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Abstract: Aldosterone is one of the main effectors of the renin-angiotensin-aldosterone system (RAAS)
along with having roles in hypertension, and cardiovascular and renal diseases. Recent evidence
has also shown the presence of an active local RAAS within the human eye. It has been shown that
at 12 h after a retinal ischemia-reperfusion injury, there is an upregulation of the protein levels of
angiotensin II type 1 receptor (AT1-R) in the retina. Furthermore, at 12 h after reperfusion, there
is an increase in reactive oxygen species (ROS) production in the retina that is mediated via an
NADPH oxidase pathway. This ischemia-reperfusion injury-induced increase of retinal ROS levels
and NADPH oxidase expression can be prevented by the administration of an AT1-R antagonist.
This suggests that one of the main retinal ischemic injury pathways is via the local RAAS. It has also
been reported that progressive retinal ganglion cell loss and glaucomatous optic nerve degeneration
without elevated intraocular pressure occur after administration of local or systemic aldosterone.
Elucidation of glaucoma pathogenesis, especially normal-tension glaucoma (NTG) subtype by our
current animal model can be used for identifying potential therapeutic targets. Based on these results,
we are further evaluating NTG prevalence among primary aldosteronism patients.
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1. Introduction

Glaucomas are defined as optic neuropathy responsible for progressive degeneration
of retinal ganglion cells (RGCs). More than 70 million people are affected by glaucoma
worldwide, with approximately 10% classified as being bilaterally blind [1]. Thus, glauco-
mas are considered to be the leading cause of irreversible blindness in the world. Intraocular
pressure (IOP) is one of the most important risk factors for the development and progression
of glaucoma and is therefore a major target of the treatment of glaucoma. The upper limit of
normal IOP is defined as 21 mmHg. Pooled data from the Ocular Hypertension Treatment
Study (OHTS) and the European Glaucoma Prevention Study (EGPS) showed that for every
1 mmHg baseline IOP, there is a relative risk of 1.11 for glaucoma development [2]. IOP
reduction is currently the only evidence-based treatment available for use in glaucoma pa-
tients [3]. In one report, glaucoma progression was detected in 45% of the treatment group,
for a reduction of 25% that was maintained throughout the follow-up period, compared
with 62% of the untreated group over five years [4]. When there is glaucomatous optic
nerve head change in conjunction with glaucomatous visual field defects without elevated
IOP, this is referred to as normal-tension glaucoma (NTG). Results of a North American
and European long-term collaborative study have demonstrated that a 30% IOP reduction
was able to positively affect the visual field loss progression in NTG [5]. Unfortunately,
even when there is adequate IOP control, progression of glaucoma is sometimes observed.
Moreover, it has been shown that NTG is a multifactorial disease, with progressive RGC
death occurring even without an elevated IOP. Previous studies that have examined the
fundamentals of glaucoma have reported finding associations with various systemic vascu-
lar diseases including low systemic blood pressure, transient nocturnal decreases in blood
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pressure, hypertension, migraine, vasospasm, and diabetes [6–9]. In addition, it has been
suggested that impaired ocular blood flow, low intracranial pressure, apoptosis, autophagy,
neurotrophins and excitotoxins, autoimmunity, and oxidative stress could potentially be
non-IOP related risk factors associated with glaucoma progression [10].

One of the essential systems involved in the regulation of blood pressure is the renin-
angiotensin-aldosterone system (RAAS). In the RAAS cascade, renin is involved in the first
and rate-limiting step. Subsequently, it then binds to the liver-produced angiotensinogen to
generate the decapeptide angiotensin I (Ang I). After hydrolysis by angiotensin converting
enzyme (ACE) that is present in either the circulation or locally within the tissue, Ang I
is converted to the oligopeptide angiotensin II (Ang II). After Ang II binds to the Ang II
type 1 receptor (AT1-R), it then becomes the predominant physiological regulator of blood
pressure. As such, when treating hypertension, this makes it one of the major targets of
pharmacological intervention [11]. In addition, Ang II is involved in the release of aldos-
terone from the adrenal cortex. However, when Ang II binds to the AT2-R, this leads to the
opposite effect of that observed after Ang II combines with the AT1-R, with vasodilation
and decreasing fibrosis and inflammation subsequently observed. Furthermore, the chronic
activation of the RAAS can lead to significant pathogenic actions by Ang II and aldosterone,
which include cell proliferation, inflammation, oxidative stress and stimulation of fibro-
sis [12–14]. The effects of aldosterone, which is a steroid hormone, occur after its binding
to the mineralocorticoid receptor (MR). The release of aldosterone is due to a variety of
stimuli, which includes Ang II. Electrolyte and water balance in the body is associated with
the binding of aldosterone to the MR, which has also been shown to influence the heart,
kidney, and vascular pathology [15,16].

