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a b s t r a c t   

RNA structure plays a crucial role in gene regulation, in RNA stability and the essential biological processes. 
RNA secondary structure (RSS) motifs are the basic building blocks for investigating the biological me-
chanisms of structure. Here, we present a strategy for structural motif-based dynamic alignment, namely, 
RNA secondary-structural motif-comparing (RNAsmc), to identify structural motifs and quantitatively 
evaluate their underlying molecular functions. RNAsmc also has strong robustness to sequence length, 
folding protocol and RNA structural profile by chemical probing. Notably, it is also applicable to quantify 
structural variation in special RNA editing events (SNVs or SNPs, fragment insertion or deletion, etc.). The 
findings indicate that RNAsmc can uncover the heterogeneity of RNA secondary structure and score for 
similarities among components, which provides an impetus to cluster RNA families and evaluate allosteric 
effects. We find that RNAsmc exhibits remarkable detection efficiency for experimentally-derived 
RiboSNitches. Finally, the pipeline was assembled into an R software package to serve as an automated 
toolkit to explore, align, and cluster RSS. It is freely available for download at https://CRAN.R-project.org/ 
package=RNAsmc. 

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).   

1. Introduction 

High-throughput sequencing has driven the discovery of novel 
transcripts, including protein-coding RNAs and non-coding RNAs [1]. 
The former transcripts are part of the genetic central dogma, 
whereas the latter transcripts are involved in cellular growth, dif-
ferentiation, and death [2]. RNAs naturally form spatial conforma-
tions that are assembled by secondary structures, including hairpin, 
stem-loop, and other thermodynamically stable units [3,4]. These 
structural motifs are the basic elements that constitute the folding 

properties and functions of RNA molecules [5]. Many studies have 
illuminated that RNA structural motifs are the essential molecular 
features that participate in and mediate biomolecular interactions, 
such as those involving RNAs, proteins, and ligands [6–10]. For ex-
ample, Xist, a long non-coding RNA (lncRNA), forms several struc-
tural domains to recruit different types of molecular binding. Studies 
have confirmed that this complex structure-mediated biological in-
teraction is the molecular basis for its function realization [11–14]. In 
addition, another well-studied lncRNA, HOTAIR, serves as a regulator 
of tissue development, and it is involved in carcinoma progression 
and metastasis. Studies have shown that the four modular-folding 
regions of HOTAIR function as a scaffold and are recognized by 
protein complexes (such as PRC2) [15–17]. 

RNA secondary structure might provide insight into functional 
annotations. Considerable evidence has demonstrated that RSS 
motifs are more evolutionarily conserved than their primary 
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sequences [18,19]. For example, transfer RNAs (tRNAs) maintain a 
typical characteristic cloverleaf shape; however, the nucleotide 
compositions of the corresponding primary sequences vary across 
tRNAs [20]. Due to a lack of primary sequence conservation, RSS 
motifs are considered to contain meaningful information and may 
serve as essential benchmarks for classifying RNA families, anno-
tating RNA functions, and inferring molecular mechanisms in terms 
of RNA synthesis, metabolism, and regulatory pathways [21,22]. 
Distinctive structural features are a prerequisite for the proper 
function of many non-coding RNAs and cis-acting regulatory ele-
ments. Numerous studies have inferred that single-nucleotide mu-
tations can alter RNA secondary structures, which are referred to as 
RiboSNitches [23–25]. Sun et al. demonstrated RiboSNitches are 
enriched in dynamic RBP-binding sites by profiling in vivo RNA 
second structure in seven cell types [26]. This particular biological 
phenomenon may disrupt key structural elements of RNAs, result in 
dysfunction, and be potentially causative of various complex human 
diseases [24,27–29]. Hence, it is important to elucidate the influ-
ences of mutations on RNA secondary structures and computation-
ally decipher allosteric effects, which might facilitate the discovery 
of relevant functionally-unknown RNAs and further reveal compli-
cated structure-function relationships in silico. 

