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Abstract

Background: Studying biological networks is of extreme importance in understanding cellular functions. These
networks model interactions between molecules in each cell. A large volume of research has been done to
uncover different characteristics of biological networks, such as large-scale organization, node centrality and
network robustness. Nevertheless, the vast majority of research done in this area assume that biological networks
have deterministic topologies. Biological interactions are however probabilistic events that may or may not appear
at different cells or even in the same cell at different times.

Results: In this paper, we present novel methods for characterizing probabilistic signaling networks. Our methods
do this by computing the probability that a signal propagates successfully from receptor to reporter genes
through interactions in the network. We characterize such networks with respect to (i) centrality of individual
nodes, (ii) stability of the entire network, and (iii) important functions served by the network. We use these
methods to characterize major H. sapiens signaling networks including Wnt, ErbB and MAPK.

Background
Studying the structure and functions of individual biolo-
gical molecules such as genes and proteins has led to
major discoveries in molecular biology. However, in
order to understand how cells function and respond to
internal or external factors, it is crucial to extend our
understanding beyond individual molecules to how
these molecules collaborate through interactions. These
interactions among molecules are often modeled as bio-
logical networks, in which nodes represent molecules
and edges represent the interactions.
Signaling networks constitute one of the key classes of

biological networks. These networks model how extracel-
lular signals propagate inside the cell leading to desig-
nated responses. A signal starts at a receptor protein,
typically located at the membrane. It propagates through
a series of interactions between intermediate proteins
and reaches to a reporter protein, typically a transcription

factor. Analysis of these networks is of great importance,
since their defects cause many disorders such as type-2
diabetes, Alzheimer, neurodegeneration, cancer, obesity,
congenital malformations and osteoporosis [1-3].
A fundamental strategy in analyzing biological net-

works is to characterize their topological features compu-
tationally. There has been a plethora of studies to model
a multitude of characteristics of biological networks.
Among them, degree [4-6] or joint degree distribution
[7], node centrality [8-10], network robustness [11,12]
are just a few examples. We elaborate on the literature
later in this section.
One inherent and key feature of biological networks

that is often overlooked in the literature while character-
izing them is that their topology is uncertain. Signaling
networks share the same uncertainty. There are numer-
ous reasons for such uncertainty. One of them arises
from an inherent characteristic of the DNA replication
process, that this process can initiate at many different
locations on the chromosome with varying probabilities
[13]. Furthermore, the set of initiation locations can vary
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across cells of even the same type. Recent studies have
demonstrated that the replication timing as well as other
epigenetic factors can alter the expression of the genes
[14] and thus the probability of cis-acting and trans-
acting interactions taking place in the cell. Therefore,
even the most putative signaling networks are better off
studied in an uncertain model.
Uncertainty of each interaction is often modeled as a

probability value which shows the confidence in its pre-
sence [15]. These probability values can be obtained
through some interaction databases, like STRING [16]
and MINT [17], or through other methods of interac-
tion data quality assessment such as linear regression of
various factors including transcriptome and network
topology [18,19]. In the rest of this paper, we call a net-
work a probabilistic network if it contains at least one
uncertain interaction. Otherwise, we call it a deterimi-
nistic network. We represent a probabilistic network as a
graph G = (V, E, P ), where V denotes the set of nodes
(i.e., proteins), E denotes the set of edges (i.e., interac-
tions), and P : E ®[0, 1] denotes a function that returns
the existence probability of each edge in E.
Most of the existing studies on characterizing net-

works are limited to deterministic network topologies.
The main reason behind this limitation is that a prob-
abilistic network summarizes a massive number of alter-
native topologies. More specifically, a deterministic
instance of a probabilistic network represents a case
where a certain subset of the edges in E exists and the
rest do not. Thus, a probabilistic network G = (V, E, P)
has 2|E| unique deterministic instances. Figure 1 illus-
trates this on a small probabilistic network with only
two edges. Such exponential growth of the number of
alternative topologies makes studying probabilistic net-
works an extremely challenging problem.
The vast majority of literature about characterization

of biological networks considers them as deterministic
networks, and ignores the probabilistic nature of their
underlying topologies. The massive volume of research
done in this area cannot be entirely covered in a few

pages. We refer the interested readers to an extensive
review on the topic [20]. In the following, we summarize
some of the key recent studies.
Studies on deterministic networks. Jeong et al. [9]

studied node centrality in protein interaction networks.
They showed that the protein interaction network from
S. cerevisiae follows a scale-free topology. They also
showed that the chances that removal of a protein will
prove lethal is proportional to the number of interac-
tions the protein takes part in.
Yook et al. [4] presented methods for characterization

of protein interaction networks. They characterized net-
works from four different datasets. First, they showed
that both degrees and clustering indices of the nodes,
along with the average cluster size, all follow power law
distribution. Second, they studied the relation between
network topology and both node functional and localiza-
tion classes. Last, they studied the relations among func-
tional and localization classes.
Jeong et al. [5] investigated the large-scale organization

of metabolic networks from 43 different organisms. They
showed that, in all studied organisms, the probability that
a given substrate participates in k reactions (i.e. node
degree) follows a power law distribution. Furthermore,
when a randomly selected group of substrates are
removed, the average distance among the remaining ones
is not affected. This signifies a high level of robustness
and low sensitivity to random perturbation.
Ravasz et al. [21] studied modularity in metabolic net-

works. They used the average clustering coefficient as a
measure for modularity. They showed that metabolic
networks follow a special hierarchical model where
small modular subnetworks come together to form lar-
ger subnetworks, which in turn form larger subnetworks
and so on. This model explains the scale free topology
of metabolic networks, as well as their scaling clustering
coefficients.
Kwon et al. [12] studied robustness in biological net-

works based on feedback dynamics. They showed that net-
works are likely to be more robust against perturbation if

