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Structure-preserving visualisation 
of high dimensional single-cell 
datasets
Benjamin Szubert1, Jennifer E. Cole2, Claudia Monaco   2 & Ignat Drozdov1

Single-cell technologies offer an unprecedented opportunity to effectively characterize cellular 
heterogeneity in health and disease. Nevertheless, visualisation and interpretation of these multi-
dimensional datasets remains a challenge. We present a novel framework, ivis, for dimensionality 
reduction of single-cell expression data. ivis utilizes a siamese neural network architecture that is trained 
using a novel triplet loss function. Results on simulated and real datasets demonstrate that ivis preserves 
global data structures in a low-dimensional space, adds new data points to existing embeddings using a 
parametric mapping function, and scales linearly to hundreds of thousands of cells. ivis is made publicly 
available through Python and R interfaces on https://github.com/beringresearch/ivis.

Characterising cellular composition is crucial for defining functional heterogeneity in health and disease1. The 
advent of technologies that interrogate genome-scale molecular information at single-cell resolution provides an 
unprecedented opportunity for systematic investigation at the level of DNA2,3, RNA4, proteins5, and metabolites6. 
Indeed, increasing utilization of these technologies has facilitated characterisation of previously unknown cell 
types7,8 developmental lineages9 and patterns of cellular organization10.

Visualisation and interpretation of single-cell experiments are underpinned by dimensionality reduction (DR) 
techniques. Non-linear approaches, including the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm11, 
have been shown to effectively capture complex data structures, outperforming linear projection methods such as 
Principal Component Analysis (PCA)12,13 Nevertheless, t-SNE has several limitations14,15. First, t-SNE is not robust in 
the presence of technical noise and tends to form spurious clusters from randomly distributed data points14, producing 
misleading results that may hinder biological interpretation. Second, due to non-parametric nature of t-SNE, addi-
tion of new data points to existing embeddings is not possible11,15. Instead, t-SNE needs to be rerun on the combined 
dataset, which is computationally expensive and not scalable. Third, t-SNE has a time complexity of O(N2D) and space 
complexity of O(N2), where N is the number of observations and D is the number of features in the data11,15,16. Whilst 
complexity can be reduced to O(N log N) by approximating the gradient using tree-based algorithms17, dimensionality 
reduction across tens of thousands of exemplars remains challenging. Finally, t-SNE preserves the local clustering struc-
tures15, but global structures such as inter-cluster relationships and distances cannot be reliably preserved18. As such, the 
biological information that may be extracted through t-SNE embeddings remains limited.

Neural Network (NN) models have been proposed as effective non-linear DR techniques15,19,20. Generally, 
unsupervised NNs with multiple layers are trained by optimizing a target function, whilst an intermediate layer 
with small cardinality serves as a low dimensional representation of the input data19,21. In this paper we introduce 
a scalable algorithm, ivis, which effectively captures local as well as global features of high-dimensional datasets. 
Additionally, ivis learns a parametric mapping from the high-dimensional space to low-dimensional embedding, 
facilitating seamless addition of new data points to the mapping function. Importantly, we demonstrate that ivis 
preserves distances in low-dimensional projections, enabling biological interpretation. We validate our method 
using synthetic, cytometry by time of flight (CyTOF), and scRNA-seq datasets.

Results
ivis benchmarks on synthetic datasets.  To demonstrate that ivis can uncover the global structure of a 
high-dimensional dataset, we first generated three synthetic datasets - random uniform noise, Cassini problem, 
and Smiley dataset (Figs 1A, 2A,D). The Cassini problem is a two-dimensional dataset with three clusters con-
taining uniformly distributed data points. The smiley dataset consists of two Gaussian eyes, a trapezoid nose, and 
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a parabola mouth with vertical Gaussian noise. Two-dimensional coordinates (x, y), were mapped to a nine-di-
mensional space by the transformation (x + y, x − y, xy, x2, y2, x2y, xy2, x3, y3)15. The nine-dimensional datasets 
were used as inputs to ivis and t-SNE algorithms.