Currently, plenty of software and webservers have been devel-
oped to evaluated the allosteric effect deduced by nucleotide 
changes on RNA transcripts. Danny et al. developed RNAmute, to 
quantify the conformational difference based on minimum free en-
ergy [30,31]. SNPfold and remuRNA could recognize the effects of 
mutation by assessing the ensemble of possible RNA structures  
[32,33]. But these algorithms are so computationally intensive that 
they are not suitable to apply on large RNA sequences. For another, 
RNAsnp take into account the effect of variants at local RNA frag-
ments [27]. It can reduce noise and accelerate speed for detecting 
conformational changes. Moreover, FoldAlign and PSMAlign con-
struct alignments depending on structural motif [34,35]. They are 
substantially faster, but the similarity of two input RNA motifs must 
be limited. More importantly, majority of these algorithms are 
available for predicting single point mutations only. Driven by the 
development of RNA editing technology, it is also of great biological 
significance to investigate the effect of deletion or insertion of se-
quence fragments on RNA structure. 

Here, we present an intelligent analytical pipeline, RNAsmc, to 
achieve RNA structural-motif mining and structural comparing using 
dynamic-alignment programming. We found that RNAsmc may be 
capable of identifying features of RSS motif with low computational 
complexity and high accuracy, which may reflect structural con-
servatism, functional evolution, and conformational disturbances. 
This workflow was integrated and accomplished based on the R 
platform, enabling exploration, visualization, alignment, and quan-
titative comparisons of RSS motifs, as well as assessment of allosteric 
effects of RNAs. Moreover, we found that RNAsmc provides quanti-
tative guidance for designing of any possible sequential insertions/ 
deletions/substitutions, as well as for applications to functionally 
evaluate RNA structural heterogeneity. Furthermore, an additional 
annotation module was made available to assist in evaluating RNA 
family classifications and to functionally decipher the impact of two- 
dimensional folding. Collectively, our findings suggest that RSS 
motifs may function as the skeleton unit to drive and influence many 
cellular processes, including RNA processing, stability, localization, 
and translational regulation. 

2. Materials and methods 

2.1. Constructing validation datasets 

The RNAs for performance evaluations were collected from the 
Rfam database [36]. We constructed four testing groups to assess the 

efficiency of our tool in calculation implementation and functional 
applications. Group I consisted of 37 human tRNAs (with lengths 
ranging from 65 to 83 bp) as a baseline dataset, 37 human non- 
tRNAs with a similar length distribution, and 37 shuffled RNAs with 
similar base compositions as the control datasets. Group II consisted 
of 9 popular RNA fragments for classification performance. They 
were 3′-terminal binding sites of coat proteins from nine diverse 
viruses, including the alfalfa mosaic virus (ALMV-3), apple mosaic 
virus (APMV-3), asparagus virus II (AVII), citrus leaf rugose virus 
(CiLPV-3), citrus variegation virus (CVV-3), elm mottle virus (EMV- 
3), lilac ring mottle virus (LRMV-3), prune dwarf ilar virus (PDV-3), 
and tobacco streak virus (TSV-3). Group III consisted of testing RNAs 
from diverse families, including 5 S ribosomal RNAs (5SR RNAs), 16S 
ribosomal RNAs (16SR RNAs), 23S ribosomal RNAs (23 S R RNAs), 
hammerhead ribozyme RNAs (HR RNAs), signal recognition particle 
RNAs (SRP RNAs), intron RNAs (I RNAs), ribonuclease P RNAs (RP 
RNAs), transfer messenger RNAs (TM RNAs), 7SK and Y_RNAs. Group 
IV consisted of 1000 human lncRNAs from the GENCODE database  
[37] that were extracted to evaluate the predictive efficiency of our 
algorithm. 

2.2. Extracting RNA secondary structure motifs 

Motifs containing bulge loops, external loops, hairpin loops, in-
ternal loops, multiple branch loops, and stems [38]. To explore the 
potential biological function of motif features, we proposed a com-
putational pipeline named RNAsmc. Fig. 1 shows the work panel that 
contains the RSS motif mining module, function-annotation module, 
and visualization module. According to the base-pairing relationship 
and topological properties, our algorithm can reflect the folding 
status of a given RNA, return six basic structural motifs, infer the 
significance of subunits of RNA architecture, and evaluate allosteric 
effects deduced by nucleotide mutations. For any of the detected 
motifs, more comprehensive parameters were available, including 
the number of motifs for each type, and the number of bases for each 
motif, as well as the maximum, minimum, and average lengths of 
each motif. Additionally, RNAsmc is able to decipher the global 
features of RSS motifs, which contain the range in scale of each 
block, as well as the number and distribution of subunits throughout 
the entire RNA transcript. 

