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ABSTRACT

Motivation: Whole-genome sequencing of tumor samples has been

demonstrated as an efficient approach for comprehensive analysis of

genomic aberrations in cancer genome. Critical issues such as tumor

impurity and aneuploidy, GC-content and mappability bias have been

reported to complicate identification of copy number alteration and

loss of heterozygosity in complex tumor samples. Therefore, efficient

computational methods are required to address these issues.

Results: We introduce CLImAT (CNA and LOH Assessment in Impure

and Aneuploid Tumors), a bioinformatics tool for identification of

genomic aberrations from tumor samples using whole-genome

sequencing data. Without requiring a matched normal sample,

CLImAT takes integrated analysis of read depth and allelic frequency

and provides extensive data processing procedures including

GC-content and mappability correction of read depth and quantile

normalization of B-allele frequency. CLImAT accurately identifies

copy number alteration and loss of heterozygosity even for highly

impure tumor samples with aneuploidy. We evaluate CLImAT on

both simulated and real DNA sequencing data to demonstrate its

ability to infer tumor impurity and ploidy and identify genomic

aberrations in complex tumor samples.

Availability and implementation: The CLImAT software package can

be freely downloaded at http://bioinformatics.ustc.edu.cn/CLImAT/.

Contact: aoli@ustc.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Various aberrations such as amplification, deletion and trans-

location of segmental regions are common features of cancer

genomes and play an important role in tumorigenesis and

progression (Albertson et al., 2003; Stratton et al., 2009). It is

reported that dysfunction of oncogene and tumor suppressor

gene is related to frequent genomic aberrations (Bignell et al.,

2010; Stephens et al., 2009; Stratton et al., 2009). Genomic

aberrations in specific regions have been used as an indicator

of aggressiveness of cancer and clinical outcome (Car�en et al.,

2010; Suzuki et al., 2000). Genome-wide copy number alteration

(CNA) and loss of heterozygosity (LOH) are two essential

features of cancer genomes, and accurate detection of these

abnormalities is a crucial step to assess genomic aberrations

and cancer-related genes. Experimental technologies are now

available for high-throughput profiling of genome-wide aberra-

tions in tumor samples, such as array comparative genomic

hybridization (Park, 2008), single nucleotide polymorphism

(SNP) genotyping array (Li et al., 2011; Peiffer et al., 2006)

and more recently, whole-genome sequencing (WGS) technology

for massively parallel sequencing of DNA (Mardis, 2008;

Metzker, 2009; Morozova and Marra, 2008; Schuster, 2007).

By allowing for comprehensive analysis of genomic aberrations

in cancer genomes, WGS has been demonstrated as an efficient

platform for studies of human cancers (Metzker, 2009).
Although several computational approaches have been

proposed for assessing genomic aberrations from tumor sequen-

cing data (Boeva et al., 2011, 2012; Carter et al., 2012; Gusnanto

et al., 2012; Ha et al., 2012; Mayrhofer et al., 2013;

Sathirapongsasuti et al., 2011; Xi et al., 2011), most of these

methods do not effectively address the critical issues encountered

in interpreting complex tumor samples. For example, tumor

samples are often infiltrated with normal stroma, resulting in

inevitable contamination of normal DNA and dilution of

somatic aberration signals (Boeva et al., 2011, 2012; Gusnanto

et al., 2012; Ha et al., 2012; Mayrhofer et al., 2013). Impurity of

tumor sample can significantly alter WGS data; and therefore,

complicates genomic aberration detection, especially when

normal cells dominate in tumor samples. Recent studies, such

as FREEC (Boeva et al., 2011, 2012) and APOLLOH (Ha

et al., 2012), have been proposed to address this issue. FREEC

constructs copy number and B-allele frequency (BAF) profiles to

detect CNA and allelic content in cancer genomes, with optional

correction for tumor impurity. APOLLOH is designed for LOH

detection using tumor-normal paired samples, and the issue of

tumor impurity is addressed by a two-component mixture model

for allelic read counts.
In addition to tumor impurity, tumor aneuploidy is another

critical issue in genomic aberration detection, which is caused by

various numerical and structural chromosomal abnormalities

frequently observed in cancer genome (Carter et al., 2012).

