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Abstract In this work, we develop a mathematical formal-
ism based on a 3D in vitro model that is used to simulate
the early stages of angiogenesis. The model treats cells as
individual entities that are migrating as a result of chemo-
taxis and durotaxis. The phenotypes used here are endothelial
cells that can be distinguished into stalk and tip (leading)
cells. The model takes into account the dynamic interaction
and interchange between both phenotypes. Next to the cells,
the model takes into account several proteins such as vascu-
lar endothelial growth factor, delta-like ligand 4, urokinase
plasminogen activator and matrix metalloproteinase, which
are computed through the solution of a system of reaction–
diffusion equations. The method used in the present study
is classified into the hybrid approaches. The present study,
implemented in three spatial dimensions, demonstrates the
feasibility of the approach that is qualitatively confirmed by
experimental results.
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1 Introduction

Angiogenesis is the process through which a new blood ves-
sel is formed from a pre-existing blood vessel network. An
adequate blood vessel network is required to supply blood to
the entire human or animal body. In cases of (mechanical)
damage, like a wound, the small blood vessel network in the
wounded area has been disrupted and needs to be restored. In
other cases of damage, one can think of the re-establishment
of a vascular network around cardiac (coronal) arteries that
may have closed as a result of atherosclerosis. In the afore-
mentioned processes, angiogenesis is indispensable for the
survival of the organism. During the early stages of develop-
ment of a tumour, growth occurs through cell division and
proliferation. Subsequently, it halts as a result of lack of oxy-
gen and even develops a necrotic core. Finally, it is able to
continue growing if a vascular network around the tumour has
been developed.Here, angiogenesis is responsible for turning
a benign tumour into amalignant tumour,whichwill possibly
metastasise (or spread out) to other parts of the body, often
leading to morbid and mortal consequences for the patient.

In order to understand the underlying mechanisms of
angiogenesis, it is important to carry out experiments both
in in vitro and in in vivo settings. Since qualitative (images)
and quantitative (after analysis) results are obtained from
these experiments, it is important to quantify and to test
the hypotheses that are formed after theoretical assessment
and analysis of the results. Therefore, mathematical mod-
elling of phenomena like wound healing, wound contraction,
tumour growth, ulcer development and angiogenesis has
become very important and has developed into a mature
state. The maturity of the modelling can be seen from the
number of approaches that are used to simulate the afore-
mentioned processes. Some of the approaches treat cells
by the use of averaged quantities where the models end
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up as continuum-scale partial differential equations for cell
densities. Examples of such continuum-scale approaches
in the context of wound healing are Britton and Chaplain
(1993), Javierre et al. (2009), Prokharau et al. (2014), Valero
et al. (2014) and Gaffney et al. (2002), Maggelakis (2003),
Maggelakis (2004) in the context of angiogenesis. The list
of examples is far from complete. Next to the continuum-
scale approaches, several formalisms have been developed
on the smaller cell colony scale, where we start with men-
tioning the relevant work in Oers et al. (2014), Graner and
Glazier (1992), Merks and Koolwijk (2009) on cellular Potts
modelling in the context of angiogenesis. The cellular Potts
models fall within the class of cellular automata models,
which divide the computational domain into a discrete set
of lattice points. Each lattice point is either occupied or not
occupiedby a cell (or byoneof the subdomains) basedon sev-
eral biologically derived constrained optimality principles.
Since cells or their boundaries move in a discrete fashion,
and since intra-cellular adherence can be built in easily as a
penalisation, the use of cellular Potts models has become a
very natural choice for the simulation of angiogenesis where
endothelial cells move and stay attached to each other. On
the same cell colony scale, we mention the semi-continuous
approach, where cells are treated as discrete entities, but
where their migration is not restricted by any lattice points.
Here, several modelling approaches have been developed in
the context of wound closure, wound contraction, cell migra-
tion, and tumour growth and development. Examples of such
models are the studies in Byrne and Drasdo (2009), Groh and
Louis (2010), Mousavi et al. (2013), Neilson et al. (2011),
Rey and Garcia-Aznar (2013), Vermolen and Gefen (2012),
Vermolen andGefen (2015), Vermolen et al. (2015). A recent
review on particle methods applied to wound healing and
tumour growth can be found in Vermolen (2015). Regarding
cancer initiation, growth and invasion of cancer cells, and
the use of cell-based modelling, we refer to the studies by
Schlüter et al. (2014) and Vermolen et al. (2015). One can
distinguish between models in which the cell geometry does
not change over the simulation and those models where cells
actually geometrically deform. An example of 3D models
where cells deform and migrate, using a probabilistic voxel
finite-element method, is given in Borau et al. (2014). This
voxel finite-element is stochastic, aswell as discrete, whereas
some cell deformationmodels are based on phase-fieldmeth-
ods or onmoving surface partial differential equations like in,
respectively, the work by Marth and Voigt (2014) and Elliott
et al. (2012).

Looking at the process of angiogenesis, one finds the
classical continuum-scale models along with the cellular
automata approaches; however, hybrid approaches combin-
ing cell-based approaches with finite-element simulations
are very scarce in the literature. Regarding bone growth and
angiogenesis, we refer to the work of our Belgian colleagues

(Carlier et al. 2012) where endothelial tip cells are moving
individually in a lattice-freemanner andwhere other cells are
treated in terms of cell densities. Chemotactic and haptotactic
signals determine the migration of tip cells. Several chemo-
tactic factors as growth factors are taken into account by
approximating the solution of a system of diffusion–reaction
equations. This interesting work also treats impaired angio-
genesis in a framework with two spatial dimensions, where
angiogenesis is considered in the context of bone formation.
Another interesting study on modelling angiogenesis where
mechanical cues were taken into account was done by Sté-
fanou et al. (2015). The present approach that we consider in
this study dealswith themodelling of an experimental in vitro
setting, where a fibrin matrix is considered with a confluent
monolayer of endothelial cells on top submerged in an extra-
cellular fluid. Our approach is three dimensional where all
endothelial cells are treated as soft spheres. Further, we dis-
tinguish between tip and stalk cells, and opposed to Carlier
et al. (2012); stalk cells and tip cells are able to differen-
tiate to either (sub-)phenotypes at all times, see Tammela
et al. (2011), Tung et al. (2012) and Blanco and Gerhardt
(2014) for an experimental justification. The concentrations
of the growth factors are treated analogously to the work
in Carlier et al. (2012) in terms of diffusion–reaction equa-
tions. However, we also include proteins that are secreted
by the tip cells through mathematical point sources which
make the stalk cells follow them based on the mechanism of
chemo/haptotaxis. Next, to chemotaxis, a durotaxis term is
added such that the cells preferably stay near the transition of
the extracellular fluid and fibrinmatrix (hence approximately
at the transition from fluid to matrix, that is, approximately
at the basement membrane). To the best of our knowledge,
we believe that these additions are innovative and comple-
mentary to the existing literature.

The paper is organised as follows: in Sect. 2, the experi-
mental set-up is presented, and subsequently in Sect. 3, the
mathematical formalism and the numerical solution strategy
are presented. This description is followed by the presenta-
tion of the simulation results in Sect. 4. Finally, in Sect. 5,
the model is discussed and some conclusions are drawn.

2 The experimental set-up

The dermatology department of theVUmc carries out several
in vitro assays using primaryHumanDermalTissueEndothe-
lial Cells (DTECs) on different substrates like fibrin. In this
study, our particular focus is on the sprouting assay which
uses a fibrin matrix and which is carried out in a standard 96-
well plate depicted in Fig. 1, seeKoolwijk et al. (1996) for the
development of the assay. In this assay, angiogenic responses
to the angiogenic growth factor vascular endothelial growth
factor (VEGF) are measured for different concentrations.
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Fig. 1 Standard 96-well plate. Wells are cylindrical with a diameter of 7mm and a total volume of around 300µL

Fig. 2 Dermal ECs in a control well. No sprouting can be seen

On the first day, a vF = 100µL fibrin matrix (3 mg
mL fib-

rinogen with 0.5 µg
mL thrombine IIa) is placed in a total of 39

wells on top of which a 100µL solution is poured containing
around N = 20.000 ECs. The total volume in the well then
is v = 200µL. Experimental observations show that ECs
have a typical diameter of around 45µm, and hence, a radius
of R = 22.5µm. ECs are ellipsoidal being twice as long
as wide. The ECs sink and adhere to the fibrin matrix, thus
forming a confluent monolayer covering the surface of the
fibrin matrix as depicted in the microscopic images in Fig. 2.

On the second day, the cells are stimulated using different
conditions. Three wells serve as baseline controls, where no
growth factors are added. All other wells are treated with 2

Table 1 Control wells have nothing added to them

C T VT 1.1 VT 3.3 VT 10 VT 25

C T VT 1.1 VT 3.3 VT 10 VT 25

C T VT 1.1 VT 3.3 VT 10 VT 25

All wells with a “T” have a 2 ng
mL = 2 × 10−3 µg

mL (microgram per
millilitre) TNF-α solution added. Wells with a “V” have VEGF added
to them in the given concentrations in mg/mL. The numbers behind
“VT” stand for the amount VEGF in the unit of mg/mL added to these
wells

ng
mL TNF-α to maintain and activate the monolayer of EC. In
addition, most wells are treated with additional growth factor
VEGF in different concentrations. All different concentra-
tions are replicated in threefold to compare the results, and
the well numbers are used to label the microscopic images.
We summarise the different concentrations in Table 1.