Visual assessment suggests that ivis preserves random distributions of the original dataset (Fig. 1B). However, 
t-SNE groups random points into multiple compact clusters with clear boundaries (Fig. 1C). Subsequently, we 
assessed the capacity of ivis and t-SNE algorithms to extract inter-cluster relationships. Whilst both ivis and t-SNE 
uncovered the three clusters in the Cassini dataset (Fig. 2A–C), t-SNE did not preserve inter-cluster relationships. 
Additionally, increasing cluster complexity using the Smiley dataset (Fig. 2D–F), demonstrated that ivis preserves 
both the shape and relative locations of each cluster in the embedding space (Fig. 2E). In contrast, t-SNE embed-
dings yielded additional spurious clusters and complete loss of all inter-cluster relationships (Fig. 2F).

ivis utilizes several stochastic processes - namely approximate identification of the k -nearest neighbors (KNNs) 
using random projection trees and random initialisation of neural network weights. As such, the low-dimensional 

Figure 1.  Benchmarking ivis and t-SNE on 5,000 uniformly distributed random data-points. (A) Original 
two-dimensional data. (B) ivis embedding of the nine-dimensional dataset. (C) t-SNE embedding of the nine-
dimensional dataset.

Figure 2.  Benchmarking ivis and t-SNE on two synthetic datasets. (A,D) The original two-dimensional dataset 
consisting of 5,000 points, colored by cluster labels. (B,E) ivis embedding of the nine-dimensional dataset. (C,F) 
t-SNE embedding of the nine-dimensional dataset.
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data representation may change across multiple ivis runs. To test stability of the two-dimensional embedding, 
we ran ivis ten times on the Smiley benchmark dataset (Supplementary Fig. S2). The two-dimensional structure 
across all ten runs was consistently preserved. Conversely, cluster layout and organization changed drastically for 
each t-SNE run (Supplementary Fig. S3).

Single-cell CyTOF datasets.  The capacity of ivis to uncover structure in single cell experiments was eval-
uated using two CyTOF datasets. First, the human BMMC and mouse bone marrow (Samusik) datasets were 
reduced to two ivis dimensions and cellular populations were identified using phenograph22 clustering of the 
two-dimensional embeddings. Phenograph identified 12 and 25, clusters in the BMMC and Samusik dataset 
respectively, which exhibited high concordance with manual gates (adjusted Rand IndexBMMC = 0.97, Fig. 3A, 
adjusted Rand IndexSamusik = 0.45, Fig. 3C). To establish how well ivis and t-SNE preserve global features, a 
Euclidean distance matrix between centroids of the manually-gated cells was created for the original data, the ivis 
embeddings, and the t-SNE embeddings. The level of correlation between the original distance matrix and the 
distance matrices in the embedding spaces was then assessed using the Mantel test (see Methods). This process 
was repeated for one hundred random subsamples of the data (n = 10,000 cells per subsample selected with-
out replacement) to generate a distribution of correlation values. Cluster centroid distances in the ivis space 
were significantly correlated with the original dataset using the Pearson’s Correlation Coefficient (PCC) (median 
PCCivis-BMMC = 0.76 vs. median PCCt-SNE-BMMC = 0.53, p-value ≪ 0.01, Fig. 3B, median PCCivis-Samusik = 0.73 vs. 
median PCCt-SNE-Samusik = 0.14, p-value ≪ 0.01, Fig. 3D).

The healthy human BMMC and the Samusik datasets are well-characterised benchmarks for dimensionality 
reduction problems, mainly due to the highly informative features (cellular markers) within each dataset. In 
practice, feature selection is an integral part of the discovery process and often CyTOF datasets comprise both 
informative as well as noisy markers. To assess how well the ivis methodology performs on a typical discovery 
dataset, we applied the ivis algorithm to 21 markers in myeloid cells collected from aortas of Apoe−/− mice (see 
Methods). Two-dimensional ivis embedding preserved phenograph-derived clusters of the full dataset (Fig. 4A), 
whilst better retaining the global inter-cluster distances as compared to t-SNE (median PCCivis = 0.25 vs. median 
PCCt-SNE = 0.18, t-statistic = 4.50, p-value ≪ 0.01, Fig. 4B).