Although APOLLOH introduces a delicate statistical model to

eliminate the effect of tumor impurity, it does not take account

of tumor aneuploidy in modeling and analyzing tumor WGS

data. To handle aneuploid tumor samples, FREEC provides*To whom correspondence should be addressed.
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an option for users to input tumor ploidy. Currently, automatic
correction for tumor aneuploidy using WGS data still remains a
challenging task. Theoretically, it is often difficult to determine

the actual ploidy of cancer cells by sequencing technology
(Gusnanto et al., 2012). In some particular cases, somatic
aberration signals could present similar characteristics among

genomes of different ploidy (Gusnanto et al., 2012; Oesper
et al., 2013), which makes it hard to accurately estimate the
tumor ploidy. It should be pointed out that, complicated

interpretation of WGS data are even more challenging in
tumor samples confounded by both tumor impurity and aneu-
ploidy, as they usually cannot be solved separately (Oesper et al.,

2013).
So far, only a few algorithms have been proposed for analyz-

ing WGS data of impure tumor samples with aneuploidy (Carter
et al., 2012; Gusnanto et al., 2012; Mayrhofer et al., 2013; Oesper

et al., 2013). For example, CNAnorm (Gusnanto et al., 2012)
uses a mixture normal distribution for ratios of tumor-normal
read counts to correct tumor impurity and aneuploidy. However,

CNAnorm assumes that the most common component in the
normal mixture is diploid, which may not hold for aneuploid
tumor samples. Moreover, it cannot detect LOH in cancer

genomes. Another approach, ABSOLUTE (Carter et al., 2012),
is originally introduced to detect CNA from SNP array data by
inferring tumor impurity and ploidy. Although it can be adapted

to analyze DNA sequencing data, a previous study shows that
the underlying statistical models used by ABSOLUTE do not
comprehensively describe the characteristics of DNA sequencing

data and therefore may sometimes gravely misestimate the tumor
impurity and ploidy (Oesper et al., 2013). Recently, Markus et al.
introduced a novel method called Patchwork (Mayrhofer et al.,

2013) for allele-specific copy number analysis of sequenced
tumor tissue in consideration of tumor impurity and tumor
aneuploidy, which requires intermediate arguments determined

by users. In addition, it is noteworthy that another method called
THetA was proposed recently to analyze tumor sequencing data
(Oesper et al., 2013). THetA mainly focuses on the inference of

cancer subclones in heterogeneous tumor samples and cannot
detect LOH in cancer genomes, as it only utilizes read
count data. Therefore, it is essential to develop an efficient

approach for analysis of tumor sequencing data by comprehen-
sively addressing the challenge of tumor impurity and
aneuploidy.

In this study, we present a novel method called CLImAT
(CNA and LOH Assessment in Impure and Aneuploid
Tumors) to detect genomic aberrations with automatic

correction for both tumor impurity and aneuploidy. Without
requiring a matched normal sample, CLImAT fully explores
both read depth (RD) and allele frequency derived from tumor

WGS data, and provides extensive data processing procedures
including elimination of sequencing/mapping bias and quantile
normalization (QN) of allele frequency data. By adopting an

integrated Hidden Markov Model (HMM) that quantitatively
delineates tumor impurity and ploidy, CLImAT provides accur-
ate identification of various kinds of genomic aberrations even

for highly impure tumor samples with aneuploidy. We apply
CLImAT to both simulated and real tumor data, and the results
demonstrate the superior performance of CLImAT in analysis of

genomic aberrations using tumor WGS data.

2 METHODS

2.1 Simulated data by sampling reads from tumor-normal

mixture

To assess the performance of CLImAT for complex tumor samples, we

generate simulated tumor samples with different impurity and ploidy.

