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Abstract: Cardiovascular diseases (CVDs) are seriously threatening to human life and health. Polyun-
saturated fatty acids (PUFAs) are known for their role in preventing CVDs. It is beneficial to
population health to promote the content of PUFAs in bovine milk. In recent years, limited research
based on molecular mechanisms has focused on this field. The biological roles of numerous microR-
NAs (miRNAs) remain unknown. In this study, a promising and negatively correlated pair of the
miRNA (miRNA-193a-5p) and a fatty acid desaturase 1 (FADS1) gene are identified and screened
to explore whether they are potential factors of PUFAs’ synthesis in bovine milk. The targeted
relationship between miRNA-193a-5p and FADS1 in bovine mammary epithelial cells (BMECs) is
demonstrated by dual luciferase reporter assays. qRT-PCR and western blot assays indicate that both
the expression of mRNA and the protein FADS1 show a negative correlation with miRNA-193a-5p
expression in BMECs. Also, miR-193a-5p expression is positively correlated with the expression of
genes associated with milk fatty acid metabolism, including ELOVL fatty acid elongase 6 (ELOVL6)
and diacylglycerol O-acyltransferase 2 (DGAT2). The expression of fatty acid desaturase 2 (FADS2) is
negatively correlated with miR-193a-5p expression in BMECs. The contents of triglycerides (TAG),
eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) have a
significant positive correlation with the expression of FADS1 and a significant negative correlation
with the expression of miR-193a-5p in BMECs. For the first time, this study confirms that miRNA-
193a-5p regulates PUFAs metabolism in BMECs by targeting FADS1, indicating that miRNA-193a-5p
and FADS1 are underlying factors that improve PUFAs content in bovine milk.

Keywords: bovine milk; polyunsaturated fatty acids; MicroRNA-193a-5p; FADS1; bovine mammary
epithelial cells

1. Introduction

Fats are some of the major nutrients in bovine milk and are mainly triglycerides
(TG) containing saturated fatty acids (SFAs), unsaturated fatty acids (UFAs) and several
minor compounds [1,2]. Although milk fat rich in SFAs has been proposed as a potential
risk factor for cardiovascular diseases (CVDs) [3,4], accumulating evidence shows the
concern is unnecessary, whether it is for people who consume low-fat milk or high-fat
milk [5,6]. A total of 17 fatty acids found in bovine milk, such as trans-palmitoleic acid and
conjugated linoleic acid (LA), may prevent excessive obesity [7]. Duda et al. [8] found that
dietary supplementation with n-3 Polyunsaturated fatty acids (PUFAs) attenuated pressure
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overload-induced left ventricle dysfunction in a male rat. Mölenberg et al. [9] showed that
shifting the fatty acid composition of the diet toward a higher proportion of UFAs might
lower the mortality risk of CVDs in drug-treated patients with cardiac disease. Through
detecting the levels of PUFAs and blood lipids of 156 healthy individuals, Wang et al. [10]
demonstrated that n-3 fatty acids might adjust blood lipid levels and lower triglyceride
levels. In addition, Fonollá et al. [11] demonstrated that daily intake of milk enriched with
fish oil rich in n-3 PUFAs, oleic acid, and vitamins improved the nutritional status and
cardiovascular risk markers of volunteers, whereas skimmed milk and semi-skimmed milk
did not. Givens [12] used cis-MUFAs instead of SFA in milk fat by altering the diet of
the dairy cow, which improved indicators of coronary heart disease (CHD) and CVD in
general for the consumer. Due to the ruminal biohydrogenation of dairy cows, the genetic
approach is more feasible than dietary manipulation when altering the fatty acid profiles
of milk [13].

MicroRNAs (miRNAs), a class of noncoding RNAs, regulate gene expression by
specifically binding to 3′-untranslated regions (3′-UTRs) of their target genes [14]. MiRNAs
play vital roles in widely biological processes such as growth, development, reproduction
and disease [15]. Two experiments from Wang et al. [16,17] respectively demonstrated that
miRNA-26a/b and miRNA-145 regulated lipogenesis by targeting the Insulin-induced gene
1 (INSIG1) in goat mammary epithelial cells (GMECs). Recent studies in dairy cows have
shown that miRNAs participate in the regulation of lipid synthesis at a post-transcription
level in dairy cows [18,19]. Lactation stage is another factor that affects the metabolite
composition of milk [3]. Studies have shown that the milk fat rate in late lactation is higher
than that in early lactation [20]. Therefore, we speculate that key differentially expressed
microRNAs (DE miRNAs) and genes (DEGs) that regulate the synthesis of PUFAs in milk
can be found by comparing the transcriptome of the mammary glands of dairy cows in
two periods.