Depending on the donor-specific endothelial cell motil-
ity, fibrin matrices are fixated 48–72h after stimulation. The
sprouting into the fibrinmatrix is observed usingmicroscopic
images like those in Fig. 3. In this figure, we see cells stim-
ulated with VT25. The monolayer is roughly undamaged,
except for a couple of circular-like structureswith dark edges.
These dark edges form the premises of the newly formed
sprouts and are most likely the effect of the fibrous layer
underneath the monolayer bending out of the focal reach of
the microscope. In Fig. 4, we zoom in on one of the sprouts,
where one of the sprouts has been indicated by an arrow.
Inside the sprout, the fibrin matrix is degraded and this shows
up slightly lighter on the microscopic image. We can see
that no ECs show up in the image inside the sprout. This
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Fig. 3 Dermal ECs in a control well after stimulation with 25ng/mL
VEGF and 2ng/mL TNF-α. The circular structures form the boundaries
of newly formed sprouts

Fig. 4 Dermal ECs in a well after stimulation with 25ng/mL VEGF
and 2ng/mL TNF-α. The circular structures form the boundaries of
newly formed sprouts. This figure represents a magnification of ten
times with respect to Fig. 3. One of the sprouts has been indicated by
an arrow

is due to the fact that the sprouts move into the matrix and
get out of focus in the microscopic image. The amount of
sprouting in an assay is quantified using image processing
software. The darker edges of the sprouts are coloured, and
the cumulative area of the coloured regions is calculated as
a percentage of the total area of the image. This percent-
age will be called P(t), and this variable will serve as a
measure of sprouting. Although it cannot be seen in these
microscopic pictures, we know that sprouts are, as a rule of
thumb, twice as deep as their diameter at the top of the fibrin
matrix. One can conclude this by varying the focal depth of
the microscope. Sprouts usually are in downwards direction,
but slightly bending sprouts are also observed.

2.1 Driving forces on cells in sprouting angiogenesis

The motility of cells on the fibrin matrix is subject to many
mechanical and biological factors. We identify several fac-
tors driving the movement of cells on the fibrin matrix. The
mathematical formulation of these principles is covered in
Section 3. For detailed cell biological descriptions of the
hereafter listed phenomena, we refer the reader to the exten-
sive work on cell movements by Bray (2001).

2.1.1 Chemotaxis

Gamba et al. (2003) and Serini et al. (2003) describe chemo-
taxis as the movement of cells in response to a chemical
stimulus. One speaks of positive (negative) chemotaxis if the
movement is in the (opposite) direction of the gradient and
the chemical is called a chemoattractant (chemorepellent).
Chemoattractants can be, following the Keller–Segel model
formulated by Horstmann (2003), secreted by the cells them-
selves, leading to the formation of isolated clusters of cells.
The chemotactic process takes place thanks to pseudopo-
dia on the cell membranes that are formed on the sides of
the cell in high concentrations of the chemoattractant and
“reach” towards higher concentrations, pulling the cell in the
desired direction. Inflammatory mediators such as TNF-α
may increase the motility of cells.

2.1.2 Cell–cell forces, contact mechanics

Cells can adhere to each other by physically attaching their
cell membranes using surface proteins like cadherins. ECs
adhere to each other using vascular endothelial cadherin (VE-
cadherin) bonds. VE-cadherin at the same time works as an
inhibitor of haptotactic movement caused by VEGF by bind-
ing to the same receptor used in the chemotaxis signalling
pathway. Merks describes this contact inhibition in his cel-
lular Potts Model in Merks and Koolwijk (2009). ECs have a
certain optimal elliptical shape induced by their cytoskeleton
and will try to elastically return to this shape upon deforma-
tion. The magnitude of these forces is proportional to the
elasticity of the cell and the severity of the deformation. This
deformation can be caused by cells colliding into one another.
We will denote this effect by contact mechanics in further
chapters.

2.1.3 Cell–matrix forces, durotaxis

Transmembrane integrin proteins on the cell membrane
adhere to fibrous scaffolds such as fibrin matrix or collagen
and exert contractile forces causing cell–matrix adhesion.
Since these forces are caused by physical attachment to the
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fibrin matrix, the net force will be in the direction of the
fibrin matrix gradient. However, high-density fibrin matrix
may be too stiff for the cells to move into. The same cell–
matrix adhesive forces cause strain in the elastic fibrinmatrix,
which on its turn is sensed by other cells adhering to the
matrix, and they get pulled along the stress lines. This effect is
calledmechanotaxis. Reinhart-King et al. (2008) conducted a
series of experiments considering the interplay between cell–
cell adhesion and mechanotactic forces for endothelial cells.
They conclude that matrix stiffness is an important factor for
the cell motility and the ability tomechanically communicate
through the substrate.

3 The mathematical model

First the model formulation is presented, and this is followed
by the presentation of the numerical method.

3.1 The mathematical formulation

In this section, we present the governing equations with
their boundary and initial conditions. We consider a three-
dimensional cylindrical domain Ω with boundary ∂Ω . Ini-
tially the domain is divided into three segments:ΩE ,ΩB and
ΩF , denoting the regions occupied by the, respectively, from
top to bottom, extracellular fluid, basement membrane and
fibrin matrix, see Fig. 5 for a sketch. The basement mem-
brane can be considered as a somewhat stiffer top layer of
the fibrin matrix. Since the tip cells will chemically create
holes through the boundary membrane and fibrin matrix by
degrading fibrin, the extracellular fluid will occupy the chan-
nels formed by the tip cells. To this extent, the biological
problem could be considered as a moving boundary prob-
lem. This approach will not be used, and in the approach
that we propose, we introduce the volume fractions of fibrin
matrix, basement membrane and extracellular fluid, which
are, respectively, denoted by fF (t, x), fB(t, x) and fE (t, x),
where x = (x, y, z), being the coordinates of the location.
Hence initially, we set

f p(0, x) =

⎧
⎪⎨

⎪⎩

1, x ∈ Ωp

0, x /∈ Ωp,

for p ∈ {E, B, F}. (1)

Since the basement membrane and fibrin matrix are simi-
lar collagen-structured materials and since the extracellular
fluid is a fluid, we introduce the variable fS(t, x) := fB(t, x)
+ fF (t, x) being the solid fraction. In our mixture formula-
tion, we require that fS(t, x) + fE (t, x) = 1 at all times t
and at locations in Ω .

Fig. 5 A schematic of the chemical interaction between the tip and
stalk cells in which the tip cells secrete the the DLL4 to make the stalk
cells follow them. The tip cells start migrating as a result of the gradient
of the VEGF. Further, the arrangement of the fibrin matrix, basement
membrane and extracellular fluid is shown, as well as the degrada-
tion of the basement membrane and fibrin matrix by, respectively, the
chemicals MMP and uPA. In the model itself, gravity is not dealt with;
however, in the simulations, the cells are seeded on the top surface of
the basement membrane by first positioning them on top of the extra-
cellular fluid and let them “sink” (by gravity) onto the top surface of the
basement membrane to get a somewhat more randomised arrangement
of endothelial cells as initial configuration for the simulations. In the
sprouting assay set-up used at the VUmc, gravity together with contact
mechanics forms a reasonable explanation for the formation of the ini-
tial confluent mono-layer. This initial configuration is also determined
by the contact forces that the cells experience when seeded on the top
of the basement membrane

3.1.1 Cell dynamics

The endothelial cells are treated as discrete spheres with
radius R. This simplification has been chosen to facilitate
a non-complicated approach for the intercellular contact
forces. In case of ellipsoid cells, then, contact mechanics
would need the determination of the points and angles of
contact to compute the resulting direction of cellular dis-
placement. The treatment of the contact forces in the case
that cells are colliding against each other has been illustrated
in Fig. 6, where the cells are considered to have collided if
h > 0. In the case that two cells collide, the contact force
is directed in the direction of the line connecting the cen-
tres of the cells. In case of multiple cells that collide, then
the net contact force is obtained from a linear combination
from all contributions from the separate cells. More infor-
mation regarding this topic can be found in Vermolen and
Gefen (2013).We distinguish between tip (leading) and stalk
endothelial cells, see Fig. 5. The only phenotype we consider
here is endothelial cells. The spatial positions of the cells are
denoted by xi (t), where i and t , respectively, denote the cell
index and time. To distinguish between the tip cells and stalk
cells, we introduce the set of all the stalk cells,
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Fig. 6 A schematic of the
contact forces caused by partial
overlapping of two spherical
cells. Note that the picture
displays a two-dimensional
representation, whereas the
implementation is in three
spatial dimensions

