female breast cancer patients who underwent

surgery at the Medical University of Vienna in 1988–1994 were

analysed retrospectively under protocols approved by the institutional

review board of the Medical University of Vienna (Vinatzer et al, 2005;

Waerner et al, 2006). Each tumour was represented by triplicate core

biopsies on these tissue arrays. Ret‐specific IHC was performed as

described in the Supporting Information. Approximately 200 tumour

cells per core biopsy were evaluated, and the fraction of Ret‐positive

tumour cells as well as the staining intensity (0, negative; 1, weak or

moderate; 2, strong) were assessed. A Ret‐score was calculated by

multiplying the number of stained tumour cells (in %) with the staining

intensity. A Ret‐score below 60 was considered as low Ret, above 60 as

high Ret. For technical reasons, the Ret IHC score was not evaluable for

19 patients. Accordingly, all further analyses were based on 89 cases of

which 23 were Ret low and 66 were Ret high. Clinical and

histopathological characteristics of the study population are shown

in Supporting Information Table S1. Hazard ratios (HR) plus

corresponding 95% confidence intervals (95%‐CI) and p values were

calculated by Cox proportional hazards regression analyses. For these

analyses, the groups compared were coded as follows: Low Ret ¼ 0,

High Ret ¼ 1; Low Ret/ERþ ¼ 0; Low Ret/ER� ¼ 1, High Ret/

ERþ ¼ 2, High Ret/ER� ¼ 3; Luminal A ¼ 0; Triple neg ¼ 1, Luminal

B ¼ 2, HER2 type ¼ 3. The number of patients that are still event‐free

and not censored at each time point (No. at risk) are depicted.

Microarray
Steroid deprived MCF7/Aro cultures were treated 6 days with GDNF

(10 ng/ml) and/or the estrogen precursor D4A (1 nM) in the absence or

presence of letrozole (100 nM) or fulvestrant (100 nM) (as in Fig 2F). RNA

from technical triplicates was obtained using the RNeasy Mini Kit

(Qiagen) and hybridized to Affymetrix Human Gene 1.0 Array (Affymetrix)

according to the standard Affymetrix protocols. Themicroarray data have
ted inhibitors for: Fak NVP-TAE836 (400 nM) or PF573228 (1 mM); Ret NVP-

ell lysates from cultures treated 15 min with IL6 (100 ng/ml) or GDNF (10 ng/

in with IL6 (100 ng/ml). Cell lysates were analysed by WB using the indicated

med using imageJ in three independent experiments. Data shown are the

hibitor INCB18424 (1 mM) then cells were seeded into the upper chamber of

with GDNF (10 ng/ml) or IL6 (100 ng/ml). Migrated cells were fixed, stained

present s.e.m. �p < 0.05 by t-test.

nhibitor NVP-TAE836 (500 nM), then scratched and exposed to GDNF/GFRa1

as quantified using ImageJ over a 20 h time-course. The results from three

2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1347
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Figure 8. Model of the IL6‐Ret interaction.

A. Retþ/ERþ tumours treatedwith endocrine therapymight simultaneously be exposed to factors such as IL6 that promotemigration. When IL6 levels are high, e.

g. in fulvestrant conditions (1), Ret expression increases (2) and Ret activation also stimulates IL6 production (3), setting up a positive feed-forward loop. In Ret-

inhibitor treated tumours (4) the loop is broken since Ret levels decrease.

B. Total RNAwas extracted from J110 tumours treated as indicated (n ¼ 8–12, upper panel and n ¼ 4–6, lower panel) from 2 independent experiments. qRT-PCR

was performed using specific primers for IL6 and Ret mRNA. Expression levels were normalized to cytokeratin 18 (CK18). Columns represent means of the

values � s.e.m. �p < 0.05, ��p < 0.01 by Mann–Whitney test.

C. Fak is an intracellular mediator of the IL6-Ret interaction; Fak activity is essential for both IL6 and Ret to stimulate migration. A direct interaction of Ret and

gp130 was not observed. However, the Ret-complexed Fak might be primed to respond and a transient complex of the receptors and their associated kinases

might form in response to IL6 (dotted line) and signal to Stat3. (*) pY.
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been submitted to the Gene Expression Omnibus (GEO) http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?token¼tfefhkmyummagli&acc¼ GSE41405)

and assigned the identifier GSE41405. Further details on the data analysis

are found in Supporting Information.