In this study, we measured the mammary gland transcriptome of dairy cows and
predicted target-related miRNAs and DEGs. Then, we screened the potential target-related
miRNA (miR-193a-5p) and DEG (FADS1) related to PUFAs synthesis. Fatty acid desaturases
catalyzing SFAs to PUFAs lead to the accumulation of PUFAs in milk [21]. A study from
Boschetti et al. [22] indicated that the fatty acid composition of chicken breast meat was
dependent on a genotype-related variation of fatty acid desaturase 1 (FADS1) and fatty acid
desaturase 2 (FADS2) and their desaturating activity. In humans, several studies suggested
that plasma and tissue concentrations of n-3 and -6 fatty acids were associated with several
single nucleotide polymorphisms (SNPs) in the FADS1 gene [23]. However, the function of
fatty acid desaturase 1 (FADS1) and miR-193a-5p, a potential regulator of FADS1, remains
unclear in the synthesis of PUFAs in bovine milk. For the first time, we explored the
regulatory relationship and molecular mechanisms of miR-193a-5p and FADS1 in BMECs.
Our study provides a reference for molecular breeding to increase the proportion of PUFAs
in milk.

2. Materials and Methods
2.1. Ethics Statement

Our experiment obtained ethics approval from the Institutional Animal Care and Use
Committee (IACUC) of the Yangzhou University Animal Experiments Ethics Committee
(Permit Number: SYXK (Su) IACUC 2016-0019).

2.2. Transcriptome Sequencing

Three Holstein dairy cows (A, B, C) in their second lactation period without a history
of illness were selected from the farm of Yangzhou University. The three dairy cows
were feed with total mixed ration (TMR), and its components are shown in Table S1 [24].
Mammary glands of dairy cows were collected by surgical methods at early lactation
(postpartum day 30, 30 d) and mid lactation (postpartum day 180, 180 d) [25,26]. Total
RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA).
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RNA integrity was assessed on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA,
USA), and samples with an RNA Integrity Number (RIN) ≥7 were used in transcriptome
analysis.

The small RNA (sRNA) libraries were constructed according to Illumina® TruSeq™
(Illumina, San Diego, CA, USA) Small RNA Sample Preparation protocol. Briefly, 3′ adaptor
and 5′ adaptors were ligated to the total RNA. Then, the cDNA was obtained using reverse
transcription with SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA).
Finally, the cDNA was amplified by PCR with DNA polymerase to generate small RNA
libraries. The libraries were sequenced on Illumina Hiseq 2500 at a sequence read length
of 1 × 36 bp to obtain the original data. The quality of raw reads was elevated using the
FastQC online tool (http://www.bioinformatics. babraham.ac.uk/projects/fastqc/) [27].

A TruSeq Stranded mRNA LTSample Prep Kit (Illumina, San Diego, CA, USA) was
used to construct cDNA libraries according to the manufacturer’s instructions. The libraries
were sequenced on the Illumina sequencing platform (HiSeqTM 2500, Illumina, San Diego,
CA, USA) to generate 125bp paired-end raw reads. Unqualified raw reads were removed to
generate clean reads that were mapped to reference bovine genome UMD3.1 (ftp://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF_000003055.6_Bos_taurus_UMD_3.1.1) by TopHat 2.1.1
(http://ccb.jhu.edu/software/tophat/index.shtml) and Bowtie 2 2.3.5.1 (http://bowtie-
bio.sourceforge.net/index.shtml) [28,29].

Datasets were obtained from the NCBI Sequence Read Archive (SRA) (https://www.
ncbi.nlm.nih.gov/sra) with accessing numbers SRS6946983, SRS6946984 and SRR12149783,
and the Genome Sequence Archive in the BIG Data Center, Beijing Institute of Genomics
(BIG), Chinese Academy of Sciences, under accession number CRA002742, and are publicly
accessible at http://bigd.big.ac.cn/gsa.

2.3. Identifition of Target-Related miRNA and DEG

miRNA expression was calculated as transcripts per million (TPM = reads of each
miRNA alignment/reads of samples’ total alignment × 106) [30]. Principal component
analysis (PCA) was performed to explore transcripts’ distribution. The calculation of DE
miRNAs was realized by the DEseq approach. DE miRNAs were defined as those with a
fold change >2 and p-value < 0.05.

The transcripts’ abundance was detected using Fragment reads Per Kilobase per
Million mapped reads (FPKM). The read counts of each gene were calculated by HtSeq-
count 0.9.1 (https://htseq.readthedocs.io/en/master/history.html#version-0-9-1) [31]. The
PCA was performed to explore transcripts’ distribution. Differential expression analysis of
paired transcripts was performed using the DESeq R package (1.18.0) [32]. Genes with fold
change >2 and p-value < 0.05 were identified as DEGs.

