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Summary

A central question in genetics and evolution is the extent to which mutations have outcomes that 

change depending on the genetic context in which they occur1–3. Pairwise interactions between 

mutations have been systematically mapped within4–18 and between19 genes, and contribute 

substantially to phenotypic variation amongst individuals20. However, the extent to which genetic 

interactions themselves are stable or dynamic across genotypes is unclear21,22. Here we quantify 

>45,000 genetic interactions between the same 87 pairs of mutations across >500 closely related 

genotypes of a yeast tRNA. Strikingly, all pairs of mutations interacted in at least 9% of genetic 

backgrounds and all pairs switched from interacting positively to interacting negatively in different 

genotypes (FDR<0.1). Higher order interactions are also abundant and dynamic across genotypes. 

The epistasis in this molecule means that all individual mutations switch from detrimental to 

beneficial in even closely-related genotypes. As a consequence, accurate genetic prediction 

requires mutation effects to be measured across different genetic backgrounds and the use of 

higher order epistatic terms.

Genetic (epistatic) interactions have been extensively mapped between pairs of mutations 

within individual genes4–18, and also between individual alleles of many different genes19. 

However, the pairwise mapping of interactions only provides a limited view of genotype 

space, which has a vast combinatorial size22. Genetic interactions between genes have been 
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reported as only poorly or moderately conserved between species21. Moreover, analyses of 

the effects of combinations of mutations within individual genes has pointed to the 

importance of higher order epistasis22–25, in which mutations interact beyond pairwise 

interactions to determine mutation effect.

To directly test the extent to which the effects of mutations and the interactions between 

mutations are stable or change depending upon the genotype on which they occur, we 

designed an experiment in which mutation effects and interactions are quantified across a 

large number of closely-related genetic backgrounds. As a model system, we used a single 

copy Arginine-CCU tRNA gene that is conditionally required for the growth of budding 

yeast (Extended Data Fig. 1a) and for which pairwise interactions have been previously 

mapped in one genetic background15. The small size of the gene allowed us to design a 

library that covered all 5,184 (= 26 x 34) genotypes containing the 14 nucleotide 

substitutions observed in ten positions in post-whole genome duplication yeast species26 

(Fig. 1a, b). Each genotype therefore varies from zero to a maximum of ten nucleotides 

divergence from the Saccharomyces cerevisiae tRNA sequence (Extended Data Fig. 1b). 

Following transformation of the library into S. cerevisiae, we performed six parallel 

selection experiments to quantify the relative fitness of each of the 5,184 variants in the 

restrictive conditions of high temperature and 1M NaCl (Fig. 1c). The fitness of each 

genotype was quantified as the change in its abundance in each culture between the 

beginning and end of the competition by deep sequencing using a hierarchical error model 

and normalised in log scale to the fitness of the S. cerevisiae genotype (henceforth ‘fitness’, 

see Methods). After filtering, we obtained fitness measurements for 4,176 variants 

(Supplementary Table 1) that correlated well across replicates (Fig. 1d). The median fitness 

declines as the number of mutations increases but there are still many combinations of 

mutations with high fitness amongst genotypes far from the reference genotype (Fig. 1e).

We first examined the fitness consequences of single mutations and how these change across 

different genetic backgrounds (Fig. 2a). In the S. cerevisiae genotype, six of the 14 

individual mutations were detrimental (Fig. 2b). However, when the same 14 mutations were 

made in the tRNA genotypes of the other six extant species (these alternative ‘wild-type’ 

tRNAs have fitness very close to the S. cerevisiae tRNA when expressed in S. cerevisiae, 

Supplementary Table 2), their effects changed substantially (Fig. 2b). For example, the 

mutation C66A had no effect in the S. cerevisiae background but became detrimental in the 

Candida glabrata tRNA, which only differs by two substitutions (paired t-test q-val = 0.006, 

n = 6). Indeed, 11/14 mutations had effects that changed across these seven tRNAs from 

different species (Extended Data Fig. 2a, FDR<0.1).