Figure 3.  Phenotypic characterisation of healthy human BMMCs. (A) ivis display of 10,000 cells from healthy 
BMMC benchmark data. Cells are colored by cell-type assignments established by manual gating. (B) Boxplot 
of Pearson’s correlation coefficients (PCC) between centroids of manual gates in the full-dimensional data and 
centroids of those same points in either ivis or t-SNE embedding (median PCCivis = 0.76, median PCCt-SNE = 0.53). 
(C) ivis display of all cells from the Samusik dataset. Cells are colored by cell-type assignments established by 
manual gating. (D) Boxplot of PCCs between centroids of manual gates in the full-dimensional data and centroids 
of those same points in either ivis or t-SNE embedding (median PCCivis = 0.73, median PCCt-SNE = 0.13).
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Single-cell RNAseq datasets.  Given the relatively low dimensionality of CyTOF datasets (typically tens 
of features), we investigated whether the ivis algorithm is also applicable to scRNA-seq experiments that contain 
thousands of features. Due to the high-throughput nature of these datasets, we used PCA as a noise-reducing 
pre-processing step12, projecting all cells to 50 Principal Components prior to embedding with ivis.

First, we assessed the scalability of ivis using 1.3 million cells from the 10X genomics mouse dataset23. The 
scikit-learn Barnes-Hut t-SNE implementation did not finish analysis within 24 hours and was terminated. 
Conversely, we were able to obtain meaningful ivis embeddings without subsampling in <30 minutes (Fig. 5A).

Projection of the hippocampus dataset into two-dimensional ivis space revealed distinct nuclei clusters that 
corresponded to known cell types and anatomical regions in the hippocampus (Fig. 5B). Importantly, ivis cap-
tured the flow of sensory information within the hippocampus from the dentate gyrus (DG) to CA3 and CA1 
nuclei, as exemplified by the mutual cell proximities in these clusters. Additionally, functional dissimilarity 
between CA2 and CA3 was highlighted through more distal positioning of these nuclei in the embedding space.

Similarly, analysis of intra-tumor heterogeneity in metastatic melanoma revealed that normal and malig-
nant cells formed distinct clusters (Fig. 5C). Interestingly, normal immune cells, such as T cells, B cells, and 
macrophages originating from different individuals, were grouped together by cell type rather than origin. 
Importantly, Cancer Associated Fibroblasts (CAF) were found to be adjacent to both normal and malignant cells.

Finally, ivis embeddings of the retinal bipolar dataset showed clear segregation between non-bipolar (ama-
crine cells [AC], photoreceptors Mueller glia [MG]) and bipolar (rod and cone bipolar cells) cells (Fig. 5D). 
Furthermore, the “off ” cone bipolar cells (BC1A, BC1B, BC2, BC3A, BC3B, BC4) and the ‘on’ cone bipolar cells 
(BC5A-D, BC6, BC7, BC8/9) were localised to two distinct regions of the embedding space, exhibiting a direct 
correlation between biological function and embedding proximities. Finally, doublets and contaminants (2.4% of 
the dataset) were reliably grouped together, despite being a low-frequency population.

Learning embeddings for single-cell datasets.  To assess whether our algorithm could be used to 
extrapolate embeddings to out-of-sample data points, the ivis model was trained on randomized subsets of 
the BMMC dataset (n = 1,000–30,000 rows in intervals of 1,000). This process was repeated ten times to gen-
erate a distribution for each subset size (Fig. 6A). Next, a random forest classifier was used to learn the mapping 
between two-dimensional embeddings and the corresponding manually defined cell populations. Finally, new 
two-dimensional embeddings were generated for the out-of-sample data points using ivis projections and pre-
dicted cell population labels were extracted using the pre-trained random forest. The accuracy of the random 
forest classifier increased with subsample size (Fig. 6A). Interestingly, the worst performing run (subsample size 
of 1,000) still achieved a classification accuracy of 0.91 on out-of-sample predictions, despite using less than 1% 
of the 104,184 data-points present in the dataset.

Figure 4.  Visualisation of myeloid cells from ApoE−/− mice. (A) Two-dimensional ivis embedding of a random 
sub-sample of 10,000 cells. Each cell is coloured according to a unique cluster identified by the application 
of phenograph algorithm to the full 21-dimensional dataset. (B) Boxplot of Pearson’s correlation coefficients 
between centroids of gates in the full-dimensional data and centroids of those same points in both ivis and 
t-SNE embeddings across one-hundred random subsamples of the data. Median PCCivis = 0.25 vs. median 
PCCt-SNE = 0.18. (C) Heatmap overlay that displays how marker expression and intensity profiles express in 
monocyte and macrophage populations.
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Sensitivity to hyperparameters.  ivis has several hyperparameters, such as margin (m in equation (2)), 
k (the number of nearest neighbors for positive and negative point selection), and loss function. We sought to 
evaluate whether ivis is resistant to variations in these values and subsequently identify sensible defaults for DR 
problems.