2.3. Comparing RNA structures based on motif features 

We designed an RSS comparative strategy based on motif fea-
tures to measure similarities among RNA architectures. Each struc-
tural motif was detected and labeled as one of the following 
abbreviated letters: bulge loops (B), external loops (E), hairpin loops 
(H), internal loops (I), multiple branch loops (M), and stems (S). Then 
the folding RNA transcript was encoded as a motif-based feature 
vector ( × N1 ), where N is the nucleotide length of the RNA se-
quence. Next, RNAsmc executed the comparison of two RSS feature 
vectors by simulating the primary sequence alignment process. 
Following this dynamic algorithm, we found the optimal matching 
pattern of two RNA feature vectors after continuous comparison, 
matching, scoring, and remodeling. Finally, a similarity-scoring 
principle was designed according to the information about the ca-
tegory of the motif, the number of each type of motif, and the spatial 
arrangement of each motif. We introduced the Jaccard similarity 
coefficient to compare the similarity of spatial arrangement between 
the motif sets of two RNAs. Then, we applied the likelihood ratio 
model to evaluate the similarity, considering from the view of the 
motif number. Finally, the integrated score by additional model was 
provided to obtain the optimal assessment. Ultimately, the Similarity 
Score (SS) of any two RSS was calculated by the following formula: 
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represents likelihood ratio. B, E , H , I , M , and S represent the bulge 
loop, external loop, hairpin loop, interior loop, multiple branch loop, 
and stem, respectively. Up1 and Up2 represent spatial arrangement 
sets of motifs in RNA1 and RNA2 for each kind of motif. Un1 and Un2

represent the numbers of motifs in these two RNAs. U UMax( , )n n1 2

was maximum motif number of B, E, H, I, M, and S appeared on RNA1 
and RNA2, respectively. U UMin( , )n n1 2 was minimum otherwise. SS
ranges from 0 to 10. A structural comparison score that is close to 10
between two RNAs indicates that they are similar in structure. We 
took an example to illustrated how to calculated SS in  
Supplementary materials. 

2.4. Evaluating allosteric effects of RNA transcripts 

Sun et al. detected a large number of RiboSNitches that could 
cause structural variation by comparing the allelic distribution of 
SNV and the entire structural map in different cell lines [26]. The 
RiboSNitches were suffering structural rearrangements induced by a 
single nucleotide variant (SNP) in the corresponding RNA transcript 
in H9 and HepG2 cell lines were collected and used to evaluate the 
effectiveness of RNAsmc in detecting allosteric effects. Here we 
collected transcripts which included only one SNP to join 

subsequent analyses. Then, the SNP alleles marked in one cell line 
were kept to build wild-type (WT) structures, and the corresponding 
mutant type (MT) structure were constituted by alternative allele in 
another cell line. Moreover, to improve accuracy of RNA structure 
folding, we retained data for transcripts with icSHAPE reactivity 
coverage up to 70 % in the two cell lines. The similarity score was 
used to quantify the influence of SNPs on RNA structures. We used 
RNApuzzler, VARNA to visualize the RNA secondary struc-
ture [39,40]. 

3. Results 

3.1. Exploration of RNA structure motifs 

Emerging evidence has shown that the spatial conformations of 
RNA molecular and structural subunits, containing bulge loops, ex-
ternal loops, hairpin loops, internal loops, multiple branch loops, and 
stems (Supplementary Fig. 1A) are involved in essential regulatory 
processes and fundamental biological functions. Here, we in-
troduced an efficient tool, RNAsmc, capable of automatically iden-
tifying RSS motifs and dissecting functional features (Fig. 1). For a 
given RNA primary sequence, we first predicted the folding status via 
RNAstructure [41], ensuring that the RNA was in a stable state with 
minimal free energy (Identification module, shown in Fig. 1A). Then, 
RSS was depicted as a CT or a dot-bracket format, which are the two 
most common textually annotated presentations (Supplementary 
Fig. 1B, C) [42,43]. Finally, our pipeline extracted the key building 