2. Targeting the Renin-Angiotensin-Aldosterone System to Treat Systemic Diseases

Generation of both Ang I and II is suppressed by renin inhibitors. For example, it
has been demonstrated that agents such as aliskiren, which causes direct renin inhibition,
can reduce blood pressure [17] and experimental atherosclerosis [18,19]. However, other
studies have reported that aliskiren has protective effects against cardiovascular and renal
injuries. There have also been extensive studies of cardiovascular and renal diseases that
have examined traditional treatments that reduce the action of Ang II, including the use
of an ACE inhibitor and AT1-R blocker (ARB) [20]. An increase in renal renin release
that counteracts the effect of RAAS blockade has been shown to occur after ACE inhibitor
and ARB treatments. Although it has been found that MR antagonists block the effects of
aldosterone, they do not alter the Ang generation. A previous study of the kidney and heart
reported enhanced MR signaling [21]. Furthermore, this study also evaluated eplerenone,
which is an aldosterone antagonist, and reported that the progression of renal and cardiac
diseases was dramatically delayed. Administration of either spironolactone [22] or an ACE
inhibitor [23–25] in the stroke-prone spontaneously hypertensive rat, which is a genetic
model of spontaneous hypertension, was reported to lead to large attenuations of both renal
and cerebral vascular damage [25,26]. Administration of aldosterone in the remnant kidney
hypertensive rat model has been similarly shown to lead to a reversal of the renal protection
that occurs after the use of a combined ACE inhibition/ARB treatment to blockade the
RAAS [27]. This phenomenon is referred to as the “aldosterone escape” [28], and it has been
found that after these treatments, aldosterone may be present. As a result, independent
of Ang II, this may be able to influence the pathology [29], with the activation of the AT1-
R and ACE thereby potentiating the actions of Ang II [30,31]. Based on these findings,
enhancement of the counter-regulatory arm of the RAAS is currently being evaluated as a
possible treatment target for various diseases.

3. The Renin-Angiotensin-Aldosterone System in the Retina

Several organs, including the heart, adrenal gland, ovary, and thymus, have been
shown to have a local RAAS [32–35]. The amounts of the RAAS components observed
in both the ocular fluid and tissues in the eye suggest there is local production [36,37].
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Both retinal pigmented epithelium (RPE) and retinal Müller cells express renin [38,39]. An
evaluation of the plasma prorenin content of ocular fluid demonstrated that ocular prorenin
was present at levels 100 times higher [40]. Thus, local production of these constituents is
suggested. Furthermore, since evaluations of the anterior uveal tract, neural retina, RPE,
and choroid of the normal porcine eye showed Ang I and Ang II were at levels 5- to 100-fold
higher, respectively, which can be normally accounted for by blood contamination [26], this
suggests that there are important local effects that are not associated with the circulating
levels. In the rat, aldosterone synthase is expressed in Müller cells, retinal microvascular
cells, and RGCs [41], whereas MR is found on vascular cells, RGCs, glia, and RPE [42,43].
The cleavage of Ang II by an ACE homolog, ACE2, produces Ang-(1-7), which also acts
on the Ang II type 2 receptor and Mas receptor to partially antagonize the effects of AT1-
R [44,45]. Mas receptor is expressed in different types of cells in the retina [46–51] and
enhancing ACE2/Ang-(1-7) is protective in diabetic retinal neurovascular dysfunction
and ocular inflammation [47–51]. In the human eye, Ang II and Ang-(1-7) are colocalized
in retinal Müller cells and ACE2 is detected in the retina [52] In glaucoma, the primary
cells affected are the RGCs. Regulation of blood flow [43] and IOP appears to be the main
role of the local RAAS in the eye since this pressure can be lowered by renin and ACE
inhibitors [53]. Studies of diabetic retinopathy treatments have also evaluated the use of
ACE inhibitors and ARB. A 50% reduction in the progression of diabetic retinopathy and
an 80% reduction in the progression to proliferative diabetic retinopathy were reported
by the EURODIAB Controlled Trial of Lisinopril in Insulin-dependent Diabetes (EUCLID)
after two years of treatment [54]. It is also possible that an increase in the progression of
central serous chorioretinopathy (CSCR) and neovascular age-related macular degeneration
(AMD) could potentially be caused by inappropriate activation of the MR, which leads to
increased retinal fluid retention and dilation of choroidal vessels [55]. In chronic CSCR
patients, an MR antagonist reduced subretinal fluid, subfoveal choroidal thickness, and
visual acuity [56], whereas AMD patients exhibited decreased central retinal thickness,
foveal thickness, and subretinal fluid [57].