S(t) := {i ∈ {1, . . . , n} : cell i is a stalk cell}, (2)

and its complement

T (t) = Sc(t) = {i ∈ {1, . . . , n} : cell i is a tip cell}. (3)

Note that the transitions of the cells between the two states
“stalk” and “tip” make the sets time dependent. It is assumed
that the gradient of the vascular endothelial growth factor
concentration, cV (t, x), drives the chemotactic movement of
the tip cells. Next to the chemotactic signal, we take durotaxis
into accountwherewe realise that the stiffness of thematerial
is proportional to the fraction of the volume of solid, see
Griffith (1921) where experimental results confirming that
solid is stronger than liquids. We take durotaxis into account
by considering the gradient of fS(t, x).We also postulate that
the cells are not willing to move into a very dense solid. To
this extent, we want the cells to move towards the centre of
the solid–liquid interface, denoted by �(t), which we define
implicitly by the surface

�(t) =
{

x ∈ Ω : fS(t, x) = 1

2

}

. (4)

We interpret the cell’s willingness to reside at locations near
�(t) as their adherence to the fluid–solid interface. To this

extent, the tip cells move according to

dxi (t) = (αM(xi (t))zi + γ∇cV (t, xi (t))

+ λ( fS(t, xi (t)))∇ fS(t, xi (t))) dt

+√
2DdW(t), i ∈ T (t). (5)

Here, xi (t) denotes the cell’s centre position at time t . The
first term of the right-hand side in the above equation denotes
the component of migration as a result of contact forces
between neighbouring cells as well as forces that cells exert
on the substrate, which are sensed by the other cells if the
strain energy is large enough. Here M denotes the strain
energy density and zi denotes the direction of movement
determined by the strain energy density. The variable α mod-
els the mobility of cell, as well as its viability and the friction
forces applied onto the cell surface as it moves over the solid
material inside the channel.

This termhas beendetailed inVermolen andGefen (2012),
but for this studywe implemented the following changeswith
respect to Vermolen and Gefen (2012):

– The formulation has been extended to three-dimensional
geometry, as in Dudaie et al. (2015);

– The formulation involves regions with different struc-
tures, and in the extracellular fluid, there is no long-
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distance communication that is associated with long-
distance mechanical signals;

– The cells are moving around in a non-homogeneous lat-
tice where the elasticity modulus changes over time and
location. This issue is currently dealt with by averaging
the elasticity modulus used to determine how the strain
energy density signal attenuates over the line between the
two cells;

– The friction has been adjusted to incorporate the various
solid surfaces, as well as to model the difficulty cells
experience in R

3 to move through cavities, the friction
coefficient μ̃ in Vermolen and Gefen (2012) has been
modified to

μ(xi ) = μ̃

EF

∑

k∈{F,B,E}
fk(xi )Ek, (6)

where Ek stands for the elasticity modulus in each phase.

Therewith the strain energy density associated with long-
distance communication is written as

M̃(xi ) = M0
i +

∑

j �=i

Mi j , (7)

where

M0
i = F2

i (1 − fE )

32π2ES(xi )R4 , (8)

in which Fi represents a mechanical force exerted by viable
cells, which we treat as a constant in the present study. Fur-
ther, R denotes the radius of the cells. The local elasticity
modulus, ES(xi ), is determined by amixing rule,which reads
as

ES(x) = EB fB + EF fF
fB + fF

. (9)

Note that as fE → 1, that is fB, fF → 0, then M0
i → 0,

which models that if the cells are not able to adhere to a
solid, then they will not generate any force, and thus, no
strain energy density is generated. Further, Fi denotes the
cellular traction force exerted by cell i . The attenuation of
the signal over the domain surrounding cell j towards cell i
is modelled by

Mi j = F2
i (1 − fE )

32π2ES(xi )R4 · exp
(

− ES(xi , x j )

EC
||x j − xi ||

)

,

(10)

where ES(xi , x j ) represents the averaged elasticity modulus
between the two communicating cells, computed by

ES(xi , x j ) = ES(xi ) + ES(x j )

2
. (11)

Further, EC represents the elasticity modulus of the cell.
Mechanical contact between cells is also adjusted to the
three-dimensional case using Hertz contact mechanics for
two spheres, which gives

M∗
i j =

√
2

5π
EC

(
hi j
R

) 5
2

,

where hi j = max(0,
2R − ||xi − x j ||

2
), (12)

where we refer to Fig. 6 for a schematic. Finally, the overall
strain energy density is computed through

M(xi ) = M̃(xi ) −
∑

j∈Ni (t)

M∗
i j , (13)

where the index set Ni (t) is defined by

Ni (t) := { j ∈ {1, . . . , n} : hi j > 0}. (14)

The determination of the translation unit vector zi is analo-
gous to Vermolen and Gefen (2012), except for the above-
mentioned adaptations.

The second term in Eq. (5) mimics the contribution as
a result of chemotaxis in the direction of VEGF. Here, the
concentration of VEGF is denoted by cV . The γ -function
incorporates the mobility of a cell, as well as the resistance
by the material it has to move through, and the force that the
cell is able to exert on the material. To get a dimensionally
consistent relation, see Bookholt (2015) for the details, we
assert

γ = γ (xi ) = βFi
ρ(xi )ES(xi )

fS(xi ), (15)

where

ρ(xi ) =
∑

k∈{F,B,E}
fk(xi )ρk . (16)

Here ρk are the densities of the separate phases fibrin
matrix, basement membrane and extracellular fluid. As for
the mechanical component, there is no chemotactic move-
ment fS = 0, that is if the cell is in an environment entirely
filled with extracellular fluid.

The third term in Eq. (5) takes into account the migration
as a result of durotaxis. The λ-function, λ : N×R

+ → R, is
constructed such that it is zero (no durotactic movement) in
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the extracellular liquid (that is fS = 0), in hard solid (that is
fS = 1) and on the the interface �(t) (that is fS = 1

2 ), to this
extent and after some normalisation and taking into account
the hypotheses that migration is inversely proportional to
local stiffness, cell motility and cell viability. In Vermolen
and Gefen (2012), cell viability is directly coupled to the
forces that they exert, and since the dimension of λ should
be m2 s−1, we use

λ(i, t) = 43

3
λ̂ · βi Fi

ES(xi )(t)
· fS(t, xi (t))

×
(

fS(t, xi (t)) − 1

2

)

( fS(t, xi (t)) − 1), (17)

where βi denotes the motility coefficient of cell i and where
λ̂ denotes the adhesive scaling factor, which is treated as
a constant. The last term of the right-hand side of Eq. (5)
models randomwalkof the cells (diffusion),where D denotes
the diffusion coefficient of the endothelial cells. The vector
dW(t) has three entries that are all independent normally
distributed events with zeromean and a variance of dt , that is,
the entries of dW(t) are Wiener Processes dWk ∼ N (0, dt),
for k ∈ {1, 2, 3}. The tip cells secrete the protein delta-like
ligand 4 (DLL4), which is the chemotactic signal of the stalk
cells. Hence, for the stalk cells, with centre location xi , we
have

dxi (t) = (αM(xi (t))zi + γ∇cD(t, xi (t))

+ λ( fS(t, xi (t)))∇ fS(t, xi (t))) dt

+√
2DdW(t), i ∈ S(t). (18)

Here no distinction has been made whether cells are stalk or
tip cells, since they are both endothelial cells, except for the
chemotaxis term, which is driven by the gradient of the con-
centration of DLL4, denoted by cD , where DLL4 is secreted
by the tip cells. Hence by the secretion of DLL4, the tip cells
make the stalk cells follow them, see Fig. 5 for a sketch of
the mechanism. The stalk cells can become tip cells and, vice
versa, the tip cells may become stalk cells. The transitions
between these states are modelled as memoryless stochas-
tic processes, which are classified as follows: Let P(t > τ)

denote the probability that the transition does not take place
until time τ and let P(t > θ + τ | t > θ) denote the proba-
bility that the transition does not take place until time τ + θ ,
given that the observer is at time θ where the transition has
not yet taken place (that is the event did not take place before
time θ ), then the memoryless property is defined by

The random process is memoryless in times t > 0
if and only if

P(t > θ + τ | t > θ) = P(t > τ), for θ, τ ≥ 0.