Figure 1 An example probabilistic network with three nodes and two edges, and its four possible deterministic instances. (a) The
probabilistic network, where p1 and p2 are the probabilities of existence of the two edges. (b) through (e) are the 4 possible instances, where
their probabilities are (1 − p1)(1 − p2), p1(1 − p2), (1 − p1)p2 and p1p2 respectively.
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they have more positive feedback loops and fewer negative
feedback loops. On the other hand, they also showed that
nodes with large numbers of feedback loops are more
essential to the network, and more lethal if mutated.
All these studies present valuable results about charac-

teristics of various types of biological networks. How-
ever, they consider them having purely deterministic
topologies. Hence, they fail to acknowledge and account
for the probabilistic nature of biological events.
Studies on probabilistic networks. Relatively little

research has been done for analysis and characterization
of probabilistic biological networks. Network reliability of
probabilistic networks has long been represented by spe-
cial versions of the Tutte polynomial [22-24]. Such mod-
els represent the probability that an edge in the network
fails. This facilitates the analysis of global characteristics
of the network such as network connectivity. However, it
does not facilitate the analysis of local characteristics, like
node centrality.
Todor et al. [7] developed a novel method for charac-

terizing the degree distribution of probabilistic biological
networks. They used probability generating functions to
model both degree distributions and joint degree distri-
butions. They showed that power law and log-normal
models are the best fit for degree distribution in probabil-
istic protein interaction networks. They also showed that,
in such networks, nodes of high degrees are more likely
to interact with nodes of low degrees. The method is spe-
cific to characterizing network degree distribution, with
no results for network stability or individual node
centrality.
We earlier developed an efficient method called

PReach [25] for computing the reachability probability
between sets of nodes in probabilistic signaling net-
works. We use this method in order to compute the
reachability probability while implementing the methods
described in this paper.
Contributions. In this paper, we test the hypothesis

that the ability of signals to propagate between the pro-
teins of a probabilistic signaling network determines the
key characteristics of that network. The rationale behind
this hypothesis is that through these signals, the proteins
can regulate the expression levels of different genes and
thus the cellular functions and responses. To test this
hypothesis, we develop novel computational methods to
characterize probabilistic signaling networks based on
reachability probability. i.e., the probability that signals
can successfully reach from its source nodes (i.e., recep-
tors) to its target nodes (i.e. reporters). More specifically,
we characterize signaling networks at three levels of
granularity. At the lowest granularity level, we focus on
individual proteins (i.e. nodes) of the underlying net-
work. At the second level, we consider the entire net-
work topology including all the proteins along with the

interactions between them. At the highest level, we
study the biological functions served by the network.
Preliminary results for the three levels were published
here [26]. We summarize each level next.
At the level of individual nodes, we investigate the

centrality of each node in a probabilistic network. Node
centrality is a metric that determines the relative impor-
tance of a node within the graph [9]. It is well defined
in the scope of deterministic networks, with a number
of variants including degree centrality and betweenness
centrality [8]. However, it is not well defined in the
scope of probabilistic networks. Here, we introduce a
new node centrality measure that deals with the uncer-
tainty of the network topology. This measure models
the centrality of a node in terms of its contribution to
the reachability probability between other nodes.
At the level of the entire network, we investigate the

stability of the network with respect to the external fac-
tors that alter its topology or interaction probabilities on
the ability of the network to carry out its functions. We
say that a network is stable if small changes to its topol-
ogy or edge probabilities do not cause massive changes in
the probability that signals initiated at source nodes reach
to target nodes. In other words, stability means that the
network can continue to operate normally after such
perturbations. We develop a new method for measuring
stability of probabilistic signaling networks.
At the level of the biological functions we explore the

set of functions that a given probabilistic signaling net-
work performs. To do this, we use the Gene Ontology
(GO) [27] term annotations of the source and target
nodes of the given network. We develop two methods
to model two orthogonal characteristics. The first one
finds the most popular GO terms (i.e. the GO terms
that are enriched by the most reachable target nodes).
The second one finds which functions can be initiated
with the highest probability (i.e., most reachable GO
terms). Collectively, these two methods explain the pre-
valent functions that are carried out by a given signaling
network through propagating signals from receptors to
reporters.