The purpose of the present review was to specifically examine the role and potential
mechanisms of aldosterone in the pathophysiology of glaucoma.

4. Association between the Renin-Angiotensin-Aldosterone System and Retinal
Ischemia-Reperfusion Injury

A large number of retinal diseases such as glaucoma, diabetic retinopathy, and central
retinal artery occlusion have been shown to be associated with retinal ischemia. More-
over, these diseases have been shown to be the leading cause of visual impairment or
blindness [58–60]. There have been many mechanisms suggested as causes of tissue injury-
induced ischemia [61–63]. For example, hypersecretion of glutamate and aspartate results
from reactive oxygen species (ROS) triggering ischemic cell damage [64]. The ischemia-
reperfusion that causes the production of an excess amount of glutamate then stimulates
N-methyl-D-aspartate (NMDA), which is a subtype of the glutamate receptor [64], thereby
inducing an excess Ca2+ influx into cells [61,62].

It has been shown that the inner retina, including RGCs, is damaged seven days
after retinal ischemia-reperfusion injury [65]. Release of glutamate from the rat retina
was observed during the ischemic period, and a large increase was observed during
reperfusion [66]. In ischemia-reperfusion, neurotransmitters overactivate their appropriate
receptors. Such overstimulation, particularly of ionotropic glutamate receptors, generally
leads to cell death. RGC survival rates at seven days after retinal ischemia-reperfusion
injury were 46–58% [65,67,68]. However, prevention of retinal ischemia-reperfusion injury
can be achieved by administering a direct renin inhibitor [67], ACE inhibitor [65], AT1-R
antagonist [65,69], or MR antagonist [68]. Blocking the RAAS at its point of origin, the
renin-angiotensinogen interaction can be achieved by the use of direct renin inhibitors,
which are antihypertensive drugs [70]. As a result, conversion of angiotensinogen to Ang I
is prevented, which leads to the interruption of the RAAS cascade. The formation of Ang II
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from Ang I can be prevented by ACE inhibitors. This then reduces the action of Ang II at
both the AT1-R and AT2-R. However, it should be noted that AT1-R antagonists have been
shown to act more selectively by blocking the action of Ang II at the AT1-R. It has been
shown that at 12 h after reperfusion, the protein levels of AT1-R are upregulated in the
retina [65]. In addition, at 12 h after reperfusion, an increased ROS production is observed
in the retina, with the increased levels associated with an increase in the p47phox and
p67phox mRNA expressions [69]. These findings suggest that an NADPH oxidase pathway
at 12 h after reperfusion is responsible for mediating the ROS production in the retina.
Another study has shown that administration of the AT1-R antagonist, candesartan, was
able to prevent the ischemia-reperfusion injury-induced increase of both retinal ROS levels
and NADPH oxidase expression [69]. Thus, these results demonstrated that one of the
main pathways of retinal ischemic injury is via the local RAAS. A complete reversal of the
RAAS suppression-induced neuroprotective effect against the retinal ischemia-reperfusion
injury was also observed after the administration of aldosterone in rats receiving an AT1-R
antagonist [68]. Moreover, a neuroprotective effect against retinal ischemia-reperfusion
injury was observed with the MR antagonist [67]. When taken together, these findings
demonstrate that ischemic damage in the retina can be influenced by MR and aldosterone.
Figure 1 presents the details on a possible mechanism associated with the retinal neuronal
cell death mediated by the local RAAS.
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Figure 1. Possible mechanism of retinal neuronal cell death. After activation of the renin-angiotensin-
aldosterone pathway, the production of reactive oxygen species in the retina is mediated via an
NADPH oxidase pathway. ACE, angiotensin converting enzyme; ROS, reactive oxygen species.

5. Aldosterone and Retinal Ganglion Cells

A significant decrease in the number of RGCs in the normal rat was observed even
though an intravitreal injection of aldosterone without ischemia did not affect the retinal
thickness [68]. It has been suggested that one potential risk factor for RGC death is
associated with glutamate excitotoxicity triggered by the overactivation of the NMDA
receptors [70]. Results of an animal model demonstrated that after intravitreal injection
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of NMDA there is a decrease in the RGCs [71]. These findings suggest that it is important
that the relationship between the RAAS and the NMDA receptor-mediated signal and the
prevention of RGC death be further investigated. Although there was protection against
RGC death after intravitreal injection of aldosterone by the MR antagonist, spironolactone,
there was no protection observed after the administration of the non-competitive NMDA
receptor antagonist, memantine [72]. However, after intravitreal injection of NMDA,
memantine but not spironolactone protected against RGC death [72]. Therefore, these
findings indirectly indicate that downstream of the NMDA receptor-mediated signal, the
RAAS does not exist, and in addition, that downstream of the RAAS the NMDA receptor-
mediated signal does not exist. Moreover, both the RAAS and NMDA receptor-mediated
signals appear to be important pathways that are associated with RGC death. As a result,
both the NMDA receptor-mediated signal and the RAAS need to be taken into careful
consideration when evaluating the use of neurotherapeutics for glaucoma management.