(19)

The probability that the stalk cells become tip cells is mod-
elled by an exponential distribution, given by the following
probability density function for t > θ :

fπ (i ∈ T (t) | i ∈ S(θ)) = λS→T e
−λS→T (t−θ), (20)

for reverse transition, we analogously have

fπ (i ∈ S(t) | i ∈ T (θ)) = λT→Se
−λT→S(t−θ). (21)

With these probability density functions,weget the following
transition probabilities for t > θ

P(i ∈ P(t) | i ∈ Q(θ))

=
∫ t

θ

fπ (i ∈ P(s) | i ∈ Q(θ))ds = 1 − e−λQ→P (t−θ),

where (P(s), Q(s)) ∈ {S(s), T (s)}
×{S(s), T (s)}, and P(t) = P(s) �= Q(θ). (22)

In the above equation, λQ→P is a probability rate constant.
In the experimental case with large number of cells in many
experimental experimental samplings, one couldmeasure the
amounts of tip cells and stalk cells, and from these figures,
one can estimate the probabilities that a cell is either in the
“tip state” (that is i ∈ T (t)) or in the “stalk state” (that is
i ∈ S(t)). To this extent, Bayes’ theorem applied to the long-
time observations gives

P(i ∈ T (t) | i ∈ S(0))

P(i ∈ S(t) | i ∈ T (0))
= P(i ∈ T (t))

P(i ∈ S(t))
≈ nT (t)

n − nT (t)
,

(23)

where n and nT (t), respectively, denote the total number
of endothelial cells and the number of tip cells at time t .
The above relation gives an estimate of how the probability
rates λS→T and λT→S are related. In the simulations that
we will show, the probability rates depend on the chemical
environment in which transitions between the two states are
favoured if the VEGF concentration is high and if the DDL4
concentration is low. Some phenomenological relations have
been used in this study. We finally note that the present mod-
elling does not incorporate cell death or cell proliferation. In
“Appendix”, the reader will find more details regarding the
input values used in this study.

3.1.2 The proteins involved

Next we treat the concentrations of the various proteins
VEGF (cV ), DLL4 (cD), matrix metalloproteinase (MMP)
(cM ) and urokinase plasminogen activator (uPA) (cU ). Note
that theVEGFmakes the tip cells move and further theDLL4
is secreted by the tip cells, and this chemokine makes the
stalk cells follow the tip cells. In the equations, we disregard

123



Mathematical modelling of angiogenesis using continuous cell-based models 1585

shrinkage or expansion of the total computational domain
that could possibly occur due to mixing processes. All con-
centrations are modelled by diffusion–reaction processes,
where we have for t > 0

∂cV
∂t

− ∇ · (DV ( fF , fB, fE )∇cV )

= −
∑

j∈T (t)

rV cV δ(x − x j (t)), in Ω (24)

where rV is a decay rate constant due to consumption by
tip cells, DV is the diffusivity of VEGF depending on the
phase (fibrin matrix, basement membrane or extracellular
fluid), and δ(.) represents the Dirac delta distribution, which
is defined by

δ(x) = 0, x �= 0,

∫

Ω�0
δ(x)dΩ = 1, where Ω is open.

(25)

For all the chemokines, there is flux normal (perpendicular)
to the boundary, hence for t > 0

Dk( fF , fB , fE )
∂ck
∂n

= 0, on ∂Ω, for k ∈ {V, D, M,U }.
(26)

The initial condition for the VEGF concentration is given by

cV (0, x) =

⎧
⎪⎨

⎪⎩

c0V , x ∈ ΩF ,

0, x /∈ ΩF .

(27)

DLL4 is regenerated from conversion of VEGF by the tip
cells, and it is consumed by the stalk cells, to this extent, we
have for t > 0

∂cD
∂t

− ∇ · (DD( fF , fB , fE )∇cD)

= −
∑

j∈S(t)

rD cD δ(x − x j (t))

+
∑

j∈T (t)

sD cV δ(x − x j (t)), in Ω. (28)

Here rD and sD are regeneration and consumption rates. Ini-
tially, there is assumed to be no DLL4 in the domain of
computation. The metalloprotease MMP is secreted by the
tip cells by conversion from VEGF, and this chemical breaks

down the basement membrane, for t > 0, and we have

∂cM
∂t

− ∇ · (DM ( fF , fB, fE )∇cM )

= −rM cM fB

+
∑

j∈T (t)

sM cV δ(x − x j (t)), in Ω, (29)

where the first term in the right-hand side models the decay
of the MMP concentration as a result of the breakdown of
the basement membrane, which is a somewhat stiffer exten-
sion of the fibrin matrix. This breakdown enables the Dermal
ECs to migrate into the fibrin matrix (including the base-
ment membrane). Further, rM and sM , respectively, are rate
constants for decay and regeneration of MMPs. Initially, the
concentration of MMPs is zero at all locations of the com-
putational domain. Finally, the protein uPA breaks down the
fibrin matrix. This protein is also secreted by the tip cells,
and hence, we have for t > 0

∂cU
∂t

− ∇ · (DU ( fF , fB, fE )∇cM )

= −rU cU fF

+
∑

j∈T (t)

sU cV δ(x − x j (t)), in Ω, (30)

also here the first term of the right-hand side models decay
of uPA due to the breakdown of fibrin matrix. Furthermore,
rU and sU , respectively, are decay and regeneration rate con-
stants regarding uPA. Initially, there is no uPA in Ω . The
diffusivities are modelled using a mixing rule:

Dp( fF , fB , fE ) = D0
p

(
fF D

F

+ fB D
B + fE D

E
)

, (31)

whereD0
p denotes thediffusivity of protein p ∈ {V, D, M,U }

and Dk for k ∈ {F, B, E} (fibrin matrix, basement mem-
brane, extracellular fluid) denotes the diffusion factor cor-
rected for the phase that is considered.

Since the proteins MMP and uPA, respectively, change
the basement membrane and fibrin matrix into extracellular
fluid, we have for t > 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ fB
∂t

= −rB cM fB,

∂ fF
∂t

= −rF cU fF ,

∂ fE
∂t

= rB cM fB + rF cU fF .

x ∈ Ω. (32)
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The above relations are consistent with the requirement that
the sum over all volume fractions should be equal to one.

It is noted that the above equations warrant that if there
would be a sufficient number of cells that the long-time
behaviour becomes fB, fF → 0, as well as fE → 1, along
with cV , cD, cM , cU → 0 inΩ as t → ∞, which indicates
stability of the system.

3.2 The numerical method

To solve the stochastic differential equations for the spatial
positions of the centres of the cells, the Euler–Maruyama
method is used (Steele 2001). Further, the diffusion–reaction
equations for the concentrations of the chemicals have
been solved using the finite-element method in three spatial
dimensions. To this extent, we give the weak (variational)
formulation, where Sobolev/Bochner spaces are omitted, of
the diffusion–reaction equation for VEGF as an example:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find cV , subject to the initial condition such that

∫

Ω

∂cV
∂t

ϕ + D( fF , fB , fE )∇cV · ∇ϕdΩ

= −
∑

j∈T (t)

rv cV (t, x j ) ϕ(x j ), for all functions ϕ.

(33)

Approximating cV (t, x) ≈ ∑N
k=1 cV (t, xk)ϕk(x), where

ϕk(x) are a set of chosen basis functions (in the present
study piecewise linear), and taking φi (x) for ϕ(x), neces-
sitates determining whether the cell centre is located in the
tetrahedral element of consideration. In order to determine
this, we consider a tetrahedron, e with vertices x1, x2, x3 and
x4. We use the barycentric coordinates of the tetrahedral ele-
ment. Consider tetrahedral element e, and let ψi (x) be the
linear function that is characterised by

ψi (x j ) = δi j , (34)

where x j represents the vertices of e, and δi j denotes theKro-
necker delta function. Note that ψi (x) = φi (x) ∈ [0, 1] if
and only if x ∈ e and that outside the tetrahedron e the func-
tion ψ can assume values beyond the interval [0, 1]. Further,
the cell centre with coordinates x j (t) is located within e if
and only if 0 ≤ ψ(x j (t)) ≤ 1.

An alternative treatment can be applied if the ordering of
the vertices of the tetrahedral element e has been carried out
such that the numbering over each face of the tetrahedron is
in the positive orientation. LetΔ be the determinant given by

Δ = det

⎛

⎜
⎜
⎝

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎞

⎟
⎟
⎠ , (35)

then this determinant represents six times the volume of the
tetrahedron since it is positive by the choice of the orientation.
Further, we introduce the following auxiliary determinants
that are constructed on the sameprinciple, but nowwe replace
the coordinates of vertex xk with the coordinates of the cell
centre x j (t), to get Δk . For instance, Δ1 is given by

Δ1 = det

⎛

⎜
⎜
⎝

1 x j (t) y j (t) z j (t)
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

⎞

⎟
⎟
⎠ , (36)

This should be done for all vertices of the tetrahedron e. If
all Δk · Δ > 0 for all k ∈ {1, . . . , 4}, then xk(t) lies within
the tetrahedron e.