Fig. 1. Schematic of RNAsmc. The pipeline contains an identification module, annotation module, and visualization module. In the identification module, based on structural 
conformation of each RNA, 6 groups of motifs, containing bulge loops (B), external loops (E), hairpin loops (H), internal loops (I), multiple branch loops (M), and stems (S) were 
obtained. In the annotation module, each RNA structure was encoded as motif-based vectors. According to exact dynamic alignment, similarity determination between two RNA 
structures was quantified with Similarity Score (SS). In order to demonstrate the application and visualization of RNAsmc in more detail, we presented visualization module. 
RNAsmc could achieve the functional annotation of unspecified functional RNAs, family classification for unlabeled RNA and allosteric effects evaluation induced by SNVs, SNPs, 
fragment insertion or deletion, respectively. 
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blocks, the combination of which represents the topological lan-
guage of RNAs. RSS motifs are widely regarded as the foundation of 
RNA functionality and are helpful for deciphering homologous evo-
lutionary and unknown functions of RNAs. 

3.2. Comparison and visualization of RNA structures based on motif 
features 

RNAsmc was able to perform a detailed comparison between any 
two folding RNAs, according to the multi-structural motif-alignment 
algorithm (Annotation module in Fig. 1B). We defined RNAsmc as 
“align-first-compare-follow” process. It provided structural simila-
rities and was robust to the lengths of the input RNA fragments.  
Supplementary Fig. 2 shows an effective structure-alignment pro-
cess of two groups of RNAs with diverse length. The first group RNAs 
from the 7SK and Y_RNA families, including 7SK (CM000663.2, 
1–340 bp, 340 bp), 7SK (fragment of CM000663.2, 49–164 bp, 
115 bp), and Y_RNA (CM000291.1, 1–115 bp, 115 bp). After conducting 
the RNAsmc pipeline, pairwise comparisons of RSS motifs and 
structural similarity scores (SS) of these RNAs were performed and 
are shown in Supplementary Fig. 2A. For a given type of structural 
feature, RNAsmc will intelligently analyze the relationship between 
7SK (CM000663.2, 1–340 bp, 340 bp) and 7SK (fragment of 
CM000663.2, 49–164 bp, 115 bp), giving priority to the dynamic 
mapping based on the structural motif (Supplementary Fig. 2B), si-
milar to the multi-sequence alignment. Then, RNAsmc calculates the 
SS of two RNAs that underlie the alignment status of maximal extent. 
The similarity evaluation of these two RNAs was scored as 10, al-
though they maintained different sequence length. Furthermore, the 
SS showed significant decreasing trends in the other two pairs of 
RNAs, which were 6.29 (7SK (CM000663.2, 1–340 bp, 340 bp) VS 
Y_RNA (CM000291.1, 1–115 bp, 115 bp)) and 4.36 (7SK (fragment of 
CM000663.2, 49–164 bp, 115 bp) VS Y_RNA (CM000291.1, 1–115 bp, 
115 bp)). Despite the similar 115 bp in length, RNAsmc can accurately 
identify the area of structural change and give objective and accurate 
scoring evaluation (the yellow shaded is the area of structural 
change). 

To further confirm the accuracy of structural motif alignment and 
the robustness of RNAsmc to sequence length. We performed an-
other group of structure comparisons for RNA of CRW00020. The 
whole RNA was cut into two partials with 16 S R RNA (CRW00020, 
1–1493 bp, 1493 bp) and 16 S R RNA (CRW00020, 879–1359 bp, 
481 bp). Ensure that the two fragments could form a complete and 
independent RNA structure. We performed direct structural align-
ment and similarity evaluation of each RNA fragment and the full 
length of RNA respectively. The results showed that the structural 
similarity score of global RNA and two fragments is 10 
(Supplementary Fig. 2C–F). These results illustrated that structural 
feature, but not the lengths of the sequences of RNAs, represented 
the key factors that influenced the assessment of structural simi-
larity. In addition, we inferred that the dynamic structural motif 
alignment of RNAsmc eliminated the false negatives of the structural 
similarities due to the difference in the lengths of the RNA se-
quences. 

Next, we try to decipher that comparisons of RNA conformations 
are specific to structural motifs rather than nucleotides or sequence 
length, we conducted RNA structural comparisons using RNAs of 
Group I with similar base distributions. For this comparison, we 
chose the tRNA family in order to maintain their typical cloverleaf- 
like structures. The two control sets were selected as described in 
the Methods (i.e., non-tRNAs and shuffled RNAs). Then, RNAsmc 
automatically scored the similarities between tRNAs and the con-
trols. The quantified structural consistency in the form of a heatmap 
is shown in Fig. 2A. Under the thermodynamically stable state, all 
the tRNAs exhibited similar cloverleaf-like structures, including one 
multi-branch loop, three hairpin loops, and four stem loops (Fig. 2B). 