Similar to the procedure proposed previously (Duan et al., 2013), virtual

tumor-normal mixture experiment is performed on chromosome 20 of

human reference genome (NCBI build 36, hg18) by sampling reads from

a control genome and a test genome with tumor impurity ranging from 0

to 0.9 with 0.1 increments (Supplementary Methods). The test genome is

constructed by dividing the reference genome into 20 non-overlapping

and equally sized segments, which are randomly assigned with particular

kinds of genomic aberrations (Supplementary Figure S1). Sampled reads

from both control and test genome are mapped to the reference using

Bowtie (Langmead et al., 2009) with default parameters. BAM files and

pileups are generated by SAMtools (Li et al., 2009). For each

combination of predetermined tumor impurity and ploidy (diploidy,

triploidy and tetraploidy), three BAM files are generated at 10�, 30�

and 60� sampled coverage, respectively. The average copy number

(ACN) is 2.48, 3.19 and 4.00 for diploid, triploid and tetraploid tumor

samples, respectively. By this way, we generate totally 90 simulated tumor

samples for comprehensive evaluation of prediction performance.

Detailed information about construction of test genomes and read

sampling process is provided in Supplementary Methods.

2.2 Real sequencing data of tumor samples

WGS data from three unpaired primary triple negative breast cancer

(TNBC) samples described in a previous study (Shah et al., 2012) are

adopted in this study. Each sample was sequenced at �30� coverage on

the Life/ABI SOLID sequencing platform. Reads were mapped to the

reference genome hg18 using BioScope. The data was downloaded from

European Genome-Phenome Archive (EGA) with accession number

EGAS00001000132.

2.3 Pipeline of CLImAT

The pipeline of CLImAT is depicted in Supplementary Figure S2. RD

used in this study is retrieved from the BAM file using SAMtools (Li

et al., 2009) and is further processed to correct GC and mappability bias.

BAF signals of all known SNPs in dbSNP database (Sherry et al., 2001)

are normalized to eliminate allelic bias. Both RD and BAF signals are

modeled by an integrated HMM for identifying genomic aberrations,

including CNA and LOH, and estimating tumor impurity and ploidy.

2.4 Deriving RD and BAF from tumor WGS data

In this study, RD is obtained by counting the reads with starting position

within a 1000-bp window centered at each SNP. For BAF, we count the

reads that override the SNP and the reads with non-reference base at the

corresponding SNP as B allelic read count. Thus, BAF of the SNP is

calculated as the proportion of B allelic reads. Consisted with the

procedure adopted in previous study (Ha et al., 2012), data filtering is

taken to further eliminate positions that have either low depth (510 reads

for 30/60� coverage and55 reads for 10� coverage) or high depth (4250

reads).

2.5 Signal correction and normalization

GC-content and mappability may heavily affect RD signals and bring

bias to CNA detection. Therefore, as the first step we perform a

correction procedure to remove the bias in RD signals. For each

window used in RD calculation, GC-content is measured by calculating

the G+C percentage, and the mappability score is defined as the

average of mappability values. The mappability file used in this study
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was obtained from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/

encodeDCC/wgEncodeMapability/. Following the procedure used in

(Yoon et al., 2009), we scale GC-content and mappability score to integer

values between 0 and 100, and perform correction of RD signals using the

following equation:

rdci=rdi �
m

mX
ð1Þ

where rdci is the corrected RD of the ith window, rdi is the original RD of

the ith window, m is the overall median RD of all the windows and mX is

the median RD of the windows that have the same GC-content and

mappability values as the ith window.

It has been reported that loss of reads (LOR) issue happens in the

alignment step of sequencing data processing (Kim et al., 2013). Indeed,

most aligners, such as BioScope and BWA (Li and Durbin, 2009), have

the preference for aligning reads to reference allele over alternative allele.

Reads sequenced from alternative chromosome are inclined to be

discarded because of mismatches between reference sequence and read

sequence, leading to asymmetrical distribution of allelic frequencies.

Therefore, it is necessary to normalize the BAF data for better estimation

of LOH and other related parameters, including tumor impurity and

ploidy. We adopt an efficient QN (Bolstad et al., 2003) procedure to

address this issue (Supplementary Methods).

2.6 Integrated HMM

We propose an integrated HMM that takes RD and BAF data as input.

Supplementary Table S1 shows the hidden states defined in the HMM

with detailed description of each HMM state regarding copy number,

tumor genotype mutated from normal cell genotype and zygosity status.

Tumor and normal genotype pairs are used to give a detailed view of the

intrinsic relationship between genotypes of tumor and normal cells

admixed in tumor samples. For example, (AAAB, AB) is the case that

tumor genotype ‘AAAB’ is derived from normal cell genotype ‘AB’.