Results and discussion
In this section, we present experimental results for char-
acterization of probabilistic signaling networks. We used
the Homo sapiens signaling networks taken from KEGG
[28] in our experiments. Among those, we used the lar-
gest ones (i.e., networks with more than 50 edges), which
are ErbB, MAPK and Wnt. We obtained the sources and
targets of each signaling network based on the hierarchi-
cal organization of its proteins [29]. We set the genes at
the top of the hierarchy as the source nodes and the ones
at the bottom as the target. We extracted the confidence
scores for each interaction from STRING [16] and used
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them as edge probabilities. STRING computes the confi-
dence values by benchmarking groups of associations
against the KEGG functional classification scheme, which
is manually curated. STRING has confidence values in
the [1, 1000] interval, where 1000 indicates 100% confi-
dence. We normalized this number to the[0, 1] interval
for each interaction by dividing by 1000.

Node centrality in probabilistic networks
In this section, we present experimental results for mea-
suring probabilistic node centrality in probabilistic sig-
naling networks. As explained later in the Methods
section, We measured the probabilistic centrality value
for all proteins in ErbB, MAPK and Wnt. The first ques-
tion we need to answer at this point is whether prob-
abilistic networks yield different centrality values than
deterministic ones. If yes, what is the significance of the
difference? To answer these questions, we compared our
results with the betweenness centrality of each node in
the underlying deterministic topology, where all edges
are certain. We used the betweenness centrality for
comparison as it is used frequently in the literature
[30-32]. Also, it is the closest centrality measure to ours
in terms of the biological meaning of centrality. We
ranked the proteins according to both centrality values
separately. We then measured the disagreement between
the two rankings as follows. For each protein x, we
counted the number of proteins whose position relative
to x in one of the ranking disagree with the other. In
other words, a protein y was counted if it is more central
in the deterministic centrality ranking and less central in
the probabilistic one, or vice versa. We normalized the
resulting number to the[0, 1] interval by dividing it by
the total number of proteins in the network.
Figure 2 shows the disagreement value of all proteins

when they are ranked according to probabilistic and
deterministic centrality measures. The results demon-
strate that both centrality measures completely agree on
the proteins of the highest as well as the lowest central-
ity. The figure also shows severe disagreement for some
of the proteins. We observe that these proteins are
ranked highly based on the deterministic centrality mea-
sure. On the other hand, they are ranked at the low end
by our method. In ErbB for instance, the first disagree-
ing rank is the seventh. Our method assigns this rank to
ErbB3, which is a member of the ErbB family of recep-
tor tyrosine kinases whose signaling mechanics regulate
cell proliferation, differentiation, motility, and survival.
On the other hand, the seventh rank in deterministic
betweenness centrality is assigned to MAP2K7, which is
not a member in the ErbB family and not as highly
important as ErbB3 to the ErbB signaling process. This
suggests that the probabilistic centrality measure is
more suitable for probabilistic networks, because it is

more likely to accurately point out highly central nodes.
This is important because we are usually interested in
identifying the most important proteins, so errors in
identifying these are especially costly. The last observa-
tion we make is that the range of rank disagreement in
ErbB is relatively larger than that of MAPK and much
larger than that of Wnt. The little disagreement between
the two rankings in case of Wnt means that we can use
the deterministic measure with a little loss of informa-
tion. This indicates that edge probabilities have a small
role towards node centrality in Wnt, while the underly-
ing deterministic topology has a more dominant role.
On the other hand, the higher disagreement in case of
ErbB means a large loss of information if we use the
deterministic measure. This indicates that edge probabil-
ities have a dominant role towards node centrality in
ErbB, compared to the role of the underlying determi-
nistic topology.

Assessment of network stability
In this section, we evaluate the stability of probabilistic
signaling networks ErbB, MAPK and Wnt using our
method (see the Methods section). We measured net-
work stability in terms of its reaction to random pertur-
bation. The more a network maintains its signal
reachability levels under perturbation, the more it is
considered stable. On the other hand, if reachability
levels drop dramatically in the event of perturbation,
then it is considered unstable. We measured stability
under two possible network perturbation models: altera-
tions applied to the interaction probabilities and modifi-
cations applied to the network topology. We do not
present results for MAPK in the topology perturbation
experiment as measuring reachability probabilities in
such a large number of randomly perturbed topologies
takes more time than feasible in that experiment.
Figure 3 shows the results. We observe that, for both

perturbation models, reachability probability monotoni-
cally decreases with the increase in perturbation. This
observation implies that both the original topology and
the original edge probabilities of the network constitute
a local optimum for ensuring the signals travel from
source to target nodes with a high chance. This is
because random perturbations not only alter the reach-
ability probability, but they also always tend to reduce
this value. This is an extremely important observation as
it can help in improving the accuracy of network con-
struction algorithms. The drop in reachability probabil-
ity varies from one network to another. This implies
that different networks show different levels of sensitiv-
ity to random perturbations. ErbB showed largest drops
in reachability probability, while Wnt was the most
stable of the three. This signifies that functions served
by the Wnt signaling network are more stable and can
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overcome random changes, while those served by ErbB
are more prone to disruption under such changes. It is
notable that this ordering holds for both topology pertur-
bation and edge probability perturbation. This suggests
that a network is more likely to be stable (or unstable)
with respect to both perturbation models together.