The finite-element implementation has been done for
MATLAB, where the meshes have been constructed using
the iso2mesh (Fang and Boas 2009). The meshed domain
is shown in Fig. 7. The iso2mesh-package generates meshes
without actually seeking for an optimal bandwidth of the dis-
cretisation matrices, and to this extent, the Cuthill–McKee
algorithm has been used to optimise the bandwidth. The
finite-element method uses linear elements; hence, linear
tetrahedra and the mass matrix needed in the time deriva-
tive are lumped throughNewton–Cotes integration to prevent
spurious oscillations that could even occur when implicit
methods are used. Time integration of the partial differen-
tial equations is based on a first-order IMEX scheme where
the diffusion operator is evaluated at the new time step, and
all the nonlinear terms at the previous time step, meaning
that the right-hand side and the gradient of the concentration
are all treated at the new time step and that the determina-
tion of the diffusion coefficients has been performed at the
previous time step. The main advantage is that the numer-
ical stability of the time integration is not determined by
the mesh size and despite this feature, one does not have to
solve a complete nonlinear problem at each time step, and
hence, no inner iterations are needed, and therewith, the time
integration is relatively cheap. The choice of basis simple
tetrahedral elements is justified because no advection terms
are to be discretised, and hence, no SUPG discretisation or
flux corrections are needed to suppress spurious oscillations.
Higher-order finite-element methods will not improve the
accuracy because of the used point sources in the partial dif-
ferential equations for the concentrations (since cp /∈ H2(Ω)

for a fixed t > 0, p ∈ {V,U, D, M}). If one aims at improv-
ing the efficiency and accuracy, then adaptive finite-element
mesh strategies could be helpful, where the iso-concentration
surface, implicitly defined by fS = 0.5, represents the mov-
ing interface between the fluid and solid phases.

Finally, it is noted that the numerical solution of the vol-
ume fractions is performed using Euler backward method
with the concentrations that were computed earlier. One
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Fig. 7 The three-dimensional
finite-element mesh used in the
current study. The mesh was
constructed using the
isomesh-mesh generator (Fang
and Boas 2009)

could also interchange the order: first compute the volume
fractions with the use of concentrations at the previous time
step and subsequently use a complete implicit Euler time
integration for the numerical time integration of the concen-
trations. This variant has not been studied in the present study
since our approach gave satisfactory results. Another alter-
native time-integration method is the fully coupled implicit
approach, which needs an inner iteration loop within each
time step. This lastmentioned approach is thought to be more
expensive, and therefore, it has not been applied either.

4 Simulation results

First we show the visualisation of the simulation in terms of
field plots and cell plots. Subsequently, we show results in
terms of quantitative measures as well as a comparison with
experimental outcomes. We further carry out a sensitivity
analysis on the simulations. The default input data have been
listed in “Appendix”.

4.1 Visualisation of the simulations

Initially, the cells are located on the basementmembrane, and
the initial volume fractions of the three phases, fibrin matrix,
basement membrane and extracellular fluid are shown in

Fig. 8, where the three-dimensional nature of the problem
necessitates to represent the phases in a slice plot. We used
slices that are perpendicular to the coordinate axes. In Fig. 8,
left, the initial fibrin fraction is shown. It can be seen that
the initial fibrin is distributed on the bottom. In the middle
of Fig. 8, the initial fraction of basement membrane is plot-
ted on the same slices in the domain of computation. It can
be seen that the initial basement membrane is localised on a
horizontal layer adjacent to the extracellular fluid and fibrin.
The initial fraction of extracellular fluid is localised on posi-
tions above the membrane, as can be seen in Fig. 8 on the
right. On the bottom of Fig. 8, we show the histograms of the
volume fractions that are experienced by the cells. It can be
seen that initially these histograms give a polarised behav-
iour reflecting that cells are located either in the fibrin or in
the extracellular fluid to a lesser extent. The cells are mod-
elled to migrate through chemotaxis, durotaxis (adhesion),
contact mechanics and random walk. The contact mechanics
prevents cells from coinciding with one another. Further, as
an example, we show the positions of the cells after 3354s
in Fig. 9, where the green and red cells are the stalk and tip
cells, respectively. On the left, the three-dimensional repre-
sentation is shown, whereas on the right some projections
are shown so that it is clearer to see how the cells fit in the
channels through the fibrin matrix. It can be seen in this fig-
ure that the tip cells are localised on positions closest to the
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Fig. 8 Almost initial condition plot for the substrate components using
the slice plot, where the slices are perpendicular to the coordinate axes.
On the left, centre and right, the profiles for fibrin, basement membrane
and extracellular fluid are shown, respectively. Light and dark colours,

respectively, represent low and high values of the volume fractions.
On the bottom, histograms are given of the volume fractions of fibrin,
basement membrane and extracellular fluid as experienced by the cells

bottom since they indeed take the lead in chemically cre-
ating holes in the basement membrane and fibrin. The tip
cells are also shown in the projections on the right, where
they are represented by the red crosses. In Fig. 10, on the
left side, the level surface of fS = 0.5 is shown, which is
the surface on which we let the cells adhere to. This fig-
ure shows how the channels have been formed by the cells
through the release of MMP and uPA that convert the base-
ment membrane and fibrin matrix into extracellular liquid.
Hence, this iso-surface of fS = 0.5 shows a time instant in
the time evolution of the region that is occupied by the solid
phases, and it can be used to visualise the evolution of angio-
genesis if different time frames are shown after one other.
Next to this figure, we show the positions of the cells that are
residing on the top surface of the basement membrane, that
is in the vicinity of the initial interface between the extra-
cellular liquid and the basement membrane in Fig. 11. Like
in the experimental setting, we show cells that are within a
layer of three cell diameters around the initial position of
the interface between the basement membrane and the extra-

cellular fluid. The top, middle and lower layer cells have
been plotted in red, blue and green, respectively, in Fig. 11.
On the projections, the tip cells are represented by the red
crosses. In Fig. 11, several gaps arise (see the white regions
surrounded by the black lines and where we indicated two of
them by arrows, see also Fig. 4 in the in vitro experiments).
These gaps coincide with sprouts formed by the tip cells.
We compute their areas and compare these areas that have
been computed for the same setting in the in vitro experi-
ments. The concentrations of all the chemicals are obtained
by the finite-element approximation of the solution to the
three-dimensional diffusion–reaction equations in which the
cells either consume or regenerate the chemicals at their spa-
tial positions through point sources or sinks. Sometimes, one
observes some cells that are located within the circumfer-
ences of sprouts in Fig. 11, such as in the white patch on the
top left. The probable reason for this observation is that these
cells just detach from their neighbours that are still on the top
surface and start migrating downwards into the sprout that
is being formed. Note that here this sprout is very premature
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Fig. 9 Left Cells plot. Tip cells are coloured red in the left three-
dimensional plot. The thick black lines form the boundary of the
computational domain and aid the reader in orienting the plot. The

“camera” is in an angle slightly lower than the x, y plane. On the right,
several projections are shown in which the tip cells are indicated by the
red crosses

Fig. 10 Surface plot of
FS = 0.5. The thick black lines
form the boundary of the
computational domain and aid
the reader in orienting the plot.
The “camera” is in an angle
slightly lower than the x, y plane
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Fig. 11 Microscopic plot of the
top surface of the fibrin matrix
where the cells are seeded. The
circles represent projections of
the spherical cells onto the top
of the fibrin matrix. The colours
represent cells at different
heights: Red cells on top level,
blue cells on middle level and
green cells on lowest level. We
see a total of ns = 8 sprouts of
different sizes in order of
decreasing area at locations
approximately (x, y) =
(1250, 1200), (1100, 2200),
(550, 550), (2200, 1900),
(1700, 500), (1800, 1000),
(1000, 2500) and (1300, 1100).
We also see tip cells (denoted by
red x-marking) that have not
formed a sprout. The iso-lines
are calculated in the surface at
z = 1039.4 directly beneath the
initial placement of the cells.
The total number of tip cells is
nt = 9. Two sprouts have been
indicated by arrows

and that here the FS = 1/2 level curve has not formed yet on
the top layer of the solid, which means that the summed solid
fractions are still above 0.5 there. Since the sprout is occu-
piedwith extracellular fluid, themigration of the cell does not
proceed instantaneously, and hence, they remain visible on
the top (though they are not located on the interface between
the solid and fluid phases) for a while. The concentrations of
the VEGF, DLL4, uPA and MMP after 3766s are shown in
Fig. 12 in terms of slice plots on the planes perpendicular to
the coordinate axes, where it can be seen that the gradients
are largest in the vicinity of fS = 1/2 where the tip cells
chemically create holes in the solid phases. On the bottom of
the figure, histograms of the concentration that all the cells
experience have been shown. It can be seen that at the top
of the fibrin matrix, the VEGF concentration has decreased
a bit as a result of consumption by the tip cells, whereas fur-
ther away to the bottom, the concentration has not changed
considerably. The concentration of DLL4 increases slightly
in the vicinity of the top surface of the fibrin matrix since
this ligand is secreted by the tip cells that are predominantly
at the interface between the extracellular fluid and the solid
substances. This ligand makes the stalk cells follow the tip
cells. A similar behaviour is observed for the uPA and MMP
concentrations, which, respectively, are responsible for the
degradation of the fibrin matrix and basement membrane.
Next to the concentration plots, we plot histograms of the val-
ues of all the concentrations that are experienced by the cells,
which determine to what extent the stalk cells will follow the

tip cells.Many cells have notmoved yet and at their positions,
the concentration of all proteins is between zero and very low
values. The other cells that did move (tip cells and stalk cells
with positions initially adjacent to the tip cells) are entering
the region where VEGF has higher values. Therewith there is
a considerable portion of cells that experience high values of
VEGF. Furthermore, in the course of time VEGF stimulates
secretion of the other proteins by tip cells that make the stalk
cells follow them and that facilitate the degradation of the
fibrin matrix and basement membrane.