2.6.1 Emission probabilities Aligning a read to a genomic position

can be treated as a Bernoulli trial (Ha et al., 2012). Thus, given the

number of reads that override a SNP position, the number of reads

that have non-reference base at corresponding SNP position is modeled

by a binomial distribution. Suppose B allelic read count and total read

count of the ith SNP are bi and Ni, respectively, the observation prob-

ability for hidden state c can be formulated as:

p bi jws;Ni; cð Þ=
Xgc
k=1

p0 kð Þ
Ni

bi

 !
zck
yc

� �bi

1�
zck
yc

� � Ni�bið Þ

ð2Þ

where gc is the number of tumor genotypes included in state c. The ACN

yc and average B allele copy number zck for state c are defined as:

yc=ns � ws+nc � 1� wsð Þ ð3Þ

zck=ns�sws+nc�ck 1� wsð Þ ð4Þ

where ns is the normal copy number and is fixed to 2 in this study, nc is

the tumor copy number in state c and ws is the level of tumor impurity. us
denotes expected BAF value of normal cells and is fixed to 0.5, and uck
represents the expected BAF value of the kth tumor genotype in state c.

Taking into account the over-dispersed distribution of RD values

(Anders and Huber, 2010), we use a negative binomial distribution to

model RD signals. Suppose that RD of the ith SNP is di, the observation

probability for hidden state c can be formulated as:

p di j ws; o; �; pc; cð Þ=
� di+

�c 1�pcð Þ

pc

� �
� di+1ð Þ� �c 1�pcð Þ

pc

� � 1� pcð Þ
�c 1�pcð Þ

pc pdic ð5Þ

where � is the gamma function and pc is a parameter of negative binomial

distribution defined as the probability of success. The average read count

�c for state c is defined as:

�c=
yc
2
�+o ð6Þ

where � is the mean value of copy neutral read count and varies with

respect to tumor ploidy change. o accounts for background RD noise

resulted from sequencing error and wrongly mapped reads.

2.6.2 EM algorithm for parameter estimation We employ expect-

ation maximization (EM) algorithm for HMM training and parameter

estimation. In the expectation step, the expectation of the partial log-

likelihood of BAF is formulated as:

EðLLbÞ=
XN
i=1

XC
c=1

� iðcÞ
Xgc
k=1

 
log

  
Ni

bi

!!

+bilog

 
zck
yc

!
+ðNi � biÞlog

 
1�

zck
yc

!! ð7Þ

where �i cð Þ represents the posterior probability that the ith SNP is in state

c and is calculated by the forward-backward algorithm (Rabiner, 1989).

Similarly, the expectation of the partial log-likelihood function of RD can

be formulated as:

E LLdð Þ=
XN
i=1

XC
c=1

�i cð Þlog p di jws; o; �; pc; cð Þð Þ

=
XN
i=1

XC
c=1

� i cð Þ

log � di+
�c 1� pcð Þ

pc

� �� �
+dilog pcð Þ

+
�c 1� pcð Þ

pc
log 1� pcð Þ

�log � di+1ð Þð Þ � log �
�c 1� pcð Þ

pc

� �� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð8Þ

In the maximization step of the EM algorithm, we use Newton algo-

rithm to update the parameters in emission probabilities. For example,

during iteration n we update the parameter ws by using the following

formula:

ws;n+1=ws;n �

@E LLbð Þ

@w + @E LLdð Þ

@w
@2E LLbð Þ

@2w
+ @2E LLdð Þ

@2w

ð9Þ

All the parameters are iteratively updated until the EM algorithm

converges. Copy number and tumor genotype for each SNP are deter-

mined by the hidden state with the largest conditional probability. In

addition, post-processing is performed for copy number annotation of

highly amplified regions (copy number47) according to the mean RD

values of all SNPs within these regions (Supplementary Methods). To

evaluate the reliability of CLImAT results, we also calculate a reliability

score for each region to measure how well the data fit to the model

(Supplementary Methods).