Hematoxylin and eosin-stained retinal sections were used to examine the morphology
of each retinal layer [73]. The thickness of the inner plexiform layer, inner nuclear layer,
outer plexiform layer, or outer nuclear layer appeared to be unaffected after systemic
administration of aldosterone (80 µg/kg/day) [73]. Although there was no effect on other
retinal neurons, progressive RGC loss, and glaucomatous optic nerve degeneration without
elevated IOP were observed at six weeks after systemic administration of aldosterone [73].
Therefore, this NTG rat model appears to be effective for investigating mechanisms of neu-
rodegeneration in NTG in addition to assisting in the development of therapies that can be
directed at IOP-independent mechanisms of RGC loss. Furthermore, in this animal model,
it has been shown that spironolactone administration can prevent RGC loss [73]. Other
studies have reported that apoptosis of proximal tubular cells [74], mesangial cells [75], and
cardiac myocytes [76] is induced by aldosterone in a ROS-dependent manner. When these
findings are taken together with those of our previous studies [65,68,69], this model appears
to suggest that aldosterone induces RGC death in a ROS-dependent manner. Examination
of the ganglion cell layer showed the presence of TUNEL-positive cells after systemic
administration of aldosterone [77]. Therefore, this indicates that cell death from apoptosis
is responsible for the loss of RGCs. In a previous monkey model of pressure-induced
glaucoma, it was reported that apoptosis was at least one of the mechanisms responsi-
ble for RGC death [78]. However, the definitive cell death mechanism in this particular
animal model remains unknown. Therefore, gene expression changes in the retina after
systemic administration of aldosterone will need to be investigated. An analysis of the
microarray data sets after systemic administration of aldosterone demonstrated there was
an upregulation of 24 genes and downregulation of 24 genes of the key apoptosis-specific
genes [79]. Furthermore, after performing real-time PCR, the results demonstrated that 5
genes (Bcl3, Cdkn1a, Tbox5, PF4, and Vdr) were upregulated while 10 genes (Asns, Bard1,
Card9, Fcgr1a, Inhba, Kcnh8, Lck, Phlda1, Ptprc, and Sh3rf1) were downregulated [79]. This
suggests that after systemic administration of aldosterone, it could be possible that there
are two mechanisms associated with the RGC death. First, the death of the RGCs might
be associated with ocular blood abnormalities due to the upregulation of PF4. Second,
increases of the ROS levels could lead to the induction of p53 activation as an upstream
signal, with a net result of the triggering of apoptosis. Uncontrolled production of ROS
is recognized to be an important mechanism of apoptosis in neurodegenerative diseases,
including glaucoma [80]. The axons of RGCs contain a large number of mitochondria; they
have a greater energy demand and are more sensitive to ROS stress [81]. To definitively
clarify the mechanisms of the loss of RGCs and their axons after systemic administration of
aldosterone, further investigations will need to be conducted.

After systemic administration of aldosterone, an increase in plasma aldosterone con-
centrations was observed [77]. Moreover, an evaluation of the relationship between the
plasma aldosterone concentration and the number of RGCs showed a negative corre-
lation [77]. Subsequent study evidence suggested that aldosterone was independently
involved with cardiovascular injury in the kidney and brain [82]. Thus, plasma aldosterone
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concentration determinations are of importance in helping to prevent organ complications,
including in the retina. Based on these findings, it is necessary to carefully take plasma
aldosterone concentrations into consideration.