In addition, qRT-PCR was used for validation of the sequencing data based on the
expression of DE miRNAs and DEGs. A PrimeScript™ RT Reagent Kit with a gDNA
Eraser (Takara, Kyoto, Japan) was applied for the synthesis of cDNA. Expression of the
DE miRNAs/DEGs was detected using the TB Green® Premix Ex Taq™ II Kit (Takara,
Kusatsu, Shiga, Japan)/Hairpin-it microRNA and the U6 snRNA Normalization RT-PCR
Quantitation kit (GenePharma, Shanghai, China) [33]. All reactions were performed in
triplicates using a Light Cycler® 480 System (Roche Applied Science, Indianapolis, IN,
USA). DE miRNAs/mRNAs were normalized for bovine U6/β-actin, and the primers used
for qRT-PCR are shown in Tables S2 and S3. Relative expression was calculated using the
2−∆∆Ct method for all samples [34,35].

A TargetScan program (http://www.targetscan.org) was used to identify the target
gene of DE miRNAs. Only mRNAs showing a negative correlation with DE miRNAs
were considered putative targets. A network map was built to investigate the interactions
between DE miRNAs and their targeted DEGs. To find the target-related miRNAs and
DEGs with the biological function of PUFAs synthesis, gene ontology (GO) annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were respectively
achieved by DAVID 6.8 (https://david.ncifcrf.gov/) [36] and KOBAS 3.0 (http://kobas.cbi.
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pku.edu.cn/kobas3) [37]. A p-value < 0.05 was the threshold for identifying significantly
GO terms and KEGG pathways. In this study, miR-193a-5p and FADS1 were considered as
key DE miRNA and mRNA with the biological function of PUFAs synthesis.

2.4. Cell Culture and Transfection

BMECs were obtained from the Animal Genetics Laboratory of Yangzhou University.
They were cultured in six-well plates with DMEM/F12 (Gibco, Waltham, MA, USA) com-
plete media that contained 10% fetal bovine serum (FBS; Gibco), 50 U/mL penicillin/mL
streptomycin, 5 mg/mL bovine insulin, 10 ng/mL EGF-1 (Gibco) and 0.25 mmol/L hydro-
cortisone. The plates were placed in an incubator with 5% CO2 at 37 ◦C. When BMECs
grew to approximately 80% per well, the cells were transfected with miR-193a-5p mimic
(100 nM final concentration) and inhibitor (200 nM final concentration) using the Lipofec-
tamine 2000 Transfection Kit (Sigma, St. Louis, MO, USA). Transfection of BMECs was
carried out in Opti-MEM medium (Gibco, Waltham, MA, USA) for 6 h. Then, Opti-MEM
medium was replaced with DMEM/F12 complete media for the next 48 h of culture. The
sequence of miR-193a-5p mimic, inhibitor and negative control were shown in Table S4.
Each transfection held three replicates.

2.5. RNA Extraction and qRT-PCR

Total RNA was extracted from the transfected BMECs using TRNzol Universal Reagent
Kit (Tiangen, China). RNA quality was checked by a spectrophotometer (Thermo Scientific,
Waltham, MA, USA). The method mentioned in Section 2.3 was used to detect miRNA-
193a-5p, mRNAs’ expression of FADS1, and fatty acid synthesis-related genes, including
fatty acid desaturase 2 (FADS2), ELOVL fatty acid elongase 6 (ELOVL6), diacylglycerol
O-acyltransferase 1 (DGAT1) and diacylglycerol O-acyltransferase 2 (DGAT2). Primers
for qRT-PCR were designed based on the miR-193a-5p sequence in the miRBase database
(http://www.mirbase.org) (Table S5). Primers for the detection of mRNA expression
were designed based on the sequences of bovine genome in NCBI (Table S6). A protein–
protein interaction (PPI) network was built to investigate the interactions of FADS1, FADS2,
ELOVL6, DGAT1 and DGAT2. The PPI network with a combined score >0.7 was built using
STRING v11.0 (https://string-db.org/).

2.6. Western Bolt

To obtain the total protein, the transfected BMECs were lysed in RIPA buffer containing
1% PMSF (Solarbio, Beijing, China). Protein concentrations were assessed using a BCA
Protein Assay Kit (Solarbio, Beijing, China). Equal amounts of protein in each well were
separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and
then transferred to a PVDF membrane (Amersham Biosciences, Buckinghamshire, UK).
Finally, the total protein was probed with the primary antibodies—monoclonal rabbit
anti-FADS1 (Cell Signaling Technology, Beijing, China) and monoclonal mouse anti-β-
actin (Proteintech Gronup, Shanghai, China). The secondary antibody was a polyclonal
goat antirabbit HRP-conjugated IgG (Tiangen, Sichuan, China). All antibodies were used
in adherence to the instructions. Signals were measured on the chemiluminescent ECL
western blot system (Pierce, Appleton, WI, USA).