Characterizing network functions
In this section, we characterize the important functions
performed by probabilistic signaling networks based on
their enrichment and reachability, as explained in the
Methods section. We use ErbB, MAPK and Wnt networks
in our experiments.
We first measured the enrichment of the GO terms

among the most reachable target nodes. We considered
the terms with an enrichment value of 0.1 or lower as
highly enriched. Figure 4 shows the enrichment values of

the top 70 terms of each network. ErbB has 66 highly
enriched terms out of 368 terms annotating the network
proteins (18%), among which are asparagine metabolism
(GO:0006528) and neuro-transmitter biosynthesis
(GO:0042136). MAPK has 61 highly enriched terms out
of 353 terms annotating the network proteins (17%),
among which are optic vesicle formation (GO:0003403)
and mechanoreceptor differentiation (GO:0042490). Wnt
has only 6 highly enriched terms out of 295 terms anno-
tating the network proteins (only 2%), among which are
shmoo orientation (GO:0000753) and protein polyubiqui-
tination (GO:0000209). The much lower number of
enriched terms suggests that Wnt is more specific than
ErbB and MAPK in terms of the functions it performs.
Next, we measured the reachability probability of the

individual GO terms for the source and target proteins of
each of ErbB and Wnt. Figure 5 plots these reachability

Figure 2 Centrality rank disagreement of deterministic betweenness centrality (Det.) and probabilistic centrality (Prob.) in (a) ErbB, (b)
MPAK and (c) Wnt.
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probability values in descending order. We observe from
the figure that Wnt has fewer GO terms annotating both
its source and target proteins as compared to ErbB. How-
ever, it also shows that these fewer terms of Wnt are sup-
ported by higher reachability probability than all those of
ErbB. This indicates that ErbB serves a broad spectrum
of functions, while Wnt serves a more specific group of
functions with stronger support. These results are consis-
tent with our observations from Figure 4.
One question that follows from Figure 5 is: Are the

most reachable functions in one network specific to that
network? In other words, can the two networks substi-
tute each other for their most significant functions? We
focused on ErbB and Wnt to seek and answer to this
question. ErbB and Wnt share 48 common terms. For

each of these common terms, we computed its reach-
ability probability in both networks. Figure 6 shows the
results. The majority of points (i.e., terms) are well
below the diagonal. This observation supports the pre-
vious conclusion that ErbB serves with high probability
a broader range of functions. The figure also shows rela-
tively little overlap between the two networks with
regard to the highly reachable terms. The few common
highest reachable terms in both networks represent
some important biological processes, such as protein
polyubiquitination (GO:0000209), juvenile hormone
metabolism (GO:0006716) and very-long-chain fatty
acid metabolism (GO:0000038).
Next, we explore the possibility of a correlation

between the reachability probability of the GO terms

Figure 3 Effect of random perturbations applied to the network on the reachability probability as a measure of network stability.
(a) Edge probability perturbation: average change in reachability probability (ΔPreach) when each interaction probability p is altered to a random
value in the window p ± δ ∩[0, 1]. (b) Topology perturbation: average change in reachability probability (ΔPreach ) when δ × |E| randomly
selected edges are shuffled.

Figure 4 Functional enrichment values in ascending order, for
the top 70 terms in ErbB, MAPK and Wnt.

Figure 5 Reachability probability of the GO terms of source
and target proteins in ErbB and Wnt, in descending order.
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and their enrichment. Figure 7 shows the results for
Wnt. From the figure we observe that terms with low
reachability probabilities exhibit low enrichment levels.
This implies that terms of low reachability represent
functions that are not significantly served by the network.
On the other hand, terms with high reachability probabil-
ity are spread over a wide spectrum of enrichment values.
The reason behind this is that highly reachable genes are
annotated by both high and low-enrichment terms. Both
kinds of terms inherit their high reachability values from
the genes they annotate. Therefore, some terms with low
enrichment levels happen to exhibit high reachability
probabilities. Hence, the general conclusion we draw
from the figure is that a high reachability probability is
necessary, but not sufficient, for a function to be signifi-
cantly served by the network.
Next, we clustered similar proteins based on the reach-

ability of their functional annotations. We measured the

reachability probability from all proteins to all GO terms
in the network. A target GO term denotes all target pro-
teins annotated by this term. We performed hierarchical
clustering [33] on the proteins based on their reachability
probabilities to all GO terms. We plotted a heat map of
these clustered reachability values. Figure 8 shows the
results for ErbB. From the figure, we observe homoge-
neous groups of proteins such as the clusters labeled N1
and N2. For instance, cluster N1 consists of the proteins
encoded by EGF, EGFR, TGFA, AREG, EREG, HBEGF
and BTC, which are all members of the epidermal growth
factor family of ligands and receptors. This family has
an important role in cell growth and proliferation,
tissue turnover and wound healing. Overexpression or
mutation of its members is linked to a number of cancer
types [34-37].
It is worth noting that functional annotations of the