The SS between tRNAs and the controls were divided into different 
parts. The red-color enrichment region represented a subgroup of 
tRNAs with a higher similarity score, 44 % of which were higher than 
7.0 ( ±6.46 2.12). Furthermore, the rest of the multi-color crossing 
area was concentrated with non-tRNAs ( ±5.81 1.68) and shuffled 
RNAs with a lower similarity score ( ±5.42 1.46). This yielded sig-
nificant differences in scores among the three groups, as shown in  
Fig. 2C. Nevertheless, the controls exhibited various folding con-
formations with diverse motif compositions (Fig. 2D). This demon-
strated that RNAsmc was capable of extracting motif features, by 
which we could distinguish different kinds of RNAs. Moreover, SS, 
quantified by our motif-based RNA structure-comparison strategy, 
was utilized to evaluate the similarities between pairs of folding 
RNAs. The results showed that RNAs with similar structures tended 
to maintain the same structural motif contents and may contribute 
to the same RNA family. Collectively, these findings may provide 
novel insights into RNA functional annotations and help to classify 
RNA families based on RNA structure. 

3.3. Classification and functional annotation of RNA families 

We performed RNA family classification and inferred unknown 
functions by dissecting structural features using nine popular RNA 
fragments from nine diverse types of viruses. Supplementary Fig. 3 
presented the folding RNAs and the cluster tree compared by 
RNAsmc. Globally, these nine RNAs exhibited similar architectures, 
with the three groups of AUGC-sequence fragments being separated 
by two hairpin-like structures. However, RNAsmc revealed that they 
exhibited slight differences, which may play a crucial role in con-
ferring different molecular functions across these RNAs. The nine 
RNA virus fragments were divided into three categories based on 
their characteristic motifs and spatial distributions. The first group 
contained TSV-3, CiLRV-3, PDV-3, AlMV-3, and APMV-3. Each of 
these fragments consisted of three external loops, two stem loops, 
and two hairpin loops (Fig. 3A). In addition, CVV-3 was the only RNA 
in the second group. Compared with the first group, the second 
group contained one more internal loop, which might be a key 
feature that affects classification. We inferred that the addition of a 
single-strand circular conformation might increase accessibility of 
RNA molecular interactions. It is conceivable that the internal loop 
mediates the biological functions of CVV-3 in terms of RNA mole-
cular binding, and microRNA regulation. Moreover, EMV-3, AVII, and 
LRMV-3 were assigned into the last group, which maintained one 
more bulge loop than that contained in the first group. This type of 
motif formed a bulge loop on one side of the circular structure, and 
then altered the folding direction of the connected stem loop, re-
sulting in a folding-angle transformation and 3D-level distortion of 
RNA molecules. Therefore, we hypothesized that features of struc-
tural motifs may play important roles and carry valuable informa-
tion in terms of biomolecular binding and receptor protein 
interactions. We found that there was a high consistency among the 
spatial structural image of RNA fragments, the feature distribution, 
and number of motifs (Fig. 3A), and the pairwise SS matrix was 
driven by RSS features (Fig. 3B). This result demonstrated that 
RNAsmc was capable of exploring RSS features, which were neces-
sary factors for aligning specific conformations, classifying RNA fa-
milies, and inferring unknown biological processes. 

Next, we investigated whether the sequence length was a key 
factor influencing the clustering efficiency among different cate-
gories of RNAs. We randomly selected 60 RNAs from three RNA fa-
milies (5SR RNAs, HR RNAs, and SRP RNAs, from Group III in 
Methods) with similar length distributions (100–150 bp, Fig. 3C). Our 
RNAsmc computational pipeline was carried out to compare and 
score RSS motifs. Based on the SS matrix, 60 RNAs were divided into 
three categories with clear boundaries. Interestingly, the clustering 
results driven by multiple characteristics were highly associated 
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with the original families of RNAs (Fig. 3D). We found that RNAs 
from the same family tended to have similar compositions and 
distributions of structural motifs and were clustered together 
(Supplementary Fig. 4A). The clustering results illustrated that 
RNAsmc was able to accurately classify RNA families according to the 
features of their RNA subunits, even though the primary character-
istics exhibited only small differences, such as sequence length, GC 
content, and the pairing ratio (Supplementary Table S1). 