4.2 Quantitative measures from the simulations

In order to quantify angiogenesis, severalmeasures have been
introduced. The first measure is the total area of the sprouts
on the initial top layer of the basement membrane divided by
the total basement membrane area. This measure is denoted
by A(t). The second measure is called the sprouted perime-
ter, which is obtained by computing the total perimenter of
the sprouts on the top of the basement membrane multiplied
by the cell diameter and subsequently divide this result by
the total area of the basement membrane. We denote this
measure by P(t). The third measure is the total volume frac-
tion of the sprouts computed by the integral over fE over
the initial fibrin matrix domain. The lastmentioned measure
is denoted by V (t). Since the model contains a stochastic
nature, through migration and differentiation, it is important
to determine the amount of uncertainty for the set of parame-
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Fig. 12 The proteins over time in slice plots following the time-
dependent reaction–diffusion-sourcing equations. From left to right:
VEGF, DLL4, uPA and MMP. Diffusion of the initial VEGF distribu-
tion can be observed. Furthermore, sourcing of the other three proteins
at the locations of tip cells and diffusion into the surroundings can be

observed.MMPanduPA react at a faster rate thanDLL4due to the abun-
dant presence of the substrate components. At the bottom, histograms
of the concentrations VEGF, DLL4, uPA and MMP (same order) are
shown in terms of values experienced by the cells. This figure is taken
after approximately 1h of simulated time (time= 3371s)

ters used. The results have been plotted in Fig. 13, where the
mean curves for the respective quantities have been plotted
over time as well as the 95% interval of confidence (exceed-
ing probability of p = 0.05) for all these quantities using 12
runs with identical choices for all parameters. It is clear that
all the measures go up as the vascularisation process contin-
ues. Further, there is an incubation time, which is a result of
the following sub-processes:

– Endothelial cells become tip cells by a random selection
in themodel and only after a short, nonzero length period,
the first tip cells appear;

– TheVEGFconcentration has to reach the tip cells in order
to be able to degrade the basement membrane and fibrin
matrix;

– The (tip) cells can only migrate quickly to the bottom
provided the basement membrane and fibrin matrix have
decayed.

Besides the incubation time, a small jump (at t ≈ 14000) in
the plot for the percentage of the sprouted area is observed.
After having examined the video for this simulation, it turned

out that two sprouts merged and that the routine to com-
pute the total area of the sprouts counted the merged sprouts
twice. This small jump is not visible in the computation of
the volume fraction of the vessels. Simulations have been
done with different adhesion values λ̂ in the durotaxis term,
and the dependence did not seem to be significant since the
behaviour was not monotonic and the variations were not
larger than the the variations in different runs with identical
input parameters. The input values for λ̂ ranged between 6
and 100. Therefore, these results are not shown here. Pos-
sibly using lower values could show more dependency but
this is not certain since the adhesion is not the main trigger
for the vascularisation process. Lowering the λ̂-value only
allows cells to move towards the fS = 0.5 in a slower man-
ner and the time-integration method would allow for less
overshoot. Furthermore, the initial VEGF concentration has
been varied and higher initial VEGF concentrations predict a
higher volume of vascularisation, see the bottom of Fig. 14.
Note that we only plot the mean of all the 12 runs that were
carried out. Furthermore, the other measures were computed
over time for the various initial VEGF concentrations, and
the monotonic behaviour was also observed except for the
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Fig. 13 The estimators for the mean area A(t) and perimeter P(t) of
all sprouts at hF as a percentage of the total area and the percentage
of the total area and the percentage degraded substrate V (t) and 95%
confidence intervals based on 12 runs with identical parameters

highest VEGF concentrations. This deviation is attributed to
the fact that higher initial concentrations give a larger con-
centration gradient. Since the total movement of the cells
is determined by contact forces, protein signals, durotaxis
(for the adherence) and random walk, the chemotactic and
haptotactic components to the overall movement of the cells
increases as the initial concentration increases. Thereby the
path that the cells follow towards the bottom will be more
according to a straight line, and hence, the cross sectional
will be lower than in the case that the movement of the cell
is distorted more from all the other signals such as contact
forces and random walk. In Fig. 15, we show the influence

Fig. 14 The area A(t) and perimeter P(t) of all sprouts at hF as a
percentage of the total area and the percentage degraded substrate V (t)
for varying initial concentrations VEGF

of the variation of the probability that stalk cells become tip
cells. It can be seen that the amount of vascularisation in all
the measures increases monotonically with the probability
of stalk cells to become tip cells. Finally, we show the influ-
ence of the regeneration of uPA and MMP’s in the evolution
of the vascularisation over time in Fig. 16. Since both con-
centrations act in a similar way, we took the regeneration
constants equal. It can also be seen that the vascularisation
ratemonotonically increaseswith the regeneration constants.
The decrease in speed at the latest times is due to flattening
out of the VEGF signal due to diffusion, which is the main
trigger for the further growth of the sprouts. This is also
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Fig. 15 The area A(t) and perimeter P(t) of all sprouts at hF as a
percentage of the total area and the percentage degraded substrate V (t)
for varying maximal sprout to tip probability λPT

confirmed by the absence of a dependence of the sprouting
dynamics upon changing the λ̂-parameter.

4.3 Comparison with experiments

Finally, we compare the simulation results to the outcomes
obtained from the experiments in terms of the metric P(t),
which accounts for the perimeter over time. The results can
be seen in Fig. 17, where human dermal tissue (DTECs)
endothelial cells are considered. In both the in vitro and sim-
ulation experiments, the concentration of VEGF was varied
and the sprout perimeter P(t) was computed after the third
day in the in vitro experiments and after 14,400s (4h) in the

Fig. 16 The area A(t) and perimeter P(t) of all sprouts at hF as a
percentage of the total area and the percentage degraded substrate V (t)
for varying MMP and uPA sourcing rates

simulations. This discrepancy in times was caused because
the right parameter values were not yet available. Firstly,
it is noted that the trends of increasing vascular perime-
ter are observed in both simulations for increasing values
of VEGF concentration. However, in the simulations it can
be seen that for the largest value of initial VEGF concen-
tration, the amount of sprouting seems to drop. This drop
is attributed to the migration mechanism of the endothelial
cells: for larger values of the initial concentration in the fibrin
matrix region, the magnitude of the VEGF concentration is
larger. Thereby the chemotaxis movement becomes larger.
Since for all the cases the other mechanisms that contribute
to migration (cell–cell contact, random walk and durotaxis)
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Fig. 17 The metric P(t) as measured by the VUmc dermatology
department after the third day (left), where the black bars are DTECs,
and (right) the metric P(t) at t = 14,400 computed by the present
model. The horizontal axes of both figures have been scaled to unity
(originally the maximum of the VEGF concentrations was 25mg/mL
and 0.04ng/µm3 = 40mg/mL for the experiments and simulations,
respectively) because of the scaling down of the chemotactic response

are approximately the same, the relative portion of chemo-
taxis is larger if the initial VEGF concentration in the fibrin
matrix is larger. Therefore, the paths and holes that the cells
will make through the solid will be more straight with fewer
migrational components perpendicular to normal of the ini-
tial interface between solid and fluid. Hence, for larger initial
concentrations, the chemotaxis component dominates and
the cells will migrate straight towards the bottom, by which
the small vessels will have a smaller diameter and a smaller
perimeter. If the concentration of VEGF would be much
larger in the experimental case, then one possibly observes
the same behaviour for the relation between P and the ini-
tial stimulation with the VEGF concentration, since results

of in vitro experiments often reveal a bell-shaped curve in
the response of cells to increasing concentrations of a stim-
ulus. Probably it is a matter of adjusting the parameters to
more appropriate values to have a drop in the sprouting per-
centage at a higher concentration. This behaviour cannot
be attributed to a chemical saturation effect. Furthermore,
adjusting the parameter values will also lead to a decrease of
the discrepancy between the times at which we determined
the sprouting percentages in Fig. 17. A more efficient imple-
mentation of the present model will be needed if one wants
to match the in vitro experiments to the simulations through
inverse modelling. This inverse modelling will make a better
fit between simulations and the in vitro experiments possi-
ble. Since the aim of the current paper is to introduce the
mathematical model which is original in its kind, being a
cell-based model for angiogenesis, this inverse modelling is
omitted here.

5 Discussion and conclusions

In this section, we discuss the model and give various rec-
ommendations for further study, and the final conclusions are
drawn.