Systematically increasing m for three datasets (Cassini, Smiley, and BMMC, Supplementary Figs 4–6 in an 
interval (0, 1000] demonstrated that ivis embeddings with m in [0.1, 500] retained the shape of the original data. 
However, for m > 100, we noted increasing information loss in the embedding space, manifested through highly 

Figure 5.  Structure-preserving dimensionality reduction of single cell transcriptomes using ivis. (A) The 10x 
genomics mouse brain dataset (n = 1.3 million cells). Contours represent dense regions in the embedding space. 
(B) The hippocampus dataset (n = 1,402 cells. (C) The melanoma dataset (n = 4,645 cells). (D) Mouse retinal 
bipolar neural cells (n = 27,499 cells) In all cases, each cell is colored by its cell type.

Figure 6.  Random forest classifier performance on ivis embeddings inferred from independent subsets of 
healthy human BMMC data. (A) Scatterplot depicting accuracy of a random forest classifier when trained on 
embedded subsets of varying size. The experiments for each subset size were repeated ten times. (B) Confusion 
matrix for a single random forest classifier trained on a subset of 10,000 embedded data-points and validated on 
the remaining 94,184 points.
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correlated ivis dimensions (Supplementary Fig. S4H–J, Supplementary Fig. S6G–J). Interestingly, for m > 500 
we observed greater incidence of exploding gradients resulting in uninformative embeddings (Supplementary 
Fig. S5I).

To evaluate the effects of k on embedding accuracy, we subsampled the BMMC and Samusik datasets with 
subsample sizes in {1000, 2500, 5000, 10000, 20000, 50000} with k in {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 
4096}. For each combination of subsample and k we generated ivis embeddings which were used to train a ran-
dom forest classifier that mapped embeddings to manual gates. Subsequently, for the remaining out-of-sample 
cells, we predicted ivis coordinates and corresponding cellular populations. Accuracy was assessed by compar-
ing predicted population labels with manual gates. Although prediction accuracies were generally stable for 
16 < k < 256 irrespective of subsample size, we observed that setting k to 0.5–1% of the number of observations 
consistently resulted in greater accuracies (Supplementary Fig. S7).

Finally, we assessed whether our variant of the triplet-loss function (pn loss, see Methods) presents an effective 
alternative to the conventional triplet loss and softmax-ratio loss functions24. For each subsample multiple loss 
functions were used to generate ivis embeddings, which were subsequently used to train a random forest classifier 
that mapped embeddings to manual gates. For the remaining out-of-sample cells (held out test set), we obtained 
predicted ivis embeddings and the corresponding cellular populations. Accuracy was assessed by comparing 
predicted population labels with manual gates. Overall, pn loss with a Euclidean distance metric outperformed 
other loss functions (Table 1). However, the Manhattan distance metric appeared to perform slightly better on the 
smallest subset (n = 1,000 data points).

Discussion
In this work we present a novel algorithm for visualisation and interpretation of single-cell datasets. Our approach 
effectively captures higher orders of structure in a low-dimensional space by minimising a triplet-loss function 
(see Methods, Supplementary Fig. S1).

Our analysis using a synthetic dataset demonstrated that ivis is robust in the presence of uniform random 
noise. Given that high-throughput experiments are frequently subject to technical outliers25–28, we believe that 
ivis offers a realistic data representation framework. Although t-SNE is often a method of choice for visualization 
of single cell experiments13,29, we demonstrated that in the presence of random noise, the algorithm tends to yield 
spurious clusters with clean boundaries, potentially hindering accurate interpretation and discovery (Fig. 1C). 
This phenomenon has been recapitulated in other real-world, as well as synthetic, datasets14,15 and may be a gen-
eral feature of algorithms that aim to preserve the pairwise (dis)similarities (e.g. LargeVis)14.