In addition, we quantitatively measured the similarity of longer 
RNAs to further broaden and validate classification capacity of the 
workflow. RNAs with lengths ranging from 350 to 400 bp from 
Group III were selected, including 14 I RNAs, 14 RP RNAs, and 14 TM 
RNAs (Fig. 3E). Clustering results elucidated that three RNA families 
were almost perfectly divided into distinct categories, with an ac-
curacy as high as 95%, except for two specific RNAs from the I RNA 
family (Fig. 3F). The motif distributions are presented in  
Supplementary Fig. 4B. The two misclassified RNAs had a propor-
tional combination of multiple branch loops and bulge loops similar 
to the RP RNA family. Importantly, in our findings described above, 
these two motifs also carried the most important structural prop-
erties, which makes them the most promising molecules to affect 
and modulate biological functions. Moreover, the clustering effi-
ciency of RNAsmc was examined on a group of RNAs with wide 
distribution of lengths, including 20 SRP RNAs ranging from 100 to 
400 bp and 20 TM RNAs ranging from 300 to 400 bp (Fig. 3G). We 
then estimated the classifier capable of comparing the testing data. 
The clustering result is displayed in Fig. 3H, and we found only two 
RNAs that were classified incorrectly. Finally, we obtained the 
structural information of 5SR RNAs (113–133 bp), 16SR RNAs 

(952–1882 bp), 23SR RNAs (1035–3946 bp). Fifteen rRNAs of each 
class were randomly selected for structural alignment and clus-
tering, shown in Figs. 3I and 3J. Only two 23SR RNAs were mis-
takenly assigned to the group of 5SR RNAs. This result confirmed the 
robustness of the clustering efficiency of RNAsmc across a wide 
distribution of RNA lengths. Hence, we inferred that the composition 
of the motif and its complexity determined the RNA similarities and 
clustering results. RNAs with similar motif compositions were more 
likely to derive from the same RNA family and exhibit similar 
functions. 

3.4. Evaluation of allosteric effects of RNA transcripts 

RiboSNitches are defined as structural disruptions induced by 
single-nucleotide mutations in RNA transcripts. It is an important 
molecular feature of cells and may influence molecular architecture 
to promote the progression of various diseases. Here, we carried out 
RNAsmc to detect heterogeneities between WT and MT RNAs in-
duced by RiboSNitches. Sun et al. probed RNA secondary structure 
profile in vivo for different cell types in transcriptome-wide level. 
The unduplicated RiboSNitches arose in H9 and HepG2 and the 
coverage of icSHAPE value over 70% on one transcript were de-
termined to evaluate the detection efficiency of RNAsmc [26]. Thus, 
437 RiboSNitches were eventually took participate in the validity of 
the dataset. Fig. 4A depicted those transcripts tended to hold middle 
or long spanning, also suggesting that RNAsmc is robust for large 
molecules (Fig. 4A). Moreover, we applied a popular RNA structure 
comparison software, RNAsnp, to measure the detection efficiency of 
structural variation. The calculated similarity score is summarized in  

Fig. 2. Visualization and comparison of RSS based on structural motifs by RNAsmc. (A) Heatmap of structure similarity. Higher SS examples are labeled in red, while lower SS 
examples are labeled in blue. SS [0, 10] (B) RSS of tRNAs, shuffled RNAs, and non-tRNAs. (C) Distribution of the scored similarities among the paired comparisons. (D) Motif 
compositions of diverse types of RNAs. 
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Supplementary Table S2. Fig. 4B showed that 24% RiboSNitches 
could be discovered by RNAsnp based on threshold P  <  0.2 which 
was defined by itself. Besides, we also assessed potential Ri-
boSNitches using RNAsmc with SS less than 10 since 10 implied no 
difference between WT and MT structure. Compared to RNAsmc 
without icSHAPE, the results showed that the discovery rate of Ri-
boSNitches by RNAsmc with icSHAPE could be increased over 29.52 
% (Fig. 4C, D). As expected, icSHAPE reactivity can increasing sub-
stantially chance to searching potential RiboSNitches. Furthermore, 
the ratio of RiboSNitches identification was up to 99.77 % (436/437) 

by RNAsmc with icSHAPE, however, 70.25 % (307/437) and 24 % (105/ 
437) when used RNAsmc without icSHAPE and RNAsnp, respectively. 
When it comes to applying two tools in combination, the detection 
rate of RiboSNitches using RNAsmc was significantly higher than 
that of RNAsnp. For example, the structural heterogeneity induced 
by G494A on ENST00000580551 was inconsistent relied on two 
tools. Green dot represented WT allele in structure, while red dot 
means MT allele. As shown in Fig. 4E, WT and MT structure showed 
heterogeneous conformations predicted by RNAsnp, but the struc-
tural changed was quantified with P = 0.74. However, the global 