network proteins represent extra information. It
depends on the presence of an external ontology that
is not necessarily available for all proteins in the sub-
ject network. Therefore, we pose the following ques-
tion: does this grouping depend on the knowledge of
the functional annotations of the network proteins? In
other words, can we gain knowledge of such grouping
without prior knowledge of such annotations? To
answer this question we performed an experiment that
disregards the knowledge of functional annotations.
More specifically, we measured the reachability prob-
ability between all pairs of proteins in the network. We
performed hierarchical clustering on the proteins based
on their reachability probabilities to other proteins. We
plotted a heat map of these clustered reachability
values. Figure 9 shows the results for ErbB. We
observed clusters of proteins that are almost identical
to the ones in Figure 8. For instance, groups N1 and N2

in Figure 8 are almost totally identical to groups T1

and T2 respectively in Figure 9. These groups are
detailed in Table 1. This observation shows that knowl-
edge of functional annotations is not necessary for
obtaining the described grouping.

Conclusion
We developed a comprehensive set of methods for char-
acterizing probabilistic signaling networks on three
levels. First, we developed a method for measuring node
centrality, based on the node’s contribution towards the
probability of signal reachability through the network.
Second, we developed methods for characterizing the
level of stability of the entire network, based on the
amount of change in reachability probability when per-
turbing either the network topology or interaction prob-
abilities. Last, we developed methods for characterizing
the functional terms in the network, based on the
enrichment and reachability of these terms.

Figure 6 The reachability probability of the common GO terms
in ErbB and Wnt.

Figure 7 Reachability probability of the GO terms in Wnt,
versus the negative logarithm of their functional enrichment
value.
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We presented novel results by applying these methods
to the ErbB, MAPK and Wnt signaling networks of
H. sapiens obtained from KEGG. For node centrality, our
results showed that the novel centrality measure we
present here is more suitable for probabilistic signaling
networks. We also showed that node centrality is domi-
nated by the network topology in Wnt, as opposed to
being more dominated by edge probabilities in ErbB. For
network stability, Our results showed that the original
topology and edge probabilities serve each network better
than any randomly perturbed version of them. We also
showed that Wnt showed the highest level of stability
against random perturbations, while ErbB showed the
lowest level of stability. Finally, for the functional terms,
our enrichment and reachability results both showed that
Wnt is a lot more specific than both ErbB and MAPK in
terms of the functions it serves. Results also showed a lit-
tle overlap between ErbB and Wnt in terms of the highly

reachable functions. We also showed functional terms
tend to be consistent in terms of both enrichment and
reachability. Last, we showed that functionally-related
groups of proteins can be identified by clustering of their
reachability probabilities towards different functional
terms, as well as towards other proteins.
This paper makes a significant contribution over the

existing literature. First, it extends our understanding of
biological networks from the simple deterministic topol-
ogy to probabilistic. Second, we demonstrate that signal-
ing networks can be computationally characterized in
terms of the reachability of signals from receptors to
reporters.

Methods
In this section we present the novel methods we devel-
oped to arrive at the results explained above.We charac-
terize probabilistic signaling networks based on the

Figure 8 A heat map of reachability probabilities from all proteins (rows) to all GO terms (columns) in ErbB network. Each point at row
i and column j represents the reachability probability from the ith protein to the jth GO term. Darker color indicates higher probability. Results are
hierarchically clustered for identification of similar groups of proteins.
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probability that signals can travel in the network, parti-
cularly from receptors to reporters. First, we present a
method for measuring node centrality. Then, we present
methods for evaluating the stability of a network with
respect to random perturbation. Last, we present meth-
ods for characterizing biological functions served by the
network based on their functional enrichments and
reachability probabilities.
Throughout the rest of this paper, we use the follow-

ing notation. We denote the set of nodes (i.e., proteins)

by V and the set of directed edges (i.e., interactions) by
E. We denote an edge probability function by P : E ®
[0, 1], which returns the existence probability of each
edge e ∈ E. Consider a probabilistic signaling network
G = (V,E, P), a set of source nodes S ⊆ V , and a set of
target nodes T ⊆ V . We denote the reachability prob-
ability from s ∈ V to t ∈ V by Preach(G, s, t), which
returns the probability of a signal reaching successfully
from s to t in G.

Computing reachability probability
We use PReach [25] for measuring the signal reachability
probability between receptors and reporters in probabilis-
tic signaling networks. Let U = {1, . . . , n}, where n = |E|.
Let Θ be a subset of U. Let S1, . . . , Sk be k different sub-
sets of Θ. Let X and Y be two sets of n variables, where
X = {x1, . . . , xn} and Y = {y1, . . . , yn}. Let xSi =

∏
j∈Si

xj

and ySi =
∏

j∈Si
yj, where i ∈ {1, . . . , k}. Let x* and y* be

Figure 9 A heat map of reachability probabilities between all pairs of proteins in ErbB network. Rows are all proteins as sources,
columns are all GO terms as targets. Darker color indicates higher probability. Results are hierarchically clustered for identification of similar
groups of proteins.

Table 1 Details of gene groups marked in Figure 9 and
Figure 8.