Migration assays
Cell motility was tested in 8 mm pore polycarbonate membrane

transwell chambers (BD Bisoscience). Membranes were coated on both

sides with 25 mg/ml rat tail collagen I (Roche). Cells were serum‐

deprived 2 days or, when examining effects of E2 and fulvestrant, cells

were steroid‐deprived for 4 days, followed by serum‐deprivation. For

plating in transwells, cells were re‐suspended in 0.5% FBS‐containing
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
medium and 1 � 105 cells/250 ml were added to the top chamber.

Medium containing 0.5% FBS alone or with the indicated growth

factors or antibodies was added to the bottom chamber (500 ml), and

cells were allowed to migrate for 24 h. To test inhibitors, cultures were

pre‐incubated 90 min with the inhibitor or with DMSO then plated

into transwells and assays were performed in the presence of the

inhibitor in both wells. For quantification, non‐migrated cells were

scraped from the top membrane, and migrated cells in the lower

chamber were fixed in fresh 4% PFA, stained in 0.1% crystal violet, and

pictures were taken (100� Axiovert200). Migrated cells were counted

in four different fields in duplicate wells, in at least three independent

experiments. The results were expressed showing the mean � s.e.m.
EMBO Mol Med (2013) 5, 1335–1350
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The paper explained

PROBLEM:

Breast cancer is themost commonly diagnosed tumour in women

and is a leading cause of cancer-associate deaths worldwide. The

standard treatment for breast cancer patients whose tumours are

estrogen receptor positive (ERþ) is surgery followed by endocrine

treatment. Most patients respond to endocrine therapy, however,

many of them become resistant and relapse with metastatic

disease in lungs, bones and other sites. Thus, further work using

ERþ metastatic breast cancer models is warranted in order to

uncover factors that might influence the course of disease.

RESULTS:

In this study we show that elevated levels of the receptor tyrosine

kinase Ret are detected in a significant percentage of human

breast tumours stained with a Ret specific antibody. The high Ret

group had a decreased 15-year metastasis-free survival com-

pared to the low Ret group. We show that Ret activation in

cultured cells rescues ERþ breast cancer cells from the anti-

proliferative effects of endocrine therapy. Transcriptome analyses

revealed that endocrine agents increased expression of IL6 and

other inflammatory cytokines and we show that IL6 and Ret form

a positive feed-forward loop that promotes migration. The in vivo

effects of Ret inhibition were examined using two breast tumour

models. Decreasing Ret levels or blocking its activity significantly

lowered tumour outgrowth. Moreover, treatment of tumour-

bearing mice with a Ret kinase inhibitor significantly blocked

tumour dissemination and lowered the number of lung

metastases. Ret inhibition also decreased Ret expression levels

and lowered the activity of the Fak signalling pathway, all of

which could contribute to blocking metastatic spread.

IMPACT:

This study shows that Ret levels are elevated in primary human

breast tumours of different molecular subtypes and that high Ret

expression is associated with decreased metastasis-free and

overall survival. We uncovered a novel Ret-IL6 feed-forward loop

in ERþ breast cancer models, which might be clinically relevant

since, as we document here, the endocrine agent fulvestrant

causes elevated expression of IL6 and other inflammatory

cytokines. We show that the IL6-Ret feed-forward loop is blocked

when Ret is inhibited and, in a metastatic breast cancer model,

this correlates with decreased dissemination from the primary

site. Thus, the results we present suggest that the Ret kinase

might be an attractive and novel alternative therapeutic target

in selected groups of breast cancer patients.

Research Articlewww.embomolmed.org
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For wound healing assays, confluent serum‐deprived T47D cultures

were scratched with a pipette tip and stimulated with GDNF/GFRa1

(10/100 ng/ml). To test the Fak inhibitor, cultures were pretreated

60 min before scratching. Migration into the woundwasmonitored for

24 h in 6 regions of the scratch. Pictures were taken using a Zeiss ‘long‐

run’ Wide field Axiovert 200M microscope at time zero and every

20 minutes thereafter. The recovered area was calculated by ImageJ

software for 3 experiments and results are shown by themean � s.e.m.

In vivo experiments
Mice were housed under hygienic conditions according to the Swiss

guidelines governing animal experimentation, and experiments were

approved by the Swiss veterinary authorities. T47D cell lines were

injected in fat pads of female Balb/c nude mice and J110 mammary

tumour cells were injected in fat pads of FVB/N mice. Details of the

experimental protocols are in the Supporting Information.

Statistical analyses
Data were analysed using the indicated test using a GraphPad Software

and considered significant when p < 0.05. Statistical significance

representation �p < 0.05, ��p < 0.01 and ���p < 0.001.
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