Fig. 3. RNA clustering based on motif features. (A) Distribution of the structural characteristic motifs of nine viral RNAs. (B) Matrix of the pairwise similarity score (SS). The larger 
the circle is, the closer to the pole of the color bar. (C) The length distributions of 5 S R RNAs, HR RNAs, and SRP RNAs. (D) Feature-based clustering of three RNA families. (E) The 
length distributions of I RNAs, RP RNAs, and TM RNAs. (F) Feature-based clustering of three RNA families. (G) The length distribution of SRP RNAs and TM RNAs. (H) Feature-based 
clustering of two RNA families. (I) The length distributions of 5SR RNAs, 16SR RNAs, and 23SR RNAs. (J) Feature-based clustering of three RNA families. 
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second structure presented obviously disruption in both not ap-
plying icSHAPE and adding icSHAPE reactivity as structural limita-
tion quantified by RNAsmc (Fig. 4F, G). Remarkably, there existed 
clear disagreement between experimental and RNAsnp structure. 
The result also indicated that RiboSNitches could be greatly identi-
fied based on RNAsmc. 

RNAsmc exhibited notable detection efficiency of RNA structure 
heterogeneity, and could be used as an effective pre-screening tool 
for experimental detection of RiboSNitches. Our findings 

demonstrated that the structural changes of RNA induced by 
single-nucleotide polypeptides present diversity and high hetero-
geneity, which may cause local structural changes around mutation 
sites or a disturbance of the folding state of the entire RNA tran-
script. This highlights that RNA structure is involved in complex 
cellular processes and molecular regulation with specific patterns 
and complex states. However, current research techniques and 
methods are still not able to elucidate the full complexity of the 
RNA structurome. 

Fig. 4. Detecting efficiency of RiboSNitches uncovered by RNAsmc and RNAsnp. (A) Transcripts length containing RiboSNitches. (B, C, D) The evaluation of structural heterogeneity 
by RNAsnp, RNAsmc without icSHAPE and RNAsmc with icSHAPE, respectively. Blue indicated RiboSNitches could not charactered by tools, however, others represented SNPs 
could be identified as RiboSNitches. (E) The second structure of WT and MT structure predicted by RNAsnp, where red indicates MT allele and blue indicates WT allele. G494A on 
ENST00000580551, P = 0.74. (F, G) Conformational changes induced by G494A were assessed by RNAsmc without or with icSHAPE reactivity. WT and MT base are marked by red or 
blue arrow. 
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3.5. Identification and analysis of RSS motifs 

We explored a user-friendly computational pipeline, RNAsmc. It 
may be useful for labeling specific RSS motifs, comparing RSS motifs 
based on motif features, and clustering of different RNAs. RNAsmc is 
driven by structural characteristics, which significantly aid in clas-
sification of RNA families, functional annotations, and analysis of 
allosteric effects after single-nucleotide changes in RNA transcripts. 
It mainly provides three functional panels, namely, a motif identi-
fication module, visualization module, and annotation module, along 
with a series of efficient calculating functions (Table 1). A brief tu-
torial for applying RNAsmc was depicted using a case study in the  
Supplementary materials. The powerful and detailed structural vi-
sualization and analysis provided by RNAsmc may help to intuitively 
determine structural differences between RNAs and offer strong 
support for further elucidating RNA function and bridging the cor-
relation between RNA structure and function. 