N1:
EGF, EGFR, TGFA, AREG, EREG,
HBEGF, BTC

T1:
EGF, EGFR, TGFA, AREG, EREG,
HBEGF, BTC

N2:
SHC2, GRB2, ERBB3,
PIK3R5, AKT3, GAB1

T2:
SHC2, GRB2, ERBB3,
NRG1, NRG2
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two free variables. Let a1, . . . , ak, b and c be real num-
bers. PReach defines an xy-polynomial over Θ as
F =

∑k
i=1 aixSi y�\Si + bx∗ + cy∗.

PReach associates every edge ej ∈ E with a variable
xj ∈ X and a variable yj ∈ Y , where j ∈ U. xj designates
the case where ej is present, while yj designates the case
where ej is absent. Each of the non-free terms aixSi y�\Si

represents a combination where ej is present ∀j ∈ Si and
absent ∀j ∈ Θ \ Si. ai is the probability of this specific
combination. The free variable x* designates the case
where T is reachable from S, and b is its probability.
Inversely, The free variable y* designates the case where
T is unreachable from S, and c is its probability.
Let pi = P(ei) and qi = 1 − pi. PReach proceeds by

associating every edge ei ∈ E with a binomial pixi+qiyi.
It then proceeds by multiplying these binomials into a
growing xy-polynomial. After every mulitiplication,
PReach checks the polynomial for non-free terms that
can be collapsed into one of the two free terms. For any
of the non-free terms aixSiyΘ\Si , if the edge set asso-
ciated with Si contains a path from S to T , the term is
replaced by aix

*. If the edge set associated with Θ \ Si
contains a cut between S and T , the term is replaced by
aiy

*. Any later multiplication of a new term pixi with bx*

results in bpix
*. Similarly, (pixi)(cy

*) = cpiy
*, (qiyi)(bx

*) =
bqix

*, and (qiyi)(cy
*) = cqiy

*. Therefore, the size of the xy-
polynomial avoids growing in an exponential rate.

Characterizing node centrality
The smallest building blocks of a probabilistic signaling
network are the individual nodes that make up the net-
work. Therefore, as a first step in characterizing these
networks, we focus on the roles of individual nodes in
how signaling networks function. To do that, we
develop a new model to explain the centrality of indivi-
dual nodes.
Our method mimics the betweenness centrality mea-

sure. Traditionally, this measure has been frequently
used for deterministic networks. In such studies, it con-
siders a node x to be between nodes y and z if x is on
the shortest path from y to z. These studies however
have two major flaws. First, a probabilistic network can
yield many alternative deterministic network topologies.
As a result, different sets of nodes can be between y and
z for different deterministic topologies. Thus, it is not
certain whether x is in that set. Second, there is no
guarantee that a signal traveling from y to z will always
choose the shortest path. Thus, limiting betweenness to
only the shortest paths is unrealistic.
We develop a new method for measuring node cen-

trality in a probabilistic network based on reachability
probability. We consider a node as highly central in a
probabilistic network if a signal traveling from a source
node to a target node visits that node with a high

probability. Based on this, we measure the node central-
ity as the expected number of source-target pairs whose
connectedness relies on the presence of the subject
node. We explain this in detail next.
Given a node v ∈ V and a source-target pair (s, t), we

call v an essential node for (s, t) if the removal of v
from the network disconnects s and t. Given a node v,
for each source-target pair (s, t), we want to measure
the probability of v being essential for (s, t). To do this,
we first measure the probability of a signal propagating
successfully from s to t given the existence of v. This
value is denoted by Preach(G, s, t). We then measure that
probability in the absence of v. To do this, we construct
a modified network G′ by removing v and all its incom-
ing and outgoing edges. We then compute the reach-
ability probability Preach (G′, s, t). The difference
between the first and the second probability values
represents the probability of a signal having to pass
through v in order to reach from s to t. Therefore, given
these two probability values, we calculate the probability
of v being an essential node to (s, t) as Cv(G, s, t) =
Preach(G, s, t) − Preach(G′, s, t).
For a given node v, given the value of Cv (G, s, t), ∀s ∈

S, t ∈ T , we compute the centrality of v as the average
number of (s, t) pairs for which v is essential. To do
this, we consider the random variable Xv that follows
Poisson Binomial distribution with parameters Cv(G, s,
t), ∀s, t. Thus, the expected number of (s, t) pairs for
which v is essential becomes equivalent to the expected
value E [Xv] =

∑
s∈S,t∈T Cv (G, s, t).

Computing the centrality of a node involves comput-
ing reachability two times: before and after removing
the node. Therefore, the time complexity is the same as
that of PReach O(2|E|). However, this is a theoretical
upper bound, as PReach avoids the exponential growth
in practice [25].