2.7. Luciferase Reporter Assay

To verify the target sites of the FADS1 3′ UTR and miR-193a-5p, the pmirGLO-FADS1-
MUT plasmid and pmirGLO-FADS1-WT plasmid were constructed. First, a FADS1 3′-UTR
primer containing the miR-193a-5p action site (F, 5′-CCACCTCAACTTCCAGATT-3′; R,
5′-CCTTCCCTATTCCCACA-3′) was designed and amplified using the bovine FADS1
3′-UTR as a template (Table S7). Next, the amplification products were inserted into a
pMD18T vector (Takara, Japan), generating plasmid pMD18T-FADS1-WT. The FADS1
target site sequence was mutated from AAGACCC to TACACGC using a Fast Site-Directed
Mutagenesis Kit (Tiangen, China), generating plasmid pMD18T-FADS1-MUT. Then, the
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fragments of FADS1-WT/MUT were digested with Sac I and Sal I from pMD18T-FADS1-
WT/MUT. Meanwhile, the pmirGLO luciferase vectors were digested with Sac I and Sal I
to obtain the linearized vectors. Finally, the FADS1-WT/MUT fragments and the linearized
vectors were respectively connected with DNA T4 ligase, generating pmirGLO-FADS1-
MUT/WT plasmid. The pmirGLO-FADS1-MUT/WT plasmid and miR-193a-5p mimic
were co-transfected into HEK 293T cells to explore whether miR-193a-5p can combine
with FADS1 3′ UTR. After 48 h of transfection, cells were harvested and assayed for renilla
fluorescence and firefly fluorescence using a Dual-Glo luciferase assay system kit (Promega
Corp, Beijing, China).

2.8. Co-Transfection of MiR-193a-5p Inhibitor and Small RNA

The small RNA (siRNA) targeting FADS1 and miR-193a-5p inhibitor were co-transfected
into BMECs to explore whether miR-193a-5p regulates FADS1 by targeting only FADS1
(Table S4). The siRNA of FADS1 and negative control siRNA were designed and synthe-
sized by GenePharma (Suzhou, China). The sequences of siRNA were shown as follows: F,
5′-CCUUGCUGCCUGUCUACUUTT-3′; R, 5′-AAGUAGACAGGCAGCAAGGTT-3′.

2.9. Triglycerides Content Assay

Triglyceride was assayed using an enzymatic triglyceride assay kit (Applygen, Beijing,
China). The BMECs were lysed after 48 h of transfection. The mixture was allowed to
rest for 10 min, and the supernatant was transferred into a sterile 1.5 mL micro-centrifuge
tube and then heated for 10 min in a 70 ◦C water bath. After centrifugation (5 min at
2000 rpm), the supernatant was collected for an enzymatic assay [38,39]. According to the
manufacturer’s instructions, absorbance was detected at 550 nm in a microplate reader
(Tecan, Switzerland).

2.10. Fatty Acid Profiles Assay

Intracellular fatty acids were assayed by referring to the method of Zhou et al. [40]. In
detail, BMECs were transfected with miR-193a-5p mimic, inhibitor and negative control.
A total of 100 mg BMECs mixed with 2 mg of methanol containing 0.25% sulfuric acid
were sonicated by ultrasound and then incubated at 80 ◦C for 1 h to methylate the fatty
acids. The solution, returned to room temperature, was mixed with 2 mL hydrochloric acid
solution (0.1 M) and then 800 µL of n-hexane was added, obtaining a mixed solution. The
mixed solution was centrifuged at 900× g for 5 min, and the supernatant was transferred
to a siliconized glass tube. The supernatant was added to 0.5 g anhydrous sodium sulfate
and vortexed. After centrifugation at 13,800× g for 5 min, the supernatant and anhydrous
sodium sulfate were separated from the solution. The supernatant was applied to the
detected fatty acid composition and content with gas chromatography−mass spectrometry
(Thermo Fisher, Waltham, MA, USA) analysis of fatty acid composition and content. The
relative content of fatty acid was evaluated using the percentage of peak area for individual
fatty acids.

2.11. Statistical Analysis

Statistical analysis Software (SAS) 9.4 (SAS Institute, Cary, NC, USA) was used for
statistical analyses. Data were presented as mean ± standard error (SE) from triplicate
experiments. p < 0.05 indicated significant differences between the groups.
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3. Results
3.1. Analysis of Differentially Expressed miRNAs and mRNA
3.1.1. Identification of Differentially Expressed miRNAs and mRNAs

A total of six sRNA/cDNA libraries were established and sequenced to identify DE
miRNAs/mRNAs based on the mammary glands of dairy cows during early and mid-
lactation. The six sRNA/cDNA libraries produced 916.29/3913.31 million (M) raw reads
(Tables S8 and S9). After removing the unqualified reads, a total of 847.55/3859.12 M clean
reads were obtained from the sRNA/cDNA libraries and sequenced on Illumina Hiseq
2500. In each sRNA library, the Q20 percentage was higher than 99.88%. In each cDNA
library, the Q30 percentage was greater than 96.19%, and the GC content ranges from
47.50% to 50.00%. Consequently, the sequencing results are reliable and could be used for
subsequent analysis.