4. Discussion 

In the present study, we proposed a pipeline, RNAsmc, to extract 
RSS motifs and conduct feature-based functional evaluations. We 
presented motif-based vector by RNAsmc, a novel structural en-
coding represented by six characters. The coding roles were more 
accessible to read than dot-bracket notation and the BEAR feature 
vectors [44]. We found that RNAsmc can function as an efficient 
webserver and aid in RSS motif mining/visualization, feature-based 
RNA structural comparisons, RNA family clustering, and functional 
annotations. In addition, RNAsmc adopts an SS scoring principle to 
quantitatively detect allosteric effects induced by nucleotide muta-
tions, which is an effective algorithm to measure heterogeneity of 
RSS and identify RiboSNitches and reveal the structure changes of 
Riboswitches with high accuracy. Notebaly, RNA structures de-
termined by chemical probing with high-throughput sequencing can 
also be accepted by RNAsmc. Finally, the analysis process was in-
tegrated to exploit an R package (https://CRAN.R-project.org/pack-
age=RNAsmc), which was built for deciphering structural features 
and elucidating how RNA architecture contributes to molecular 
functions and essential biological processes. 

RNA sequences and complementary base pairs are the basic 
building blocks of RSS motifs. Primary sequences play a fundamental 
role in the process of folding RNAs into higher spatial structures. We 
suspected that RNA sequence length would be an important factor 

influencing quantification of structural comparisons. We were also 
curious as to whether RNA families are clustered based on similar 
distributions of sequence lengths. Hence, we designed detailed 
group-testing and in-depth discussion to investigate these issues in 
our present study. Furthermore, we investigated whether members 
of a given RNA family with different sequence lengths would be 
accurately labeled with family tags by RNAsmc. Testing groups were 
randomly selected and included two RNA families (RP RNAs and SRP 
RNAs) with similar length distributions, containing 15 RP RNAs 
(250–300 bp, defined as RP RNA-1), 15 RP RNAs (300–350 bp, de-
fined as RP RNA-2), 15 SRP RNAs (250–300 bp, defined as SRP RNA- 
1), and 15 SRP RNAs (300–350 bp, defined as SRP RNA-2).  
Supplementary Fig. 4E shows comparisons of sequence lengths be-
tween different groups. We found that there was no significant 
difference between the two RNA families (P = 0.35), but that there 
were significant length differences within the respective RNA fa-
milies, RP RNAs (P = 3.28e-6), and SRP RNAs (P = 3.24e-6). We per-
formed feature-based clustering utilizing RNAsmc and found that 
the classification accuracy was 95% (57/60, Supplementary Fig. 4F), 
although there was significant variance within RNA families. This 
result demonstrated that independent of the testing data that we 
used—whether they be short RNAs, long RNAs, or long-span length 
RNAs—RNAsmc maintained a stable accuracy for structural com-
parisons and family classifications. Hence, RNAsmc is not restricted 
by different types of sequences and is robust across a wide length 
distribution. 

In order to assess the efficiency of RNAsmc, we selected 
’RNAstrPlot’ and ’strCompare,’ two functions with higher computa-
tional complexity, to perform our tests using personal computers 
(PCs, with I5-CPU and 8 G RAM). We constructed the RSS motifs of 
1000 lncRNAs and carried out structural comparisons (Group IV in 
methods). The fitting curve of the running time was as follows 
(Supplementary Fig. 4G): 

= × ×strPlot time s length bpRNA : ( ) 7.84 10 ( ) ,3 1.54

= × ×strCompare time s length bp: ( ) 1 10 ( ) .2 1.83

The computing time increased with sequence length, but it was 
still within acceptable limits. The running times of ‘strCompare’ and 
‘RNAstrPlot’ were approximately 15 s and 8 s when the RNA length 
was 1000 bp. As the sequence became longer, the time required to 
compare RNA motifs was much more than that from plotting. This 
phenomenon may be due to the increased complexity of RNA 
structure. 

5. Conclusion 

In conclusion, our designed computational tool, RNAsmc, was 
able to analyze complex RSS, detect RNA motifs, and evaluate si-
milarities between any two RSS motifs. Moreover, our strategy of 
dynamic motif alignment provides an effective quantitative in-
dicator for classifying RNA families and deciphering unknown 
functions. Uncovering RNA structural heterogeneity by focusing on 
motif features provides insight into the evaluation of allosteric ef-
fects. This computational strategy may be useful as a practical tool 
for identifying RNA RiboSNitches in single-nucleotide mutations 
within RNA transcripts. Taken together, RNAsmc may aid in eluci-
dating mechanisms of how RSS motifs contribute to molecular 
functions and provides an effective method for future studies fo-
cusing on RNA structure-function relationships. 
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