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Abstract: We investigated the mechanical properties of corn starch (CS)/poly(vinyl alcohol) (PVA)/
borax hydrogels reinforced by clay platelets, silica (SiO2) nanospheres, or cellulose nanofibers (CNFs).
The effects of these reinforcing agents on the tensile properties of the hydrogels were quite different;
the fracture stress of SiO2/CS/PVA/borax composite hydrogels increased with SiO2 concentration,
whereas that of clay/CS/PVA/borax composite hydrogels was high at a low clay concentration but
low at high clay concentrations; for CNF/CS/PVA/borax composite hydrogels, although the elastic
modulus was highly enhanced by adding CNF, the fracture stress was very low because of the stress
relaxation during the elongation. This result came from differences in the dispersibility of each filler
and the reinforcing ability. These composite hydrogels were constructed by multi-crosslinking, such
as hydrogen bonding between CS and PVA, CS and PVA crystals, complexation between borate and
PVA (partly CS), and the crosslinking between each filler and polymer. The self-healing ability of
SiO2 and clay composite hydrogels was examined. As a result, the SiO2/CS/PVA/borax composite
hydrogels possessed an excellent self-healing ability, whereas the clay/CS/PVA/borax composite
hydrogels had a poor self-healing ability.

Keywords: clay platelets; silica nanospheres; cellulose nanofiber; composite hydrogel; self-healing;
corn starch; multi-crosslinking

1. Introduction

Recently, interest has been increasing in the use of bio-based polymer materials to
reduce the consumption of fossil fuels. Starch is a bio-based polymer composed of a mixture
of amylose and amylopectin, and it is mainly used as a thickening, gelling agent in the
industrial field. Starch can be crosslinked with chemical crosslinkers, such as glutaralde-
hyde and epichlorohydrin [1,2], or physically by retrogradation (the recrystallization of
starch) [3]. However, the mechanical properties of its hydrogels are usually poor; it is par-
ticularly difficult to produce highly stretchable hydrogels. A blending of starch and flexible
polymers, such as poly(vinyl alcohol) (PVA), is effective for the improvement of mechanical
performance. Recently, Qin et. al. reported that corn starch (CS)/PVA hydrogels using
borax as a crosslinker were highly stretchable, and they used the freezing–thawing method
to improve the mechanical performance [4]. Although the hydrogels exhibited very high
elongation (>2000%), the tensile strength (12.5 kPa) was quite small.

Inorganic nanoparticles or nanofibers have, to date, been used for the mechanical
reinforcement of polymer hydrogels. The incorporation of clay platelets, silica nanospheres,
and nanofibers (such as cellulose nanofibers and chitosan nanofibers) into polymer hydro-
gels has been found to be effective in enhancing mechanical strength [5–8]. Clay platelets act
as a multifunctional crosslinker that is capable of absorbing a lot of polymer chains on one
clay platelet so that tough composite hydrogels can be produced [9–12]. Recently, we found
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that PVA/borax composite hydrogels using clay platelets or silica nanospheres as a filler
are highly stretchable and robust [13]. Additionally, we reported that CNF/PVA/borax gels
also had high extensibility and mechanical robustness [14,15]. However, a large amount of
PVA (20 wt% or 30 wt%) was necessary for the preparation of these composite hydrogels.
In this study, to lessen the amount of PVA derived from petrochemicals, we produced
CS/PVA/borax composite hydrogels reinforced by clay platelets, SiO2 nanospheres, or
CNFs. The influence of each filler on the mechanical properties is discussed from a struc-
tural point of view.

2. Results and Discussion
2.1. Mechanical Properties of SiO2/CS/PVA/Borax, Clay/CS/PVA/Borax, and CNF/CS/PVA/Borax
Composite Hydrogels

Figure 1 presents the typical stress–strain curves of (a) SiO2/CS/PVA/borax compos-
ite hydrogels, (b) clay/CS/PVA/borax composite hydrogels, and (c) CNF/ CS/PVA/borax
composite hydrogels. The tensile stress of the SiO2/CS/PVA/borax composite hydro-
gels increased with the increase in SiO2 content, whereas the mechanical performance of
the clay/CS/PVA/borax composite hydrogels became poor at high clay concentrations.
Although the tensile strength of the CNF/CS/PVA/borax composite hydrogels greatly
increased with the increase in CNF content, the stress drastically decreased at larger strains;
i.e., stress relaxation occurred.
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Figure 1. Typical tensile stress–strain curves of SiO2/CS/PVA/borax hydrogels at different
SiO2 concentrations (a), clay/CS/PVA/borax hydrogels at different clay concentrations (b), and
CNF/CS/PVA/borax hydrogels at different CNF concentrations (c).