Characterizing network stability
In the previous section, we characterized individual
nodes in probabilistic signaling networks. Here, we
expand our model to characterize the entire network.
More specifically, we develop a method for evaluating
stability of probabilistic signaling networks. Briefly, we
say that a network is stable if the probability that a sig-
nal travels successfully from source to target nodes in
that network does not change greatly when a small
amount of random perturbations are applied to that net-
work. We consider two types of perturbations: (i) altera-
tion of edge probabilities and (ii) modification of
network topology. We describe a parametric model for
each of them later in this section.
Consider the given network G = (V, E, P ) and the sets

of source and target nodes S and T . Let us denote the
network obtained after perturbing G with Gδ . Given a
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source node s ∈ S and a target node t ∈ T , the differ-
ence Preach(G

δ , s, t)−Preach(G, s, t) indicates the change
in the reachability probability from s to t after the net-
work is perturbed. We compute the stability of G with
respect to Gδ in terms of the average of this difference
over all possible pairs of s ∈ S and t ∈ T (i.e.,

1
|S| × |T|

∑
s∈S,t∈T

(
Preach

(
Gδ , s, t

) − Preach (G, s, t)
)
. A large

magnitude for this value indicates that G is unstable.
The sign of this value shows the direction of instability.
A negative sign indicates a drop in reachability and thus
the cell getting unresponsive to external signals. A posi-
tive sign indicates a rise in reachability and thus the cell
getting over-sensitive to such signals.
Next, we describe in detail how we model perturba-

tion of a network G given a perturbation parameter δ to
obtain a perturbed network Gδ .

• Perturbation of edge probabilities. In this case, the
parameter δ denotes the maximum change in edge
probabilities. We define a perturbed edge probability
function P δ ®[0, 1] that, for each edge e ∈ E, returns
a value drawn uniformly at random from the range
P (e) ± δ ∩[0, 1]. We construct Gδ = (V, E, P δ ).
• Perturbation of network topology. In this case, we
inflict topology perturbation by degree-preserving
edge shuffling for a fraction of the edges. Each shuf-
fling operation randomly picks a pair of edges
(u1, v1) and (u2, v2). It then replaces these edges
with (u1, v2) and (u2, v1) and randomly assigns each
of the old edge probabilities to the new ones. The
parameter δ denotes the fraction of edges to be
shuffled. We construct Gδ = (V, Eδ , P ), where Eδ

is obtained from E by randomly shuffling a fraction
δ of the edges.

Similar to computing node centrality, characterizing
network stability involves computing reachability two
times: before and after introducing the perturbation.
The time complexity is the same as that of PReach
O(2|E|). Again, this is a theoretical upper bound, as
PReach avoids the exponential growth in practice [25].

Characterizing network functions
Each signaling network is responsible for carrying out
various functions. In this section, we develop a method
to mathematically characterize the biological functions
that can be realized by a given probabilistic signaling
network. We use the GO terms associated with the tar-
get genes to denote the set of possible functions of the
underlying signaling network. The GO database orga-
nizes terms in a hierarchy of “is-a” and “part-of” rela-
tionships, such that the highest level is the most generic.
We ignore the terms in the top five levels of the

hierarchy in our analysis. Note that these terms are
commonly ignored as they are generic and commonly
assigned to a large number of genes [15].
A target gene’s ability to perform the functions it is

annotated with is affected by the extracellular signals
which reach to that gene. Following from this observa-
tion, we conjecture that a network is more likely to reg-
ulate a function if the set of target genes annotated with
that function are reachable with higher probability than
the other genes. More specifically, we model two differ-
ent characteristics of the functional annotations of a
probabilistic signaling network in terms of reachability
of the nodes of that network. Namely, these are the
enrichment and the reachability of the annotations. We
elaborate on them next.
Enrichment of functional annotations. Consider the

given network G = (V, E, P ) and the sets of source and
target nodes S and T . For each target node t ∈ T, we
compute the reachability probability from at least one of
the source nodes in S to t. The resulting reachability
probabilities provide a ranking of the target node in T.
We then consider the set A of all GO terms in G. For
each term a ∈ A, given a parameter d ∈ {1, 2, . . . |T|},
we consider the set Td ⊂ T as the set containing only
the top d target nodes in T with the highest reachability
probability. We calculate the enrichment value for a in
Td as follows. Let N be the number of all targets in T
annotated with a, n be the number of targets annotated
with a in Td. We compute the enrichment value of a as
P (X ≥ n||T |, d, N ) where X is a random variable under
a hyper-geometric distribution with these parameters.
We try all possible values of d ∈ 1, . . . , |T | and select
the best enrichment value. In other words, the enrich-
ment value shows the probability that a random subset
of T of size d contains at least n nodes annotated with
a. The lower the enrichment value is, the more signifi-
cant the term a is.
Reachability of functional annotations. Consider the

given network G = (V, E, P ) and the sets of source and
target nodes S and T . Also consider the set A of all GO
terms in the network. For each a ∈ A, we construct the
two sets Sa ⊂ S and Ta ⊂ T . Here, Sa and Ta denote
the set of source and target nodes that are annotated by
a respectively. We measure the reachability probability
of a as the reachability probability from any node in Sa
to any node in Ta. We rank the terms in A according to
their reachability probabilities. Higher reachability prob-
ability of a term means that the paths available for the
associated function contains more reliable interactions
and/or more redundant paths. Therefore, we expect that
the functional terms with higher reachability probability
play more critical roles than others within that network.
The time complexity of both methods is dominated by

that of calculating reachability probability. Therefore,
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the time complexity is the same as that of PReachO(2|E|).
Again, this is a theoretical upper bound, as PReach avoids
the exponential growth in practice [25].
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14. Schübeler D, et al: Genome-wide dna replication profile for drosophila
melanogaster: a link between transcription and replication timing.
Nature genetics 2002, 32(3):438-442.