We next compared the effects of the single mutations across the complete set of genetic 

backgrounds in the library. In total, we tested each mutation in a median of 1,449 genetic 

backgrounds (min = 1,088, max = 1,993, Extended Data Fig. 1c, d). Surprisingly, we found 

that every mutation was both detrimental and beneficial in a substantial number of genetic 

backgrounds (Fig. 2b, c, median number of backgrounds in which the less frequent sign was 

observed = 6.4%; min = 3.4%; max = 11.9% across all 14 mutations, FDR<0.1, n = 21,450, 

See Methods). Restricting the analyses to background genotypes with high or intermediate 

fitness, to genotypes with high input read counts, or to genotypes with few mutations did not 
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change this conclusion (Extended Data Fig. 2b). Thus, all mutations have effects that switch 

from beneficial to detrimental in closely related genotypes.

To investigate the interactions between mutations that underlie these changes in mutation 

effects, we first quantified pairwise genetic interactions between the 14 mutations, which is a 

total of 87 pairs in any genotype. We define epistasis as the difference between the fitness of 

each double mutant and the sum of the fitness of the two corresponding individual 

mutations. Consistent with previous results15, in the S. cerevisiae genotype, many pairs of 

mutations (40.2%, 35/87) had combined fitness effects that were more detrimental than 

expected (negative epistasis) and only a few had effects that were less detrimental than 

expected (positive epistasis, 5.7%, 5/87, FDR<0.1, Fig. 3a). However, these interactions 

changed when they were tested in the tRNAs from the different species (Fig. 3b, c, Extended 

Data Fig. 3), with 83/87 interactions differing across the species (n = 1,000 paired t-tests, 

FDR<0.1, Extended Data Fig. 4).

We next analysed how the 87 interactions changed across all the genetic backgrounds in the 

library. Each interaction was quantified in a median of 506 genetic backgrounds (min = 240, 

max = 946, Extended Data Fig. 1d). Strikingly, all 87 interactions switched from positive to 

negative in a substantial proportion of the genetic backgrounds (Fig. 3a). Restricting our 

analyses to genetic backgrounds with high or intermediate fitness, to combinations with high 

expected fitness, or to genotypes with high input read counts did not change this conclusion 

(Extended Data Fig. 5b). Across all genetic backgrounds, positive and negative interactions 

were similarly prevalent (11.4% and 10.3% for positive and negative epistasis respectively, 

FDR<0.1, n = 47,649, see Methods).

Changes in base pairing only partially explained changes in sign and magnitude of single 

mutations (Extended Data Fig. 6). The four pairs of mutations that restore Watson-Crick 

base pairs (WC bps) were amongst the most robust positive interactions (Fig. 3e). However, 

even these combinations interacted negatively in a large fraction of backgrounds (5.9-8.4%). 

This is consistent with the presence of non WC bp nucleotides in these positions in the 

tRNAs from other species27 (Extended Data Fig. 5c). Double mutants in the same RNA 

strand of the acceptor stem were enriched for negative epistasis (OR = 1.23, p-value = 

2.15e-6, Extended Data Fig. 5d-e) and the restoration of a WC bp was also more likely to 

result in a negative interaction when the stem harboured multiple additional mutations in a 

single strand (Extended Data Fig. 5f). This suggests that other mechanisms, for example 

stacking interactions, are also important determinants of tRNA function.

We next tested whether pairwise interactions changed in backgrounds containing each 

additional single mutation (Fig 4a, Extended Data Fig 7a). Strikingly, 76/87 interactions 

were significantly altered by the presence of a single additional mutation in the background 

(Fig. 4b), constituting a total of 138/316 possible third order interactions when averaging 

across genetic backgrounds (Extended Data Fig 7b, FDR<0.1). All 14 individual mutations 

altered at least eight pairwise interactions (median = 16.5, max = 24, Fig. 4c). Third order 

interactions, as second order, were enriched amongst proximal mutations and mutations 

found in the same strand (Extended Data Fig. 7c, d).
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However, as for pairwise interactions, all third order interactions (316/316) also switched 

from positive to negative across different genetic background, indicating the presence of 

higher order epistasis (Fig. 4d). 260/316 third order interactions changed in the presence of a 

fourth mutation (FDR<0.1, n = 740). Indeed, interactions can be detected in this dataset up 

to the eighth order (Extended Data Fig. 7b, a total of 763 background-averaged epistatic 

interactions from 3,961 possible interactions tested from order one to eight, FDR<0.1). 