The mechanical performance of the SiO2/CS/PVA/borax composite hydrogels
monotonously increased with SiO2 concentration under comparatively high elongation,
whereas the mechanical performance of the clay/CS/PVA/borax composite hydrogels
was high at a low clay content but low at a high clay content (Figures 2 and 3). These
different mechanical behaviors between SiO2/CS/PVA/borax and clay/CS/PVA/borax
composite hydrogels are similar to those of SiO2/20 wt% PVA/borax and clay/20 wt%
PVA/borax hydrogels reported in a previous paper [13], where the different mechanical
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properties between the SiO2/PVA/borax and clay/PVA/borax composite hydrogels came
from differences in (i) the dispersibility of their nanoparticles and (ii) their functionalities;
clay particles had more crosslinking points per particle than did SiO2 particles.
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Figure 3. The Young’s modulus and the fracture stress (a) and the fracture strain (b) of the
clay/CS/PVA hydrogels at different clay concentrations.

For the CNF/CS/PVA/borax composite hydrogels, the increase in Young’s modulus
with CNF concentration was much higher than that for the SiO2/CS/PVA/borax and
clay/CS/PVA/borax composite hydrogels, but the fracture stress became quite low due to
stress relaxation (Figure 4). This result suggests that the crosslink between CNF and the
polymer network is quite weak.
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2.2. FT-IR Measurements

We performed FT-IR measurements to examine the interactions between constituents
(Figure 5). The characteristic bands around ~3300 cm−1 correspond to the stretching
vibration mode of the hydrogen-bonded hydroxyl groups. The peak positions shifted
to higher wavenumbers by blending PVA with CS, indicating that the hydrogen bonds
between CS and PVA are weaker than those between pure polymers. The characteristic
bands observed at ~1330 cm−1 correspond to the asymmetric stretching vibration of B-O-C,
indicating the complexation between hydroxyl groups and borate [16–18].
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the spectra of PVA/borax and CS/borax (d).

Similarly, the characteristic band of CS/borax was observed at ~1340 cm−1 (Figure 5c).
However, the peak was not clear compared to that of PVA/borax (Figure 5d), which
suggests that the complexation between CS and borate tends to be less formed compared
to that of PVA and borax.

2.3. Synchrotron SAXS/WAXS Measurements

Figure 6a depicts the WAXS profiles of the 10 wt% CS aqueous solution and the
CS/PVA/borax, clay/CS/PVA/borax, and SiO2/CS/PVA/borax hydrogels. The peak
at q = 1.38 Å−1 was assigned to the overlapping of (101) and (101) reflections of PVA
crystals [14,19]. Additionally, a small shoulder was observed at q = 1.22 Å−1, which was
assigned to the reflection from the A-type crystal of starch [20,21]. These results indicate
that PVA and CS crystals exist in the composite hydrogels.

Figure 6b presents the WAXS profiles of the CNF/CS/PVA/borax composite hy-
drogels at various CNF concentrations. In addition to the scattering peaks of the CS
and PVA crystals, another peak was observed at q = 1.57 Å−1, and the peak intensity
increased with the increase in CNFs, which corresponds to the (200) reflection of cellulose
Iβ crystals [14,22,23].
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Figure 6. WAXS profiles of 10 wt% CS aqueous solution and CS/PVA/borax, 1 wt%
clay/CS/PVA/borax, and 7 wt% SiO2/CS/PVA/borax composite hydrogels (a), and WAXS profiles
of CNF/CS/PVA/borax composite hydrogels at different CNF concentrations (b).

Figure 7a shows the SAXS profiles of the SiO2/CS/PVA/borax and clay/CS/PVA/borax
composite hydrogels. The SAXS profiles of the SiO2/CS/PVA/borax composite hydrogels
have a broad peak at q ≈ 0.058 Å−1, which comes from the interference between SiO2
nanospheres. The upturn of the SAXS intensity was observed at small q’s due to the inhomo-
geneous distribution of the nanospheres. However, such an upturn of the SAXS intensity at
low q’s was not seen for the 1 wt% clay/CS/PVA/borax composite hydrogel.
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the parameters obtained by a fitting analysis (c).