5.1 Discussion

We based most parameters and scaling factors in the deriva-
tion of the cell movement model on physical or biological
principles. The only parameter that forms the exception is
the dimensionless scaling factor λ̂. This parameter mediates
the contiguity of the monolayer of cells; however, in our sen-
sitivity analysis we have seen that this parameter does not
play an important role in angiogenesis. The addition of nat-
ural protein decay over time would be an interesting property
to add to the system of PDEs. We have performed a sensitiv-
ity analysis on five parameters, andwe did twelvemodel runs
for the estimator of the mean of all sprouting metrics. Extra
computational power or parallelisation could reduce the cost
of the simulations so that these numbers can be improved.
Such a parallelisation has recently been carried by Woods
et al. (2014). Another interesting approach is to apply a full
continuum model in terms of a system of partial differential
equations like by Maggelakis (2003), Maggelakis (2004) or
by Gaffney et al. (2002). The latter approach allows to con-
sider angiogenesis on a larger scale such as on a tissue scale.
It would be of great interest to apply some of the homogeni-
sation techniques that, for instance, are currently applied in
porous media applications to link the microscopic, cellular,
scale to themacro, tissue scale. One could also use an optimi-
sation in the cheaper continuummodelling approach as a start
for the cell-basedmodel. The optimisation could be refined in
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a cell-based formalism, which in total gives a hybrid (multi-
scale) regression technique.

Obtaining appropriate values for the physical parameters
is often very hard and in many cases impossible in compli-
cated models. An example is the diffusive speed DV . For
most of the parameters, we used values that were reported
in the literature, and if no values in literature were reported,
then we used educated guesses so that the model predictions
are reasonable. The difference of the VEGF concentration
between the in vitro study and the initial concentrations used
in the simulations was compensated for by scaling down the
chemotactic response accordingly. A modification of these
values will not change the model outcomes significantly.
As mentioned earlier, one could use sound inverse mod-
elling techniques to get access to modified parameter values
which could reduce the gap between experimental and sim-
ulation outcomes. At this stage, we are satisfied with having
developed a new sound hybrid cell-based model for angio-
genesis.

In the current model, the edges of the domain do not
exert any forces on the cells, making it possible for cells
to move out of the computational domain. Cells that have
moved out of the domain are not within an element of the
FEM mesh and therefore cannot sense or source any pro-
teins or react to the substrate properties. This fact on itself
forms no problem for the rest of the computational model,
but does require much useless computational effort, predom-
inantly in trying to find the (non-existing) element a cell
is located in. An improvement would be to remove these
cells from the computations. Another approach could be to
give the boundaries contact mechanical properties or to lay a
monolayer of ghost cells on the boundaries that provide the
contact mechanical forces to keep the cells in the problem
domain.

In the formulation of the rates λS→T and λS→T of tip cell
selection, we normalise the VEGF and DLL4 concentrations
with the initial concentration VEGF c0v . In hindsight, this is
no reasonable assumption since tip cell selection does not
depend on the absolute VEGF concentration, but rather on
a saturation with respect to the initial condition. It would
be an improvement to remove this normalising factor and
reconsider these rates. It would be very interesting to see
whether we can verify more of our simulation results with
laboratory measurements. This incorporates measurement of
other metrics from the in vitro experimental results than only
P(t) andmaybe 3Dvisualisation of the sprouting assay using
multi-focal plane microscopy or other techniques.

In the future, wewant to combine the current angiogenesis
model withmodelling of cancer development, such as in Ver-
molen (2015), where the necrotic core of the tumour releases
growth factors (Tumour Necrosis Growth factor) that trigger
the angiogenesis response of the endothelial cells.

5.2 Conclusions

Ourmodel is qualitatively successful in describing the in vitro
angiogenesis sprouting assay as performed by the VUmc
dermatology department. We modelled the degrading of
the substrate by proteases secreted by ECs as a continuous
process dependent on the properties of the substrate itself.
Cell motility is modelled using a cell-based formalism based
on mechano-biological principles that are well established in
cell biology. A probabilistic model based on local chemical
conditions is proposed to model the differentiation of ECs
into tip cells and stalk cells.

The proposed metrics of the amount of sprouting seem to
align with the in vitro results on a qualitative level. Quanti-
tative comparison is hard due to many uncertainties, both in
the proposed computational model and in the measurement
techniques used for the in vitro experiment. The morphology
of the sprouts is similar to the experimental setting.

The metrics over time produced by the model respond to
variation in parameters as we would expect from biological
reasoning. Only the variation of the VEGF concentration is
performed in the laboratory setting, and the results are com-
parable. The area of sprouted perimeter ranges from 1 to 5%
in the in vitro experiments and ranges from 0.5 to 6% in the
simulations for varying concentrations VEGF, which are of
the same order of magnitude.

VEGF concentrations, protease secretion rates and the
probabilistic model for tip cell selection are important fac-
tors in sprout formation process.We postulate that it is the tip
cell’s ability to degrade the substrate in its surroundings that
drives the success of producing a viable sprout as well as give
rise to the sprouts proliferation speed and its final depth. This
factor is at least as important as the chemotactic response to
a higher concentration VEGF or the adhesive properties. The
success rate of sprout formation for a tip cell is between 50
and 60%, independent of the number of tip cells present. We
postulate that also in vitro the number of tip cells is larger
than the number of sprouts.

The model was constructed to simulate angiogenesis.
Vasculogenesis is another process witnessed in studies con-
taining ECs as described by Nany et al. (2004) and Merks
et al. (2004). Since our formalism describes EC behaviour in
a general sense, we also witness vasculogenesis-like struc-
ture formation for varying values of the substrate elasticity.
Since modelling vasculogenesis was not the scope of this
study, we leave further investigation of this phenomenon for
future research.
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Appendix: Input data

ECs can change from stalk cells into tip cells (and reversibly)
based on the local protein balance. Higher concentrations of
VEGF will increase the chance of a stalk cell to become a tip
cell. However, a nearby tip cell that sources DLL4 inhibits a
stalk cells from becoming tip cells.

We model the changing time of a stalk cell to become a
tip cell using an exponential distribution with a rate λ̃ST . We
also model the changing time of a tip cell to change back into
a stalk cell using an exponential distribution with rate λ̃T S .
The probability density function (PDF) of the exponential
distribution is given by

f (t, λ) =
{

λe−λt for t ≥ 0,

0 for t < 0.

The changing times are then distributed according to expo-
nential distributions. The rates λ̃ST and λ̃T S are dependent
on cell-specific factors and local chemical conditions. Since
the concentration VEGF cV only decreases over time, we
know that we have cmax

V = c0V and we normalise using cV
cmax
V

.

The concentration DLL4 cD can take arbitrary positive val-
ues but in practice almost never exceeds the concentrations
VEGF so again we “normalise” by setting cD

cmax
V

. For ideal

circumstances, i.e. cV = cmax
V and cD = 0, we define the

maximal rate of changing from stalk to tip per second to be
pST . The rate λ̃ST increases for increasing cV and decreases
for increasing cD . We model

λ̃ST (cV , cD) = pST e
−ps

(

1− cV
cmax
V

)

e
−pi

cD
cmax
V . (37)

The strength of the DLL4 induced inhibition is governed
by the parameter pi (i for inhibition) and higher values of pi
constitute stronger inhibition. The strength of the stimulation
byVEGF is governed by the parameter ps (s for stimulation),
and lower values of ps constitute stronger stimulation even
for low values of cV . Tip cells can change back into stalk cells
at a rate governed by the decreasing of a VEGF gradient. We
model

λ̃T S(cV ) = pT Se
−ps

cV
cmax
V , (38)

and set pT S = 1 × 10−6. The rates in Eqs. 37 and 38 are
per second. During a time step of length �t , we see that we
have the following probability of a cell type change, where
we approximate the exponential with its first-order Taylor
expansion around t = 0.

∫ �t

0
λ̃e−λ̃t dt =

[
1 − e−λ̃t

]�t

0
= 1 − eλ̃�t

≈ 1 − (1 − λ̃�t) = λ̃�t.

This approximation is suitable for small enough time
steps �t , and we have to specifically ensure that λ̃T S�t ≤
pT S�t ≤ 1. Bayes theorem now dictates that P(S|T )

P(T |S)
= P(S)

P(T )

andwe end upwith an equilibrium ratio between tip cells and
stalk cells given the local chemical conditions.

The values for pm, ps and pi should be found based on
experimental data.Microscopic images show us that for large
concentrations of VEGF (25 ng

mL ), we see around one sprout
for every fifty ECs after two days. We assume that every
sprout is led by one tip cell. Furthermore, we assume that
all tip cells are selected at 12h after stimulation with VEGF
and that no additional tip cells are formed due to inhibition
by the existing ones afterwards. This means that a cell has a
probability of 0.02 per 12h of becoming a tip cell not chang-
ing back again. This is equivalent to 0.02

12×3600 = 4.6 × 10−7

per second. The VEGF concentration is not maximal over
the entire domain, so we choose pm = 4 × 10−6. We know
that the inhibiting effect of DLL4 is stronger than the stimu-
lating effect by VEGF, so we model pi = 10 and ps = 4 and
conclude that these values are suitable for our modelling pur-
poses. Better estimations for these values might be obtained
by fitting the model results to the experimental observations,
but this is cumbersome due to the long execution time of the
model. An investigation of the magnitude of these parame-
ters reasoning from a more biochemical point of view is a
useful recommendation.