Using two synthetic and three CyTOF datasets, we have shown that ivis reduces dimensionality whilst preserv-
ing the “global” structure in a dataset. For example, in the synthetic Smiley dataset, ivis preserved both the shape 
and relative locations of each cluster in the embedding space. In contrast, t-SNE embedding resulted in emergence 
of spurious clusters and complete loss of overall inter-cluster relationships (Fig. 2F). Furthermore, in CyTOF 
experiments, ivis embeddings exhibited greater degrees of correlation with the original multi-dimensional data 
structures compared to t-SNE (Figs 3, 4). This is consistent with the capacity of t-SNE to effectively characterize 
the local neighborhood of each point in the original space and low-dimensional embedding at the expense of 
overall structure30. Given that ivis samples positive and negative data-points for each triplet, from the KNN vec-
tor and outside the KNN vector respectively, the choice of triplets at the time of training captures both local and 
global information of the data (see Methods).

Furthermore, structure-preserving properties of the ivis algorithm can greatly enhance discovery in single-cell 
datasets. For instance, ivis embeddings of the hippocampus dataset captured distinct nuclei clusters that corre-
spond to known cell types and anatomical regions. Importantly, embedding regions of DG, CA3, and CA1 nuclei 
correctly reflect the flow of sensory information in the hippocampus31, suggesting that ivis is able to capture 
phenotypical variation in the data. In the metastatic melanoma dataset, malignant cells localised to the same ivis 
region, forming cluster based on the patient origin, whilst healthy immune cells from different patients clustered 
together by cell types. Importantly, CAF cells were localised adjacent to the malignant cells, further highlighting 
the phenotype-preserving characteristic of the ivis algorithm.

Single-cells experiments are increasingly used to define molecular characteristics and clinical outcomes in 
conditions such as cancer32–34 and atherosclerosis35. As these technologies become further integrated with pre-
cision medicine approaches, parametric methods that learn to generalize embeddings, without the need to be 

Loss

Subsample

n = 1,000 n = 5,000 n = 10,000 n = 15,000

Euclidean PN 0.94 0.96 0.97 0.97

Euclidean 0.93 0.95 0.95 0.95

Manhattan PN 0.95 0.96 0.96 0.96

Manhattan 0.93 0.95 0.96 0.96

Chebyshev PN 0.93 0.96 0.97 0.97

Chebyshev 0.92 0.95 0.96 0.96

Softmax Ratio PN 0.93 0.95 0.94 0.93

Softmax Ratio 0.9 0.92 0.96 0.93

Table 1.  Out-of-sample accuracies of ivis embeddings generated using multiple loss and distance functions.
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retrained, will become essential for scalable prediction of complex outcomes including response to treatment 
and patient survival36. We demonstrated that ivis requires as little as 1,000 cells (1% of the full dataset) to reliably 
(>90% accuracy) embed an out-of-sample dataset with 100,000 cells. Although conventional deep neural net-
work approaches may require tens of thousands of exemplars to learn a generalizable set of parameters37,38, ivis 
employs a siamese neural network architecture39 that learns to discriminate between similar and dissimilar points 
without imposing strong priors. A variation of our approach has been previously applied to solve the one-shot 
learning problem for image recognition in which a network must correctly make predictions given only a single 
example of each new class40.

Whilst t-SNE remains a popular DR and visualization method, several algorithms have been introduced to 
improve either its computational performance or interpretability. The SIMLR algorithm improves upon t-SNE by 
learning a similarity matrix between cells, which is then used as an input to t-SNE for dimensionality reduction41. 
However, this approach is computationally expensive as the objective function involves an expensive multiplica-
tion of an N × N kernel matrix and N × N similarity matrix, where N is the number of cells15. Parametric t-SNE11 
learns a parametric mapping from the high-dimensional space to a lower dimensional embedding. The method 
is generalizable to out-of-sample data and computes a loss function that minimizes Kullback-Leibler (KL) diver-
gence between the point distributions in the original and the low-dimensional space. However, this approach 
does not preserve global distances and only local structures are captured by taking advantage of KL-divergence’s 
asymmetric properties42.

More recently, the scvis algorithm was introduced to facilitate interpretable dimensionality reduction for 
single-cell experiments15. The algorithm utilizes a Variational Autoencoder (VAE) with an additional regular-
ization term that encourages the formation of gaps between clusters of data points. scvis was shown to preserve 
global structure of the high-dimensional measurements. The algorithm relies on obtaining the pairwise distances 
between two cells in a mini-batch during the training process, which takes O(TN2D + TN2d) time, where N is the 
mini-batch size, D is the dimensionality of the input data, d is the dimensionality of the low-dimensional latent 
variables, and T is the number of iterations. Conversely, ivis exhibits a linear time complexity O(N), where N is the 
dimensionality of the input data, due to selection of triplets without the need to pre-compute pairwise-distances 
(Supplementary Fig. S9).