The scattering curves of spherical particles are described by

I(q) ∼ Psphere(q)S(q) (1)
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with

Psphere(q) ∼
[

3{sin(qR)} − qR cos(qR)

(qR)3

]2

(2)

where Psphere (q) and S(q) are the form factor and the structure factor, respectively [24,25].
The former corresponds to the intra-particle scattering, whereas the latter corresponds to the
inter-particle scattering. As a model of S(q), we used the Percus–Yevick (PY) equation [26],
which is described with the interaction radius RHS and the volume fraction of spheres
φ. In addition, we considered the Gauss distribution, with the mean radius Rave and the
standard deviation σsphere for the size heterogeneities of the spheres. The details of the PY
equations are described elsewhere [27]. The upturn of the scattering intensity at low q’s
cannot be expressed by the PY model. Therefore, we used the Debye–Bueche (DB) model
for the upturn [28], considering the inhomogeneous distribution of the nanospheres,

IDB(q) ∼
1(

1 + ξ2
DBq2

)2 (3)

where ξDB represents the correlation length of the inhomogeneous structure.
We analyzed the SAXS data of the SiO2/CS/PVA/borax composite hydrogels by

combining the PY and DB models, i.e., using Equations (1)–(3). The obtained parameters
are summarized in Table 1. The values of Rave for both gels are close to that of the isolated
SiO2 nanosphere (22.3 Å) evaluated in a previous paper [27]. This result suggests that the
flocculation of the SiO2 nanospheres did not occur much in the composite gels. Additionally,
ξDB did not change with the increase in the SiO2 concentration. Thus, the structural
inhomogeneity in the gel did not increase at the high SiO2 concentration.

Table 1. The result of the fitting analysis.

Sample Rave/Å σsphere/Å RHS/Å φ ξDB/Å

3 wt% SiO2/CS/PVA/borax 32 ± 0.1 0.35 ± 0.002 40 ± 1.5 0.16 ± 0.007 349 ± 18
7 wt% SiO2/CS/PVA/borax 32 ± 0.007 0.35 ± 0.0004 45 ± 0.8 0.22 ± 0.005 340 ± 17

Next, we examined the structures of the CNF/CS/PVA/borax composite hydrogels
at different CNF concentrations (Figure 7b). The scattering curves show the power-law
behavior due to the scattering of CNFs [14] and have somewhat different behaviors at small
and high q’s. Accordingly, we analyzed them using the Beaucage equations consisting of
two structural levels (Rg,1 > Rg,2) [29–31].

I(q) ∼ G1 exp
(
−

q2R2
g1

3

)
+ B1

[
er f
(

qRg, 1√
6

)]3p1
q−p1 exp

(
−

q2R2
g, 2

3

)
+G2 exp

(
−

q2R2
g, 2

3

)
+ B2

[
er f
(

qRg, 2√
6

)]3p2
q−p2 (4)

Here, Gi and Bi (i = 1 or 2) are the Guinier prefactor and the power-law prefactor,
respectively. Rg,i, and pi represent the radius of the gyration of a structure at each structural
level and the exponent of the power-law scattering, respectively. The parameters obtained
by the fitting analysis are shown in Figure 7c. It was difficult to estimate the structural
size Rg,1 of the larger structure, because the scattering intensity at low q did not level
off [32]. The values of p1 increased with the increase in CNF content, which suggests that
the increase in the CNF content promoted the aggregation of CNFs. Thus, it was difficult to
disperse CNFs at high concentrations.

2.4. Self-Healing

In a previous study, we showed that CNF/PVA/borax hydrogels prepared using
the freezing–thawing method possessed a good self-healing ability [14]. In this study, we
investigated whether clay/CS/PVA/borax and SiO2/CS/PVA/borax hydrogels have a self-
healing ability. To examine the self-healing ability of the hydrogels, tensile measurements
for the self-healed hydrogel and uncut hydrogel were compared (Figure 8).
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For the SiO2/CS/PVA/borax hydrogels, the tensile stress and the fracture strain of the
self-healed sample were close to those of the uncut sample. For the clay/CS/PVA/borax
hydrogels, although the tensile stress of the self-healed sample at small strains was close
to that of the uncut sample, the extensibility was very low. The results of the tensile
measurements for the self-healed hydrogels are summarized in Table 2. For comparison,
the result of the self-healed hydrogels without inorganic nanoparticles is shown. The elastic
modulus and fracture strain of the self-healed SiO2/CS/PVA/borax hydrogel attained
86% and 87% of those of the uncut hydrogel. Thus, SiO2/CS/PVA/borax hydrogel has a
good self-healing capacity. However, the self-healing capacity of the clay/CS/PVA/borax
hydrogel was inferior to that of the SiO2/CS/PVA/borax hydrogel. As shown in a previous
study, the SiO2 nanoparticles formed a complexation with borax, whereas the clay particles
did not [13]. The difference may be the cause of the different self-healing capacities of both
composite hydrogels.