3 RESULTS

3.1 Correction and normalization of RD and BAF signals

We assess the performance of GC-content and mappability

correction and plot the distribution of RD with respect to GC-

content and mappability score for 1–3 copies (Supplementary

Figure S3). Before correction, RD signals demonstrate a

unimodal distribution with respect to GC-content and are posi-

tively correlated with mappability scores. After correction both
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GC-content and mappability bias is significantly eliminated.

Further investigation suggests the order of GC-content and

mappability correction performed to tumor WGS data

affects the final results and simultaneous correction for both

GC-content and mappability bias shows better performance

(Supplementary Figure S4).

It is observed that owing to LOR issue BAF plots of tumor

samples display asymmetrical bands positioned around 0.5

(Supplementary Figure S5A). The altered distribution of BAF

signals seriously hampers accurate identification of genomic

aberrations in tumor samples. After applying the QN procedure,

BAF signals are largely corrected with symmetrical bands

positioned around 0.5 (Supplementary Figure S5B).

3.2 Appling CLImAT to simulated data

We apply CLImAT to simulated tumor data, and the results are

shown in Supplementary Figure S6. The RD and BAF signals

vary dramatically with increased tumor impurity for both diploid

and triploid genomes. Especially, with 90% normal cells admixed

in the tumor sample, both RD and BAF signals for aberrant

regions are dramatically attenuated. CLImAT correctly detects

all aberrant regions and provides CNA and LOH prediction with

reasonable performance.

3.2.1 Estimation of tumor impurity and ploidy We examine
tumor impurity estimated by CLImAT and ABSOLUTE

(Carter et al., 2012) on simulated data, and the results of

tumor samples at 60� coverage are shown in Figure 1A.

CLImAT accurately estimates tumor impurity from 0 to 0.9

with significant correlation with the ground truth (correlation

coefficient=0.999, P=6.24� 10–21 for diploid samples, correl-

ation coefficient=0.999, P=2.75� 10–12 for triploid samples

and correlation coefficient=0.999, P=1.42� 10–11 for tetra-

ploid samples), indicating CLImAT can precisely recover the

proportion of cancer cells in tumor samples. In contrast,

the performance of ABSOLUTE is not optimal and sometimes

the results obviously deviate from the ground truth. Similar

results are observed for simulated samples at 30� coverage

(Supplementary Figure S7). To assess the performance of

tumor ploidy estimation, we calculate the ACNs for simulated

samples from the results of ABSOLUTE and CLImAT. As

shown in Figure 1B, CLImAT exhibits prominent advantage

over ABSOLUTE in estimating tumor ploidy. For example,

CLImAT correctly identify all diploid samples at 30� coverage

as diploidy, whereas ABSOLUTE tends to assign them as hyper-

ploidy. Taken together, these results suggest that CLImAT can

efficiently estimate both tumor impurity and tumor ploidy from

complicated tumor samples.

3.2.2 LOH and CNA detection We adopt the performance
evaluation procedure proposed in APOLLOH (Ha et al.,

2012), in which all the calls of the informative (heterozygous)

positions are used as the golden standard to compare the abilities

of different computational methods in detecting genomic aber-

rations. Accordingly, the CNA/LOH calls of heterozygous pos-

itions pre-determined in unpaired simulated data are treated as

the ground truth. We use the standard way for performance

evaluation by separately comparing the results of the computa-

tional methods investigated in this study to the ground truth in

terms of sensitivity and specificity (more details of performance

evaluation are provided in Supplementary Methods). The LOH

detection results of three computational methods, FREEC

(Boeva et al., 2012), SNVMix (Goya et al., 2010) and

CLImAT, are shown in Figure 2. For diploid tumor samples

(Fig. 2A), FREEC shows high specificity in all tests and the

sensitivity is generally good at medium tumor impurity levels.

Compared with the other methods, CLImAT demonstrates

strong robustness to tumor impurity and maintains high sensi-

tivity (40.99) across all tumor samples with impurity level50.9.