PCA based on the sRNA/cDNA libraries was performed, respectively generating two
clusters: early and mid-lactation (Figure 1). A cluster included miRNAs/mRNAs from dif-
ferent dairy cows who were in the same lactation stage, indicating that the main differences
of the miRNA/mRNA expression profiles appeared at different stages of lactation. DE
miRNAs/mRNAs were identified by comparing the miRNA/mRNA expression profiles at
two time points. Subsequently, a total of 13 DE miRNAs and 632 DEGs were identified by
fold change >2 and p-value < 0.05. The 13 DE miRNAs were 6 upregulation miRNAs and
7 downregulation miRNAs in mid-lactation, compared with early lactation (Figure 2a). The
632 DEGs include 332 upregulation genes and 300 downregulation genes in mid-lactation
compared with early lactation (Figure 2b).

Additionally, the validation of sequencing data used qRT-PCR based on the expression
of DE miRNAs and DEGs. The qRT-PCR results demonstrate that the expression of miR-
223, miR-2346, miR-338, FADS1, PHLDA2 and SLC13A5 are upregulation in mid-lactation
verse early lactation, while miR-193a-5p, miR-124a, ACSM1, ACPP, CYP4B1, ACACB and
CCDC3 are downregulation in mid-lactation verse early lactation (Tables S10 and S11). The
results of qRT-PCR were in accordance with transcriptome sequencing data.
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Figure 2. Heat maps of differentially expressed microRNAs (DE miRNAs) and genes (DEGs) in dairy
cow mammary glands between early and mid-lactation. (a) Red modules represent upregulated DE
miRNAs, and green modules represent downregulated DE miRNAs. (b) Red modules represent
upregulated DEGs, and green modules represent downregulated DEGs.

3.1.2. Functional Analysis of Differentially Expressed Genes

GO annotation elucidates the biological functions of 632 DEGs better according to
three classes—biological process (BP), cellular component (CC) and molecular function
(MF). Figure 3a lists terms enriched significantly in each class (p-value < 0.05). Figure 3b,c
shows changes in the expression of DEGs in the top 12 significant enrichment terms.
Additionally, KEGG pathways analysis of the 632 DEGs reveals that 30 pathways show
a significant difference between mid- and late lactation in the mammary glands of dairy
cows (p-value < 0.05) (Figure 3d). The changes in DEGs of significant pathways are shown
in Figure 3e,f.
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ditionally, KEGG pathways analysis of the 632 DEGs reveals that 30 pathways show a 

significant difference between mid- and late lactation in the mammary glands of dairy 

cows (p-value < 0.05) (Figure 3d). The changes in DEGs of significant pathways are shown 

in Figure 3e,f. 
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Figure 3. Significant gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of
DEGs. (a) The top 10 significant GO terms are respectively listed in each catalog, including biological process (BP), cellular
component (CC) and molecular function (MF). (b) Circos plots show specific responses and overlapping of DEGs enriched
in the top 12 significant GO terms. (c) Circos plots indicate features of DEGs enriched in the top 12 significant GO terms.
(d) The top 30 significant KEGG pathways of DEGs. (e) Circos plots show specific responses and overlapping of DEGs
enriched in the top 12 significant KEGG pathways. (f) Circos plots indicate the features of DEGs enriched in the top 12
significant KEGG pathways.

3.2. Integration Analysis of DE miRNAs and DE mRNAs

Correlation analysis of DE miRNAs and DE mRNAs found 229 negatively correlated
pairs of miRNA and target mRNA. Among the miRNA–mRNA pairs, a total of 122 pairs
showed that miRNA was downregulated and mRNA was upregulated in mid-lactation
compared with early lactation. Bta-miR-2284k, the most-enriched miRNA, had a target of
69 DEGs. A total of 182 DEGs were regulated by 13 DE miRNAs (bta-miR-1298, bta-miR-495,
bta-miR-223, bta-miR-135a, bta-miR-193a-5p, bta-miR-296-3p, bta-miR-338, bta-miR-2346,
bta-miR-202, bta-miR-124a, bta-miR-124b, bta-miR-2284k, bta-miR-2308 and bta-miR-412)
(Figure 4). These DE miRNAs–mRNAs pairs may play an important role in milk fatty acid
synthesis in dairy cows.
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3.3. MiR-193a-5p Specific Targeting of FADS1

Given that the function of the fatty acid metabolism of FADS1 remains to be fully
clarified in BMECs, we selected the miR-193a-5p–FADS1 candidate pair and attempted to
verify their biological function and regulatory relationships. The BMECs were transfected
with miR-193a-5p mimic, inhibitor and miRNA negative control. After 48 h, the expression
of miR-193a-5p was 55 times greater in the mimic group compared with the negative control
(Figure 5a). In contrast, compared with the negative control, the expression of miR-193a-5p
was more than 70% lower in BMECs whose miRNA-193a-5p was silenced (Figure 5b). The
results were successful for the transfection of miR-193a-5p mimic and inhibitor.