Finally, the DeepCyTOF framework43 contains a denoising autoencoder component designed to handle miss-
ing data in CyTOF experiments. However, the framework facilitates semi-automatic gating and does not focus 
on data visualization.

In conclusion, we have developed a robust dimensionality reduction framework that retains global and local 
features of single-cell experiments in a low-dimensional space and is robust to hyperparameter settings. We 
demonstrate that ivis scales seamlessly to hundreds of thousands of cells, facilitating visualization and biological 
interpretation of complex features. As single-cell technologies continue to proliferate, we anticipate that ivis will 
offer a powerful computational approach for data visualization and discovery.

Methods
Neural network architecture and training.  Structure-preserving dimensionality reduction is achieved 
using siamese neural networks (SNNs)40. SNNs are a class of neural network that employ a unique architecture to 
naturally rank similarity between inputs. The ivis SNN consists of three identical base networks (Supplementary 
Fig. S1A); each base network has three dense layers of 128 neurons followed by a final embedding layer. The size 
of the embedding layer reflects the desired dimensionality of outputs; results presented in this work utilize a final 
embedding layer with two neurons.

The layers preceding the embedding layer use the SELU activation function,
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respectively44. The weights for these layers are randomly initialized with the LeCun normal distribution. The 
embedding layers use a linear activation and have their weights initialized using Glorot’s uniform distribution.

To regularize the network and prevent over-fitting, each dense layer is interleaved by Alpha Dropout layers 
with a dropout rate of 0.1; these layers randomly set a fraction of input units to 0 at each update, but are designed 
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inputs.

The loss function used to train the network is a variant of the standard triplet loss function41,45:
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Although other distance metrics can be used, the Euclidean distance consistently outperforms other 
approaches and may be more interpretable from a biological standpoint (Table 1). Our implementation of the 
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triplet loss function (pn loss) trains the network to satisfy the constraints of each triplet by simultaneously mini-
mizing the Euclidean distance between the anchor (a point of interest) and the positive exemplar (a point similar 
to the Anchor) while maximizing the distance between the anchor and the negative exemplar (a point that is 
different from the anchor) (Supplementary Fig. S1B). This triplet constraint is said to be satisfied if the anchor 
point is closer to the positive point than to the negative point by a margin m. The pn loss function also takes into 
account the distance between the positive and the negative point by requiring the anchor and positive to be closer 
than the minimum between the anchor positive distance and the positive negative distance. This leads to a more 
robust loss function that improves separability in the embedding space (Supplementary Fig. S8) and avoids cal-
culation of pairwise distances across a batch.

The triplet sampling procedure is as follows. Each triplet sampled from the dataset is made up of an anchor, 
a positive point that is similar to the anchor, and a negative point that is dissimilar to the anchor. The k-nearest 
neighbors (KNNs) are retrieved for each point in the dataset and a neighbor is randomly selected to be the 
positive example in the triplet. A random data-point outside of the k-nearest neighbors is used as the negative 
example. Setting k to an integer value between 0.5% and 1% of the number of observations appears to produce 
the most accurate embeddings (Supplementary Fig. S7) The triplets are generated dynamically during training, 
ensuring that each epoch contains different sets of triplets that reflect both local and global information of the 
data. The KNNs are estimated for each point using random projection trees implemented in the Annoy system46.

The SNN was trained on mini-batches of size 128 for 1000 epochs using the Adam optimizer function with a 
learning rate of 0.001 and standard parameters (β = . = .B0 9, 0 9991 2 ). Training was halted early if the loss failed 
to decrease over 50 consecutive epochs.