Table 2. Results of tensile measurements of self-healed hydrogels.

Samples E/kPa Recovery
(E)/% εf

Recovery
(εf) /%

CS/PVA/borax (uncut) 25.7 ± 6.8 - 7.7 ± 2.4 -
CS/PVA/borax
(self-healed gel) 19.4 ± 3.2 75 7.0 ± 2.0 91

clay/CS/PVA/borax (uncut) 37.5 ± 5.2 - 6.7 ± 0.3 -
clay/CS/PVA/borax

(self-healed gel) 30.3 ± 2.3 81 1.1 ± 0.4 17

SiO2/CS/PVA/borax (uncut) 113 ± 17.9 - 4.2 ± 1.1 -
SiO2/CS/PVA/borax

(self-healed gel) 96.9 ± 14.0 86 3.7 ± 1.2 87
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2.5. Comparison of Mechanical Properties of SiO2/CS/PVA/Borax, Clay/CS/PVA/Borax, and
CNF/CS/PVA/Borax Composite Hydrogels

In this study, we examined the mechanical properties of CS/PVA/borax composite
hydrogels using different fillers, namely, SiO2 nanospheres, clay platelets, and CNFs. The
effect of spherical fillers on the elastic modulus of rubbers has been discussed using the
Guth–Smallwood–Einstein equation [33–35].

Ec

Em
= 1 + 2.5φ + 14.1φ2 (5)

Here, φ represents the volume fraction of the filler, whereas Ec and Em are the elastic
moduli of the rubber with and without the filler, respectively. We calculated Ec/Em for the
composite hydrogels using SiO2 nanospheres, clay platelets, and CNFs as a filler (Figure 9).
The values of Ec/Em for these composite hydrogels were much larger than the one expected
from the Guth–Smallwood–Einstein equation, which expresses the hydrodynamic reinforce-
ment of the filler. This difference may come from filler–filler interactions, filler–polymer
interactions, or the anisotropy of the filler shape.
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A schematic representation of these composite hydrogels is presented in Figure 10.
The reinforcement effect of CNF was the greatest, whereas that of the SiO2 nanospheres
was the smallest. Thus, although the CNF/CS/PVA/borax hydrogels possessed a high
reinforcing ability, the stress stored at larger strains was low due to the weak crosslink,
such as the hydrogen bond between CNF and the network polymer [14]. Additionally, as
revealed by the SAXS analysis, the increase in the CNF content caused the aggregation of
CNFs, which lowered the mechanical performance. For the clay/CS/PVA/borax composite
hydrogels, the mechanical performance was good at a low concentration; this was because
the clay platelets were comparatively dispersed at a low clay concentration; additionally,
the high multifunctionality enhanced the mechanical performance. To date, we have shown
that the use of polymers with a molecular mass of more than a few million is necessary
for the fabrication of tough clay/polymer composite hydrogels [36,37]. However, even
if ultra-high molecular mass polymers are not used, the combined use of borax and clay
platelets is effective for the production of tough composite polymer hydrogels. This is
because the connection between the polymer and the crosslinker increases the length of the
polymer network [13]. For the SiO2/CS/PVA/borax composite hydrogels, although the
reinforcement effect of the SiO2 nanospheres is low, the dispersibility in aqueous systems is
comparatively high. Therefore, it is possible to enhance the mechanical strength at high SiO2
concentrations without the large expense of stretchability. Thus, this study clarified that
the type of filler significantly affects the mechanical performance of composite hydrogels.
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3. Conclusions

We examined the mechanical and structural properties of the CS/PVA/borax using
three kinds of fillers, namely, SiO2 nanospheres, clay platelets, and CNFs. Various exper-
iments revealed that these composite hydrogels were constructed by the complexation
between PVA (or CS) and borate, PVA and CS crystals, and a crosslink between the filler
and the constituent polymer. The reinforcing effect of each filler on the mechanical proper-
ties of the CS/PVA/borax hydrogels depended on the dispersibility of the filler and the
reinforcing ability. Although the addition of CNFs or clay to the CS/PVA/borax hydrogels
caused the enhancement of the tensile strength at low concentrations of the filler due to the
high reinforcing ability, the mechanical performance was lowered at high concentrations
due to the increase in the inhomogeneity in the gel. However, the SiO2/CS/PVA/borax
composite hydrogels showed a good mechanical performance even at high concentrations
due to the high dispersibility in aqueous systems. Additionally, the SiO2/CS/PVA/borax
composite hydrogels possessed an excellent self-healing ability.