15. Todor A, et al: Probabilistic biological network alignment. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2012,
99(PrePrints):1.

16. Szklarczyk D, et al: The STRING database in 2011: functional interaction
networks of proteins, globally integrated and scored. Nucleic acids
research 2011, 39(suppl 1):561-568.

17. Ceol A, et al: MINT, the Molecular INTeraction database: 2009 update.
Nucleic acids research 2009, 983.

18. Bader JS, et al: Gaining confidence in high-throughput protein
interaction networks. Nature biotechnology 2003, 22(1):78-85.

19. von Mering C, et al: Comparative assessment of large-scale data sets of
protein-protein interactions. Nature 2002, 417(6887):399-403.

20. Barabási A, Oltvai ZN: Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics 2004, 5(2):101-113.

21. Ravasz E, et al: Hierarchical Organization of Modularity in Metabolic
Networks. Science 2002, 297(5586):1551-1555.

22. Oxley J, Welsh D: Chromatic, flow, and reliability polynomials: the
complexity of their coefficients. Combinatorics, Probability & Computing
2002, 11(4):403-426.

23. Brown DB: A computerized algorithm for determining the reliability of
redundant configurations. Reliability, IEEE Transactions 2971, 20(3):121-124.

24. Sokal AD: The multivariate tutte polynomial (alias potts model) for
graphs and matroids. Surveys in combinatorics 2005, 327:173-226.

25. Gabr H, Todor A, Zandi H, Dobra A, Kahveci T: Preach: Reachability in
probabilistic signaling networks. Proceedings of the International Conference
on Bioinformatics, Computational Biology and Biomedical Informatics BCB’13
ACM, Wshington DC, USA; 2013, 3-12.

26. Gabr H, Kahveci T: Characterization of probabilistic signaling networks
through signal propagation. Computational Advances in Bio and Medical
Sciences (ICCABS), 2014 IEEE 4th International Conference IEEE; 2014, 1-2.

27. Ashburner M, et al: Gene ontology: tool for the unification of biology.
Nature genetics 2000, 25(1):25-29.

28. Kanehisa M, et al: The KEGG resource for deciphering the genome.
Nucleic acids research 2004, 32(suppl 1):277-280.

29. Gulsoy G, et al: HIDEN: Hierarchical decomposition of regulatory
networks. BMC bioinformatics 2012, 13(1):250.

30. Yoon J, et al: An algorithm for modularity analysis of directed and
weighted biological networks based on edge-betweenness centrality.
Bioinformatics 2006, 22(24):3106-3108.

31. Joy MP, et al: High-betweenness proteins in the yeast protein interaction
network. BioMed Research International 2005, 2005(2):96-103.

32. Yu H, et al: The importance of bottlenecks in protein networks:
correlation with gene essentiality and expression dynamics. PLoS
computational biology 2007, 3(4):59.

33. Bar-Joseph Z, et al: Fast optimal leaf ordering for hierarchical clustering.
Bioinformatics 2001, 17(suppl 1):22-29.

34. Bazley LA, Gullick WJ: The epidermal growth factor receptor family.
Endocrine-Related Cancer 2005, 12(Supplement 1):17-27.

35. Gorgoulis V, et al: Expression of egf, tgf-alpha and egfr in squamous cell
lung carcinomas. Anticancer research 1992, 12(4):1183.

36. Jackson LF, et al: Defective valvulogenesis in hb-egf and tace-null mice is
associated with aberrant bmp signaling. The EMBO journal 2003,
22(11):2704-2716.

37. Pathak B, et al: Mouse chromosomal location of three egf receptor
ligands: amphiregulin (areg), betacellulin (btc), and heparin-binding egf
(hegfl). Genomics 1995, 28(1):116-118.

doi:10.1186/1471-2105-16-S17-S6
Cite this article as: Gabr and Kahveci: Signal reachability facilitates
characterization of probabilistic signaling networks. BMC Bioinformatics
2015 16(Suppl 17):S6.

Gabr and Kahveci BMC Bioinformatics 2015, 16(Suppl 17):S6
http://www.biomedcentral.com/1471-2105/16/S17/S6

Page 12 of 12

http://bioinformatics.cise.ufl.edu/PReach/characterization.htm
http://bioinformatics.cise.ufl.edu/PReach/characterization.htm
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S17
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S17

	Abstract
	Background
	Results

	Background
	Results and discussion
	Node centrality in probabilistic networks
	Assessment of network stability
	Characterizing network functions

	Conclusion
	Methods
	Computing reachability probability
	Characterizing node centrality
	Characterizing network stability
	Characterizing network functions

	Data access
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