Performance assessment.  To quantitate the degree to which ivis and t-SNE embeddings preserve the 
global structure of the data, we first cluster the original data, obtaining cluster centroids (average cluster expres-
sion vectors) and compute the inter-centroid distance matrix. Clusters are obtained either by using manual gating 
information or by applying the phenograph algorithm22 in cases where gold-standard cluster assignments are 
not provided. In all cases, phenograph clustering was applied using default hyperparameters. Next, we embed 
high-dimensional datasets into two-dimensional space using either ivis or t-SNE and calculate the distance 
matrix between cluster centroids within these embeddings. We then measure the Pearson Correlation Coefficient 
(PCC), with respective p-values, between centroid distance matrices in the original and embedding spaces using 
the Mantel test. This process was repeated on one hundred random subsamples of the dataset to generate a dis-
tribution of correlation values for both the ivis and t-SNE embeddings. Subsampling was carried out without 
replacement. Means of each distribution were compared using a two-tailed Student’s t-test.

Learning a mapping function.  To investigate whether a subset of cells is sufficient to extrapolate ivis 
embeddings to an out-of-sample dataset, we generated ivis coordinates for multiple small subsample of the data-
set. All subsampling was performed without replacement. A supervised random forest classifier was then trained 
on the subset embeddings and respective cluster assignments. Subsequently, the ivis model was used to predict 
embeddings on out-of-sample data and the random forest classifier was used to infer the class of these embed-
dings. Classifier performance metrics on all out-of-sample predictions were subsequently obtained.

Computational Complexity Analysis.  To test the scalability of ivis, synthetic datasets of increasing size 
were generated and the required processing time to generate the ivis embeddings was measured. The synthetic 
datasets were 32-dimensional, with the number of rows doubling each iteration. The scikit-learn implementation 
of the Barnes-Hut t-SNE algorithm was also used to embed the datasets. All experiments were run on a server 
equipped with 32GB RAM and an Intel Xeon E5-2630 v3 processer with a clock speed of 2.40 GHz, using 12 of 
the 16 available logical threads.

Single cell datasets.  CyTOF.  Three datasets were used for CyTOF evaluation. First, a 32-dimensional 
dataset consisting of protein expression levels of healthy human bone marrow mononuclear cells (BMMCs) from 
two healthy individuals22. Second, a 21-dimensional dataset of myeloid cell events from aortas of apolipoprotein 
E-deficient (ApoE−/−) mice fed either a chow or a high fat diet47.

The Samusik dataset48 is a 39-dimensional data set, consisting of 10 replicate bone marrow samples from 
C57BL/6J mice (samples from 10 different mice). Manually gated cell population labels were available for 24 
immune cell populations. Cells not assigned to any population by manual gating were excluded from analysis.

In all cases, the arcsinh transform (scale factor 5) was applied to the raw FCS files49.

scRNA-seq.  Four scRNA-seq datasets were included in this study. All data was downloaded from the single-cell 
portal50. For all the scRNA-seq datasets, we used PCA (as a noise-reduction preprocessing step12) to project the 
cells into a 50-dimensional space and used the projected coordinates in the 50-dimensional space as inputs to 
ivis15.

The 10X Genomics neural cell dataset consists of 1,306,127 cells from cortex, hippocampus, and subventricu-
lar zones of two E18 C57BL/6 mice23. The cells were sequenced on 11 Illumina Hiseq. 4000 machines to produce 
98 bp reads22.

The adult mouse hippocampus consists of 1,402 single nuclei from hippocampal anatomical sub-regions (DG, 
CA1, CA2, and CA3), including enrichment of genetically-tagged lowly abundant GABAergic neurons51. The 
dataset contains high-quality outputs across animal age groups (including 2 years old mice), detecting 5,100 
expressed genes per nucleus on average.
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The melanoma dataset monitors expression of 4,645 cells isolated from 19 metastatic melanoma patients52. 
The cDNAs from each cell were sequenced by an Illumina NextSeq. 500 instrument to 30 bp pair-end reads with 
a median of ~150,000 reads per cell. The expression of each gene (23,686 genes in total) is quantified by log2 
(TPM/10 + 1)15.

The bipolar dataset consists of 27,499 mouse retinal bipolar neural cells from a transgenic mouse interrogated 
using low-coverage (median depth of 8,200 mapped reads per cell) sequencing12. The dataset comprises of 15 
clusters. Fourteen of these were assigned to bipolar cells and one cluster comprised of Mueller glia cells. These 
15 clusters account for 96% of all the 27,499 cells. Doublets and contaminants (669 cells) account for 2.4% of all 
cells15.

Code Availability
The ivis Python and R packages are available from github (https://github.com/beringresearch/ivis).
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