Fig. 1. Estimated tumor impurity and ACN of simulated samples. (A) Tumor impurity estimated by ABSOLUTE and CLImAT for samples at

60� coverage. 2p: diploid samples, 3p: triploid samples, 4p: tetraploid samples. (B) ACNs estimated by ABSOLUTE and CLImAT for simulated

samples. Each bar shows the mean and standard deviation of estimated ACNs obtained from 10 samples with tumor impurity ranging from 0 to 0.9
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It also keeps consistent high specificity with respect to different

tumor impurity levels (50.8) and sampled coverage. Similar

results are observed for triploid and tetraploid tumor samples

(Fig. 2B and C).
Next, CNA detection performance is evaluated for FREEC

and CLImAT, and the results suggest that FREEC has good

performance for diploid tumor samples when tumor impurity

is50.5 (Supplementary Figure S8A). At larger tumor impurity

levels, the sensitivity decreases while the specificity remains high.

With similar specificity across all impurity levels, CLImAT is

able to retain high sensitivity (40.99) when the tumor impurity

is 50.9. For triploid and tetraploid tumor samples

(Supplementary Figure S8B and C), CLImAT also performs

well in identifying CNA regions. At the same time, we investigate

the performance of Patchwork, and results of simulated tumor

samples are shown in Table S2. We find that in general both

Patchwork and CLImAT can provide accurate aberration detec-

tion with similar performance, if the intermediate arguments of

Patchwork are correctly determined by the user. Furthermore,

we test CLImAT on low-coverage sequencing data, and the

results for simulated data with 10� coverage suggest that

CLImAT may also be applied to low coverage tumor WGS

data when tumor impurity level is not high (Supplementary

Figure S9).
In addition to aberration detection for tumor samples, we

examine the reliability score (Supplementary Methods) that is

used to measure how well the data fits to the model. For simu-

lated tumor data with two cancer subclones (Supplementary

Figure S10), the reliability score for the heterogeneous region is

significantly lower than those of other homogeneous regions,

suggesting it can help the user to evaluate the fitness of the

model and provide better interpretation of the results.

3.3 Applying CLImAT to TNBC samples

Three TNBC samples sequenced at �30� coverage are adopted

to examine the performance of CLImAT, which are also assayed

by Affymetrix SNP6.0 array for comparison. By using ASCAT

(Van Loo et al., 2010), the results generated from SNP arrays are

used as the ground truth. We first evaluate ACN and impurity of

these tumor samples using different methods, and the results are

shown in Table 1. From the results of ASCAT, sample 1 is

identified as aneuploid tumor, whereas samples 2 and 3 are iden-

tified as hyperploid tumors. Tumor sample 1 demonstrates

genome-wide deletions with ACN of 1.67, whereas tumor sam-

ples 2 and 3 include dramatic amplifications along the whole

cancer genome, with ACN of 3.02 and 4.16, respectively.

CLImAT provides consistent estimation of ACN for the three

tumor samples. Also, the tumor impurity levels estimated by

CLImAT are in good concordance with the ground truth.

These results suggest CLImAT has the potential for automatic-

ally identifying and correcting for tumor impurity and aneu-

ploidy in complicated tumor samples.
Next, we examine LOH detection performance of FREEC,

CLImAT and SNVMix (Fig. 3). The same performance evalu-

ation procedure for simulated data analysis is adopted here, and

the CNA/LOH calls of heterozygous positions recognized by

ASCAT are treated as the ground truth (Supplementary

Methods). For all three tumor samples, CLImAT compares

favorably to SNVMix and FREEC. It achieves superior sensitiv-

ity of 0.98, 0.97 and 0.94 for samples 1, 2 and 3, respectively, with

specificity better than or comparable with those of the other

methods. We also examine the performance of CNA detection,

and the results in Supplementary Table S3 show CLImAT has

high consistency with ASCAT. Furthermore, Figure 4 illustrates

the WGS and SNP array data for chromosome 8, 13 and 14 of

Fig. 2. LOH detection performance of FREEC, SNVMix and CLImAT on unpaired simulated data. (A) Results for diploid samples. (B) Results for

triploid samples. (C) Results for tetraploid samples

2580

Z.Yu et al.