Figure 5c–e shows the expression of FADS1 in BMECs transfected with mimic and an
inhibitor of miR-193a-5p. Both mRNA and protein results indicate that FADS1 expression
is upregulated in BMECs transfected by the inhibitor of miR-193a-5p, while the overexpres-
sion of miR-193a-5p leads to the downregulation of FADS1 expression in BMECs.

Dual luciferase reporter gene assay evaluated whether miR-193a-5p targets FADS1
in BMECs. We predicted the 3′ UTR region of FADS1 in dairy cows using TargetScan
and constructed wild-type (pmirGLO-FADS1-WT) and mutant (pmirGLO-FADS1-MUT)
vector plasmids. The two types of vectors were co-transfected with miR-193a-5p mimic
into BMECs. In the group of co-transfections with pmirGLO-FADS1-WT and miR-193a-5p
mimic, luciferase activity significantly decreased to 40% of the negative control group
(Figure 5f). In the group of co-transfections with pmirGLO-FADS1-MUT and miR-193a-5p
mimic, luciferase activity had no statistical significance compared with the negative control
group (Figure 5f). These results confirm that miR-193a-5p regulates FADS1 expression by
binding to the predicted target site in the 3′ UTR region of FADS1 in dairy cows.
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pair in BMECs. As triglycerides (TAG) is the main composition of milk fat and the main 

carrier of milk fatty acids, we examined the TAG levels in BMECs transfected with miR-

193a-5p mimic/inhibitor. Compared with the controls, the miR-193a-5p mimics reduced 

the TAG level to 20% (p < 0.05) (Figure 6a). In contrast, TAG levels increased to 150% when 

miR-193a-5p was inhibited in BMECs (Figure 6b). 

Figure 5. Relative expression of miRNA-193a-5p in BMECs after transfecting the (a) mimic and (b) inhibitor for 48 h, and
the relative mRNA expression of FADS1 after transfecting the (c) mimic and (d) inhibitor of miRNA-193a-5p for 48 h (n = 9).
NC represents the negative control. (e) Relative expression of the FADS1 protein in BMECs after transfecting the mimic and
inhibitor of miRNA-193a-5p for 48 h. (f) Relative luciferase activity in BMECs that transfected and co-transfected with miR-
193a-5p mimic and pmirGLO-FADS1-WT/pmirGLO-FADS1-MUT for 48 h (n = 9). Data are presented as mean ± standard
error (SE). * represents p < 0.05, indicating significant differences between the groups.

3.4. Triglycerides Content Analysis

After confirming the regulation relationships between miR-193a-5p and FADS1, we
sought to explore the special biological function of the miR-193a-5p–FADS1 candidate pair
in BMECs. As triglycerides (TAG) is the main composition of milk fat and the main carrier
of milk fatty acids, we examined the TAG levels in BMECs transfected with miR-193a-
5p mimic/inhibitor. Compared with the controls, the miR-193a-5p mimics reduced the
TAG level to 20% (p < 0.05) (Figure 6a). In contrast, TAG levels increased to 150% when
miR-193a-5p was inhibited in BMECs (Figure 6b).
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Figure 6. The relative content of triglycerides (TAG) in BMECs after transfecting with the (a) mimic and (b) inhibitor (n = 9).
(c) The relative mRNA expression of FADS1 after transfecting siRNA for 48 h. (d) The relative content of TAG in BMECs
after co-transfecting with siRNA and the inhibitor of miRNA-193a-5p for 48 h. NC represents the negative control. Data are
presented as mean ± standard error (SE). * represents p < 0.05, indicating significant differences between the groups.

3.5. Partial Rescue of the Triglycerides Reduction

The experiments have indicated that miR-193a-5p regulates FADS1 expression by
binding to the predicted target site in the 3′ UTR region of FADS1, and miR-193a-5p inhibits
the synthesis of cellular TAG. A rescue experiment was performed to verify whether miR-
193a-5p induces the increase of TAG levels by targeting FADS1. Rescues of siRNA-FADS1
increase the TAG levels in BMECs. siRNA-FADS1 partially alleviated the increase in TAG
content in BMECs treated with miR-193a-5p inhibitor (Figure 6d). The results demonstrate
that miR-193a-5p induces an increase in TAG levels by targeting FADS1.