Parameters and Domain

Our model uses a number of parameters, most of a physical
or chemical nature. We try to find accurate values for these
parameters in the literature as much as possible although
some values are hard to estimate. We list all our parameters
with description, symbol, programming code name, value,
dimension andwhere possible a source in Tables 2, 3, 4 and 5.
The elastic modulus of endothelial cells Ec is approximately
10kPa according to Kuznetsova et al. (2007). They found
this value in a study using atomic force microscopy probing.

According to the work of Ganz et al. (2006), traction
forces Fi are also higher than the 1nN used by Vermolen
and Gefen (2012). Reinhart-King et al. (2003) conducted
in vitro studies measuring the forces exerted by ECs on
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Table 2 Domain parameters

Parameter Symbol Code name Value Dimension Source

Domain scaling factor ξ g.dom.scaling [1–10] – –

Diameter well dtop g.dom.dTop 7000 µm Experiment

Volume well v g.dom.vol 200 µL Experiment

Volume fibrin matrix vF g.dom.volFibrin 100 µL Experiment

Table 3 Chemical simulation parameters

Parameter Symbol Code name Value Dimension Source

Substrate threshold f0 g.chemP.minThres Boolean – –

Diffusion coef. VEGF D0
V g.chemP.dV 1.00 µm2 s−1 Plank et al. (2002)

Diffusion coef. DLL4 D0
D g.chemP.dD 0.51 µm2 s−1 Est. on Plank et al. (2002)

Diffusion coef. uPA D0
U g.chemP.dU 1.23 µm2 s−1 Est. on Plank et al. (2002)

Diffusion coef. MMP D0
M g.chemP.dM 0.53 µm2 s−1 Est. on Plank et al. (2002)

Diffusion factor Fibrin matrix DF g.chemP.dF 1.00 – –

Diffusion factor BM DB g.chemP.dB 2.00 – –

Diffusion factor ECF DE g.chemP.dE 0.10 – –

Reactive rate VEGF rV g.chemP.rV 0.024 µm3 s−1 Plank et al. (2002)

Reactive rate DLL4 rD g.chemP.rD 0.024 µm3 s−1 Est. on Plank et al. (2002)

Reactive rate. uPA rU g.chemP.rU 0.024 s−1 Est. on Plank et al. (2002)

Reactive rate MMP rM g.chemP.rM 0.024 s−1 Est. on Plank et al. (2002)

Reactive rate Fibrin matrix rF g.chemP.rU 1.210 µm3ng−1 s−1 Lutolf et al. (2003)

Reactive rate BM rB g.chemP.rM 1.210 µm3ng−1 s−1 Est. on Lutolf et al. (2003)

Sourcing rate DLL4 sD g.chemP.sD 10.00 µm3s−1 –

Sourcing rate uPA sU g.chemP.sU 10.00 µm3s−1 –

Sourcing rate MMP sM g.chemP.sM 10.00 µm3s−1 –

Initial density VEGF c0V g.chemP.iV 0.01 ngµm−3 –

Table 4 Cell parameters

Parameter Symbol Code name Value Dimension Source

The number of cells in the well N g.cell.nCells 20.000 – Experiment

Radius of an EC R g.cell.rCell 22.5 µm –

Elastic modulus of an EC Ec g.cell.Ec 10 nNµm−2 Kuznetsova et al. (2007)

Maximal exerted force of an EC Fi g.cell.Fi 1000 nN Reinhart-King et al. (2003), Ganz et al. (2006)

Motility of the cell surface βi g.cell.beta 0.02 s−1 Vermolen and Gefen (2012)

Friction coefficient μ̂ g.cell.muHat 0.2 – Vermolen and Gefen (2012)

Adhesive scaling factor λ̂ g.cell.lambda 15 – –

Density of an EC Pc g.cell.densityC 1.030 × 10−3 ngµm−3 Urbanchek et al. (2001)

St. dev. of stoch. movement σW g.cell.sigmaW [0 - 0.1] µm –

Gravitational constant g g.cell.gravitation 9.810 × 10+6 µms−2 –

Max. prob. stalk becoming tip pST g.cell.pMaximumS2T 4.000 × 10−6 s−1 –

Governs tip cell stimulation ps g.cell.pStimulation 4 – –

Governs tip cell inhibition pi g.cell.pInhibition 10 – –

Max. prob. tip becoming stalk pT S g.cell.pMaximumT2S 1.000 × 10−6 s−1 –
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Table 5 Substrate parameters

Parameter Symbol Code name Value Dimension Source

Elastic modulus fibrin matrix EF g.sub.Ef 10 kPa = nNµm−2 Rowe et al. (2007)

Elastic modulus BM EB g.sub.Eb 20 kPa = nNµm−2 Zhu et al. (2011)

Elastic modulus ECF EE g.sub.Ee 1 kPa = nNµm−2 –

Viscosity fibrin matrix μF g.sub.viscosityF 0.007 × 10+6 ngµm−1s−1 Ehrlich et al. (1952)

Viscosity BM μB g.sub.viscosityB 0.007 × 10+6 ngµm−1s−1 Est. based on Ehrlich et al. (1952)

Viscosity ECF μE g.sub.viscosityE 0.001 × 10+6 ngµm−1s−1 Streeter et al. (1998)

Density fibrin matrix ρF g.sub.densityF 1.060 × 10−3 ngµm−3 –

Density BM ρB g.sub.densityB 1.060 × 10−3 ngµm−3 –

Density ECF ρE g.sub.densityE 0.9933 × 10−3 µm Streeter et al. (1998)

polyacrylamide substrates. On page 1578, we see see the
relation between cell area and exerted force of ECs. Since
we model our cell radius as R = 22.5µm, we have an area
of 22.52π = 1590µm2 = 1.59×10−5 cm2. The graph gives
a force of 0.1dyne = 10−6N = 1000 nN, and we choose to
use this value in our model.

Elasticity of fibrin matrix EF is approximately 10kPa
according to Rowe et al. (2007). Zhu et al. (2011) propose
values for the elastic modulus of collagen–chitosan scaffolds
in the order of 10kPa. Since BM consist of collagen and
more stiff components, we use an estimate EB = 20 kPa.
Plank et al. (2002) set the diffusion coefficient for VEGF

DV = 3.6 × 10−3mm2

h = 1µm2

s (in matrigel). We have
found no references on the diffusion coefficients of the con-
centrations DLL4, uPA andMMP so we estimate them using
their molecular weights. We assume that substances diffuse
more slowly for largermolecularweights.All four substances
are sold commercially, andmolecularweightsm are specified
very accurately. We see thatmV ≈ 38.2 kDa,mD ≈ 75 kDa,
mU ≈ 31 kDa and mM ≈ 72 kDa. We estimate

DD = mV

mD
DV = 0.51, DU = mV

mU
DV = 1.23,

DM = mV

mM
DV = 0.53,

all measured in µm2

s . Contradictorily, Bauer et al. (2009) set

the diffusion coefficient for VEGF to 1698 µm2

s and Miura
and Tanaka (2009) measured in an in vitro experiments that
the VEGF diffusion constant in matrigel (similar to fibrin

matrix) is equal to 278 µm2

s . The coefficient used by Plank
et al. (2002) seems to make the most physical sense and pro-
duces reasonable results in our computational model. Further
research into the difference between these values might be
useful.

Plank et al. (2002) furthermore set the VEGF uptake rate

rV within cells to 8.66× 10−5mm2

h = 0.024µm2

s . Note that
Plank et al. work in a 2D setting and that in the 3D setting, the

dimensionwould be mm3

s .We set the uptake rates rD , rU and
rM equal to this value since we could not find any references
concerning these quantities. The degrading rate rF of the
fibrin matrix fraction by uPA is, according to Lutolf et al.
(2003), of magnitude 1.21 s−1, and we use this value in our
model. We estimate that the degrading rate rB of the BM by
MMP is of the same magnitude.

Viscosity of water is 0.6531 × 10−3 Ns
m2 at 40 degrees

centigrade and 0.7978 × 10−3 Ns
m2 at 30 degrees centigrade

according to Streeter et al. (1998). Our experiment is con-
ducted in an incubator at 37 degrees, and we therefore
take μE = 0.6965 × 10−3 Ns

m2 . Viscosity fibrin matrix is

approximately 7.000 × 10−3 Ns
m2 according to Ehrlich et al.

(1952). According to Urbanchek et al. (2001), the density of
myocytic cells is 1.060×10−3 kg

cm3 .Water at 37 degrees centi-

grade has a density of 0.9933×10−3 g
cm3 .Wemodel one well

in a 96-well plate. We take the same dimensions of diameter
7 mm (i.e. dtop = 7000µm) and a height determined by fill-
ing the well with vF = 100µL fibrin matrix and 100µL fluid
to a total of v = 200µL with N = 20.000 suspended EC’s.
This mimics the laboratory setting one-to-one. To decrease
computational time and load on memory, we introduce a lin-
ear scaling factor ξ , and we have scaled domain parameters
ṽ = v

ξ3
, ṽF = vF

ξ3
, d̃top = dtop

ξ2
and Ñ = N

ξ2
to keep an equal

aspect ratio of the domain and a monolayer of cells that is
constant in density (cells per µm2).
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