less than 
Figure 2
lower than 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
lower than 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
X
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
approximately 
X
sample 
very 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
,
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu346/-/DC1
very 


tumor sample 1, in which both BAF and LRR/RD signals

generated from different platforms show similar patterns on

aberrant regions. Both CLImAT and ASCAT identify consecu-

tive LOH regions spanning chromosomes 8, 13 and 14,

board hemizygous deletions on 8p(11.23–22), 8q(11.21–22.1),

13q(21.2–31.3), 14p(11.1–12) and 14q(21.3–23.1, 23.2–23.3 and

32.13–32.33), and board amplifications on chromosome

13q(12.11–13.3 and 32.1–34). In addition, benefited from high

resolution of WGS platform, CLImAT provide more precise

detection of small focal aberrations than ASCAT. For example,

on 8p23 ASCAT only detects one homozygous deletion whereas

CLImAT identify two additional homozygous deletion regions

on 8p23.1, which harbors a potential tumor suppressor gene

PinX1 related to telomerase activity and chromosome stability

(Zhou et al., 2011).

4 DISCUSSION AND CONCLUSION

Featured with finer resolution than previous genomic technolo-

gies, WGS allows more comprehensive analysis of tumor aber-

rations. In this study, we introduce an efficient computational

approach for this purpose, which presents remarkable advan-

tages over existing methods for interpretation of complicated

tumor samples without prior knowledge of tumor impurity and

ploidy. One advantage of CLImAT is the correction and nor-

malization procedure for improving data quality of unpaired

tumor samples. For example, BAF is normalized in CLImAT

for elimination of LOR bias, which is indispensible for further

statistical modeling analysis of WGS data. GC-content and

mappability correction of RD is also a crucial step for detecting

aberrations in unpaired tumor samples.
Another advantage of CLImAT lies in the fact that it takes

integrated analysis of RD and BAF using a novel HMM to

provide accurate detection of genome-wide aberrations in

tumor samples. The emission probabilities of HMM used in

CLImAT give comprehensive description of the statistical behav-

ior of sequencing data generated from tumor samples. Unlike

previous approaches using Poisson distributions, more flexible

negative binomial distribution is adopted to model over-

dispersed RD signals. Moreover, the relevant parameters includ-

ing tumor impurity and ploidy are automatically estimated by

EM algorithm. These approaches ensure the performance of

CLImAT for complex tumor samples.
Despite of the advantages mentioned above, CLImAT also

has limitations in modeling and analysis of tumor sequencing

data. First, CLImAT cannot be applied to exome-sequencing

data, as it is originally designed to deal with unpaired WGS

data. Second, although 42.6 million SNPs are investigated in

CLImAT and only 1.5% adjacent SNPs have relatively large

distance (45kb), the resolution of CLImAT may still be limited

by genomic breakpoints that lie between SNPs. To further im-

prove the resolution of CLImAT, we provide an option to esti-

mate copy number for the regions between distant SNPs (41kb)

by calculating the corresponding RD signals (Supplementary

Methods). Third, CLImAT does not account for the issue of

tumor heterogeneity (Mayrhofer et al., 2013; Oesper et al.,

2013). The basic assumption adopted in CLImAT is that there

is a single copy number for all tumor cells, which will not hold if

multiple subclones exist in a tumor sample. Recently, Oesper

et al. investigated tumor heterogeneity using DNA sequencing

data and showed that multiple tumor subclones may often exist

in tumor samples (Oesper et al., 2013), suggesting that tumor

heterogeneity is another key factor in interpreting tumor sequen-

cing data. In heterogeneous tumor samples, the somatic aberrant

signals derived from tumor sequencing data can be complicated,

which makes it hard to deconvolute subclonal aberrations.

Therefore, more advanced methods are required to assess

tumor heterogeneity in tumor sequencing data.
In conclusion, we present CLImAT, an efficient and powerful

bioinformatics tool, for detection of genomic aberrations using

tumor WGS data. We expect it will be helpful for comprehensive

interpretation of cancer genome and show its potential usefulness

in clinical diagnosis and treatment for cancers.

Table 1. ACN and tumor impurity estimated by FREEC, ASCAT and CLImAT for primary TNBC samples

Methods ACN Impurity

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

ASCAT 1.67 3.02 4.16 0.26 0.44 0.38

CLImAT 1.87 3.15 4.13 0.19 0.43 0.32

FREEC 1.92 3.77 4.92 0.20 0.22 0.29

Fig. 3. LOH detection performance for primary TNBC samples. LOH

detected by ASCAT from Affymetrix SNP6.0 arrays is used as ground

truth
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