3.6. Fatty Acid Profiles Analysis

To further understand the role of miRNA-193a-5p in the fatty acid metabolism of
BMECs, we detected changes in the fatty acid content of BMECs transfected with miR-193a-
5p mimic/inhibitor. BMECs transfected with miR-193a-5p inhibitor show an increase in
concentration of PUFAs such as eicosapentaenoic acid (EPA, C20:5n-3), docosapentaenoic
acid (DPA, C22:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) compared with the
control group (Table 1). BMECs transfected with miR-193a-5p mimic show a decrease in
concentration of PUFAs such as EPA, DPA and DHA compared with the control group
(Figure 7).
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Table 1. Effects of miR-193a-5p mimic and inhibitor on intracellular fatty acid composition in BMECs.

Fatty Acid (%)
Treatment

NC miR-193a-5p-Mimic miR-193a-5p-Inhibitor

C12:0 0.16 ± 0.02 0.15 ± 0.02 0.15 ± 0.02
C14:0 1.51 ± 0.03 c 1.59 ± 0.05 b 1.66 ± 0.04 a
C16:0 21.31 ± 0.26 b 23.29 ± 0.32 a 21.33 ± 0.35 b
C18:0 27.16 ± 0.51 a 25.20 ± 0.38 b 27.38 ± 0.52 a
C16:1 1.58 ± 0.03 1.56 ± 0.04 1.53 ± 0.02

Cis-9-C18:1 21.05 ± 0.46 21.01 ± 0.34 21.09 ± 0.37
C18:1 14.64 ± 0.24 b 15.25 ± 0.13 a 13.11 ± 0.17 c
C18:2 2.26 ± 0.05 2.23 ± 0.04 2.21 ± 0.03

C20:4n-3 3.09 ± 0.07 b 3.57 ± 0.11 a 2.47 ± 0.06 c
C20:5n-3 3.15 ± 0.08 b 2.46 ± 0.05 c 3.72 ± 0.05 a
C22:5n-3 2.41 ± 0.05 b 2.17 ± 0.02 c 2.79 ± 0.05 a
C22:6n-3 1.68 ± 0.03 b 1.52 ± 0.01 c 2.56 ± 0.05 a

Note: a, b, c = p < 0.05 in the row (n = 6).
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Figure 7. Effect of miR-193a-5p mimic and inhibitor on the composition of n-3 fatty acids in BMECs (n = 6). * represents
p < 0.05, indicating significant differences between the groups.

3.7. Expression Analysis of Fatty Acid Metabolism-Related Genes

MiR-193a-5p overexpression reduces the expression of FADS1 and other fatty acid
metabolism-related genes in BMECs, including ELOVL6 and DGAT2, and upregulates the
expression of FADS2, an isozyme of FADS1 (p < 0.05) (Figure 8a). Inhibition of miR-193a-5p
increases the expression of FADS1, ELOVL6 and DGAT2 and suppresses FADS2 expression
in BMECs (p < 0.05) (Figure 8b). DGAT1 expression is not affected by the expression of
miR-193a-5p and FADS1 (p > 0.05).
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4. Discussion

Research showed that FADS1 encodes rate-limiting enzymes in the endogenous for-
mation of PUFAs [41,42]. EPA and DHA are endogenous produced in a pathway where
essential n-3 fatty acids and α—linolenic acid are desaturated and elongated. In this path-
way, FADS1 plays a critical role [43,44]. Approximately 17.9 million people die from CVD
every year [45,46]. Increasing evidence shows that nutrition plays a pivotal role in the
development of chronic diseases, especially CVD [47]. Diet and lifestyle are the key risk fac-
tors for CVD prevention and have been the focus of intense research [46]. Dairy products,
as an integral part of human nutrition, contain n-3 fatty acids, usually at concentrations
below biological requirements. Thus, in recent years, some research has been devoted
to increasing the content of PUFAs in bovine milk based on genome, transcription and
post-transcriptional levels [48–50]. In this study, we confirmed that miR-193a-5p directly
binds to the FADS1 3′-UTR in dairy cows. qRT-PCR and western bolt assays indicated
that overexpression of miR-193a-5p downregulated expressions of FADS1 regardless of
mRNA or protein levels, and the inhibition of miR-193a-5p had the opposite effect. In
addition, the content of TAG, EPA, DPA and DHA has a significant positive correlation
with the expression of FADS1 and a significant negative correlation with the expression of
miR-193a-5p in BMECs. These results confirm that miR-193a-5p regulates the synthesis
of PUFAs by targeting FADS1 in BMECs. Increasing PUFAs intake is beneficial for global
health and can prevent human beings from metabolic, cardiovascular, cognitive and devel-
opmental health conditions [51–53]. From a global health perspective, the downregulation
of miRNA-193a-5p and the upregulation of FADS1 are beneficial.