4. Experimental Section
4.1. Materials

In this study, we used PVA, with a weight-average molecular weight of 94,000, which
was estimated from a viscosity measurement, and hydrolysis higher than 99%, from Sigma-
Aldrich, Tokyo, Japan, CS from Fujifilm Wako Pure Chemical Corporation, Tokyo, Japan,
and sodium tetraborate decahydrate (borax) from Kanto Chemical Co. Inc., Tokyo, Japan.
We used disk-shaped clay (Laponite XLG [Mg5.34Li0.66Si8O20(OH)4]Na0.66, RockWood Ltd.,
Tokyo, Japan) with a 26 nm diameter and 1 nm thickness [6], and we used amorphous silica
nanospheres with a 4.5 nm diameter and a surface density of silanol groups of 4~6 /nm2

(Nissan Chemical Corporation, Tokyo, Japan). Tetrasodium pyrophosphate (TSPP) was
used to prevent the aggregation of clay platelets. CNF (product name BinFi-s WMa) with a
5~10 µm length and 10~50 nm diameter was purchased from Sugino Machine Ltd., Toyama,
Japan. The CNF had a degree of crystallinity of 0.49 [14].

4.2. Preparation of Composite Hydrogels

After a PVA aqueous solution was added to a CS aqueous solution, the mixture was
heated in a water bath of ~90 ◦C and thoroughly stirred to dissolve the two solutions.
For the preparation of clay/CS/PVA/borax or SiO2/CS/PVA/borax hydrogels, after a
clay/TSPP aqueous dispersion or a SiO2 aqueous dispersion was mixed with the CS/PVA
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solution, borax was added to the clay/CS/PVA or SiO2/CS/PVA aqueous systems, and
then the mixture was heated in a water bath at ~90 ◦C and thoroughly kneaded. For
the preparation of CNF/CS/PVA/borax hydrogels, after CNF and borax were added to
distilled water and then heated at ~90 ◦C to dissolve the borax, the mixture was mixed with
an ultrasonic homogenizer (QSONICA model Q55). The CS/PVA solution was added to the
CNF/borax suspension and then heated at ~90 ◦C. Afterward, the CNF/CS/PVA/borax
mixture was thoroughly kneaded. The final compositions of CS, PVA, and borax were
10 wt%, 4 wt%, and 0.5 wt%, respectively.

4.3. Tensile Measurements

The prepared composite hydrogels were molded in a stainless spacer with 1 mm
thickness, 10 mm length, and 15 mm width. Tensile measurements were performed at a
stretching speed of 10 mm/min using a stretching machine (ORIENTEC TENSILE TESTER
STM-20). The tensile stress was calculated using a cross-sectional area of an undeformed
sample, and Young’s modulus E of the gel sample was obtained from a slope of the stress–
strain curve at small strains. The average values of E, the fracture stress σf, and the fracture
strain εf were evaluated from at least four tensile tests. The fracture stress was determined
from the value of stress at the point where the samples were fractured.

4.4. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR measurements were carried out to characterize the hydrogels with JASCO FT/IR
4700. The samples for the FT-IR measurements were freeze-dried and were measured using
the attenuated total reflection (ATR) method.

4.5. Synchrotron Simultaneous Small-Angle X-ray Scattering (SAXS)/Wide-Angle X-ray
Scattering (WAXS) Measurement

Simultaneous synchrotron SAXS/WAXS experiments were performed on the beamline
6A of the Photon Factory at the High Energy Accelerator Research Organization in Tsukuba,
Japan. X-rays with a wavelength of 1.5 Å were incident on the sample, and scattered X-rays
were detected using two-dimensional detectors, PILATUS-1M for SAXS and PILATUS-100K
for WAXS. The obtained two-dimensional images were circularly averaged to obtain the
scattering intensity as a function of the magnitude of the wave vector q [38]. Here, q is
defined by 4π sin(θ/2)/λ where θ and λ represent the scattering angle and wavelength of
the X-ray, respectively. The scattering intensity obtained was thus corrected for the intensity
of the incident X-ray beam, the background scattering intensity, and transmittance, and
then it was reduced to absolute units [39].

4.6. Self-Healing

The self-healing ability of the clay/CS/PVA/borax and SiO2/CS/PVA/borax compos-
ite hydrogels was investigated. After the gel sample was cut in the middle of the sheet, the
surfaces of the cut samples were placed in contact with each other. Afterward, the sample
was placed at 25 ◦C for 20 h in an incubator. Tensile tests were conducted to examine the
self-healing ability of the samples.
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