6. Aldosterone and Blood Flow

In the vascular endothelium, aldosterone is known to cause changes via acute, non-
genomic, and chronic, genomic effects that subsequently modulate vascular resistance and
blood flow. High plasma aldosterone concentrations have been shown to be responsible for
vasculopathy [83]. Another study has shown that reduction of endothelial nitric oxide (NO)
synthesis and bioavailability along with the increased generation of superoxide radicals that
degrade endogenous NO are characteristics of aldosterone-induce vasculopathy [82]. More-
over, activation of MRs in the rat kidney and colon is associated with aldosterone-induced
gene expression of endothelin 1 (ET-1), which is a vasoconstrictor peptide synthesized by
vascular endothelial cells [84]. In isolated porcine retinal veins, ET-1 was shown to induce
dose-dependent vasoconstriction [85]. Furthermore, aldosterone in experimental models
and humans has been shown to cause blood flow changes. Fujita et al. [86] examined an
acute aldosterone infusion into the left anterior descending coronary artery in open-chest
dogs and found there was a decreased coronary blood flow. In humans, Romagni et al. [87]
reported that after an aldosterone infusion into the antecubital vein of the arm, there was
a rapidly decreased forearm blood flow effect. In addition, there was a decrease in optic
nerve head (ONH) blood flow following retinal vessel constriction without changes in
IOP or systemic blood pressure after systemic administration of aldosterone in rats [88].
Since there was stable blood pressure and pulse rate during the experimental periods, this
reduction in the ONH blood flow following vessel constriction most likely reflects the local
effects of aldosterone on the rat vessels in the ONH.

7. Primary Aldosteronism and Normal-Tension Glaucoma

Plasma aldosterone concentrations ranged from 368 to 527 pg/mL after systemic
administration of aldosterone at a dose of 80 µg/kg/day [77]. To definitively identify
suspected primary aldosteronism (PA), this required that the plasma aldosterone concentra-
tions had to be greater than 150 pg/mL [89]. Within the setting of a low plasma renin, PA is
defined as an inappropriate elevated aldosterone. Previously, PA was considered to be a
rare and niche secondary cause of hypertension. However, as it has been shown there is a
prevalence of approximately 20% among patients with resistant hypertension [90,91], 10%
in patients with severe hypertension (systolic blood pressure ≥180 mmHg, diastolic blood
pressure ≥110 mmHg) [92,93], and 6% in patients with otherwise uncomplicated hyperten-
sion, PA is now considered to be the most common cause of secondary hypertension [93].
However, only a small fraction of the PA patients can be diagnosed and treated, even though
PA is the most frequent cause of secondary hypertension [93]. When PA is compared with
primary hypertension, it has been shown that there is a higher risk for coronary artery
diseases [94–98], atrial fibrillation by itself or in the context of other heart diseases [94–98],
stroke [80–84], left ventricular hypertrophy and/or heart failure [94,96], metabolic syn-
drome and/or diabetes mellitus [94], kidney diseases [99,100], and decreased bone density
and fracture [101]. The effect of MR activation by aldosterone within the volume expansion
setting is most likely the reason for this excess risk. Although population-based studies
have reported finding an association between hypertension and glaucoma [8,102,103], the
exact relationship between NTG and PA remains unknown. Moreover, the association
between incident glaucoma and systolic or diastolic blood pressure has yet to be verified
by other prospective studies [104,105]. It is possible that there were fewer patients with
hypertension due to PA when these studies were compared, and this may be the reason for
this discrepancy. The blood-retinal barrier is known to maintain homeostasis in the retina.
So far, we do not know the blood-retinal barrier penetration of aldosterone. After systemic
administration of aldosterone, however, decreased ONH blood flow [88], decreased number
of RGCs [73], and changed gene expression in the retina [79] have been observed. These
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results indirectly showed that an effective concentration of aldosterone did reach the retina.
Additional studies that investigate the prevalence of NTG among patients with PA will
need to be conducted in the future.

8. Conclusions

One of the main pathways of retinal neuronal injury is the RAAS, which exists within
the retina. There is increasing evidence that aldosterone may play a role in eye diseases.
There is considerable evidence that the RAAS plays a role in diabetic retinopathy, retinal
vein occlusion, age-related macular degeneration, and retinopathy of prematurity [104,105].
MR inhibition could be a therapeutic target in these diseases [106,107]. Further studies
focusing on aldosterone-mediated effects on retinal diseases are needed.

Glaucoma is a very complex disease and is known to lead to irreversible blindness in
many people. The loss of RGCs and their axons in the rat after systemic administration
of aldosterone was shown to be a time-dependent loss without elevated IOP. This current
animal model appears to be an effective tool that can be used to investigate NTG neurode-
generation mechanisms in addition to being used to help develop therapies directed at the
IOP-independent mechanism of RGC loss. One of the risk factors for developing glaucoma
appears to be increased plasma aldosterone levels. Therefore, the relationship between
NTG and PA will need to be clarified by further definitive clinical studies. At the present
time, additional studies designed to investigate the prevalence of NTG among patients
with PA are currently being conducted by our research group.
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