Polymorphisms in FADS1- and FADS2-altered fatty acid profiles or the activity of
FADS1- and FADS2-. He et al. [54] identified strong associations between SNPs in the fatty
acid desaturase (FADS) region and multiple PUFAs, suggesting that genetic variants in
the FADS region were major genetic modifiers that could regulate fatty acid metabolism
through epigenetic gene regulation. Koletzko et al. [55] found that genotype distribution
differs markedly among ethnicities, apparently reflecting an evolutionary advantage of
genotypes in activating LC-PUFAs synthesis when the introduction of agriculture provided
diets rich in LA but with little arachidonic acid (AA) and EPA. Vegetarians with a TT
genotype of the rs174547 in FADS1 gene had higher odds of developing metabolic syndrome
(MetS), larger waist circumference (WC), higher blood pressure (BP), and lower level of
HDL-c, which suggested that the dietary intake of LA might interact with rs174547 in the
FADS1 gene and affect HDL-c levels [56]. Joshi et al. [57] demonstrated that an increase the
FADS1 expression of vegetarian pregnant women during pregnancy might maintain AA,
EPA and DHA levels to ensure the overall LC-PUFA levels of the neonate. Populations had
an increase in EPA in plasma when intake of flaxseed oil rich in α-linolenic acids (ALA)
increased beyond that of major allele homozygotes consuming a typical “western” diet [58].
Individuals homozygous for the minor allele of FADS1/FADS2 had a lower plasma AA and
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AA/LA ratio when compared with the major allele carriers after each diet, while ELOVL
fatty acid elongase 2 (ELOVL2) had no effect on PUFAs [58]. Their findings provided strong
supporting evidence for the role of FADS1 in regulating PUFAs metabolism. In our study,
no SNPs were found in FADS1 3′ UTR. The inhibitor of miR-193a-5p significantly increased
FADS1 expression, either mRNA or protein, which upregulated the n-3 fatty acid levels.
Our experimental results further clarify that miR-193a-5p plays an important role in the
regulation of milk fatty acid profiles at a post-transcriptional level.

According to the regulatory relationship network (Figure 9), miRNA-193a-5p regulates
EPA, DPA and DHA synthesis by targeting FADS1 in BMECs. In PPI and regulatory
relationship networks, FADS1 respectively interacts with FADS2, ELOVL6 and DGAT1,
and the expression of FADS1 could influence the expression of DGAT2 through FADS2,
ELOVL6 and DGAT1. As is well known, ELOVL6 is a key enzyme in intracellular lipid
metabolism [59]. Du et al. [60] found that ELOVL6 was identified as a target gene of
miR-125a-5p during porcine intramuscular adipogenesis, and that the overexpression
of miR-125a-5p decreased the content ratios of monounsaturated fatty acids (MUFAs)
and total SFAs, while having no significant impact on PUFAs/SFAs and n-6/n-3 ratios.
Takamura et al. [61] proved that the knockout of ELOVL6 in mice could inhibit lipid
accumulation and increase cholesterol consumption. Shi et al. [48,62] demonstrated that
ELOVL5 and ELOVL7 play roles in the synthesis of long-chain unsaturated fatty acids
(LC-UFAs) in goat mammary epithelial cells. In the current study, ELOVL6 expression
shows a positive correlation with FADS1 expression and a negative correlation with miR-
193a-5p expression. Also, DGAT2 expression shows a positively correlation with FADS1
expression and a negative correlation with miR-193a-5p expression. DGAT2, belonging to
the DGAT gene superfamily, catalyzes the final, committed step in acyl-CoA-dependent
TAG biosynthesis [63]. Stone et al. [64] confirmed that DGAT2 plays a fundamental role
in mammalian TAG synthesis, and DGAT1 plays an important part in regulating energy
metabolism. In addition, multiple studies concluded that DGAT1 and DGAT2 share no
homology [64–66]. In our study, the expression of miR-193a-5p and FADS1 have statistical
significance with DGAT1.
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Figure 9. MiRNA-193a-5p regulated the synthesis of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and
docosahexaenoic acid (DHA) by targeting FADS1 in BMECs. After transfecting the miRNA-193a-5p mimics into BMECs,
FADS1 expression was downregulated, which led to the upregulation of FADS2 and the downregulation of ELOVL6
and DGAT2.

The downregulation of miRNA-193a-5p and upregulation of FADS1 significantly
increased the content of dairy fat in BMECs. Some studies are skeptical about the safety of
high-fat milk intake [67]. An early study reported that a strong correlation existed between
dairy fat consumption and CHD [68]. However, in recent years, a growing number of
studies have found no significant correlation between milk fat content and CVDs [5].
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The effect of dairy fat on health is demonstrated by the fatty acid profile [16,69,70]. Thus,
improving the fatty acid profile of dairy fat continues to be a worthy topic for future studies.

5. Conclusions

For the first time, our data identify that miRNA-193a-5p regulates PUFAs metabolism
in BMECs by targeting FADS1, suggesting that miRNA-193a-5p and FADS1 are underlying
factors for improving PUFAs content in bovine milk (Figure 9).
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