Consistent with the behaviour of the lower order interactions, the signs of many higher order 

interactions also switch from positive to negative as the genetic background changes (Fig. 

4d, 1,981/3,691 interactions in the total dataset interact both positively and negatively in 

different genetic backgrounds, FDR<0.1).

Finally, we evaluated the extent to which epistasis affected our ability to predict phenotypes 

from genotypes. We quantified the accuracy of genetic prediction in the 76 complete di-

allelic sub-landscapes of eight mutations using models restricted to a single genetic 

background as a reference or after averaging epistatic terms across backgrounds (See 

Methods). While individual mutations effects quantified in a single genetic background 

provide quite poor prediction (Fig. 4e, percentage of variance explained %VE = -22%), the 

average effect of each mutation across all genotypes within a sub-landscape improves the 

prediction (Fig. 4e, %VE = 58% on held-out data, 10-fold cross-validation). The most 

significant coefficients selected by the cross-validated models (Extended Data Fig.4a, See 

methods) explained 64% of the fitness variance across all complete di-allelic sub-landscapes 

of eight mutations (Fig. 4f). The best predictive models contained not only first and second 

order but also higher order interaction terms (Fig. 4 g) that progressively improved the 

models’ predictive performance (Fig. 4h). However, these models contained a relatively 

small number of coefficients (20/256 coefficients on average across sub-landscapes, 

Extended Data Fig. 8b), suggesting that although pairwise and higher order epistasis is 

important, reasonably sparse models can provide good genetic predictions when coefficients 

are measured across different genetic backgrounds.

Taken together, our results show even single steps in sequence space substantially change the 

effects of both individual mutations and how they combine to alter fitness. By a range of 

metrics, the combinatorially-complete tRNA fitness sub-landscapes are most similar to 

rugged theoretical fitness landscapes28 that constrain evolution (Extended Data Fig. 9). 

Indeed, the abundance of sign epistasis (Fig. 3d) limits the number of accessible 

evolutionary paths29, for example between the genotypes of extant species (Fig. 4i, j, 

Extended Data Fig. 10). These results add to a growing body of evidence2 that evolution is 

highly contingent at the molecular level. As a consequence, models that that use coefficients 

averaged across different genetic backgrounds and that incorporate higher order epistatic 

terms provide more accurate genetic prediction.

Methods

1 Library design

tRNAs orthologous to S. cerevisiae Arginine tRNA CCU (HSX1) were collected from the 

Genomic tRNA Database30 or extracted from each specie’s genome using Blast31 (‘blastall’ 

2.2.25). The sequences were aligned with Clustal Omega32. Across the 12 species closest to 
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S. cerevisiae, only the six species shown in Fig. 1a had substitutions in the gene, with a total 

of 14 substitutions in ten positions. Allowing all of these substitutions to co-occur results in 

a total library size of 5,184 (= 26 x 34) possible mutation combinations.

2 Plasmid library construction

A 115 nt long oligonucleotide containing 72 nt of tRNA flanked by 21 and 22 nt of the yeast 

endogenous promoter and terminator was synthesised by IBA Lifesciences. At ten of the 72 

positions of the tRNA, two or three different nucleotides were mixed in equal proportions 

during synthesis. For example, position 1 can be G or A, but position 2 can be T, G or C.

The oligonucleotide was amplified by PCR for 10 cycles (Q5 Hot Start High-Fidelity DNA 

Polymerase, NEB), purified using an E-gel electrophoresis system (E-Gel SizeSelect 

Agarose Gel 2%) followed by column purification (MinElute PCR Purification Kit, Qiagen). 

Subsequently, the purified oligo was cloned into a version of the yeast centromeric plasmid 

pRS413 (HIS3 marker)33 that contained the HSX1 gene flanked by its 218 bp upstream and 

202bp downstream genomic sequences (pJD001). pJD001 was linearized from the HSX1 
flanking regions (excluding the HSX1 sequence) by PCR (Q5 Hot Start High-Fidelity DNA 

Polymerase, NEB) and later purified by gel extraction (QIAquick Gel Extraction Kit, 

Qiagen). The library of oligos was cloned into 400 µg of linearised pJD001 substituting the 

‘wt’ HSX1 gene by Gibson reaction (prepared in house) at 50ºC for 12 h with a ratio 5:1 of 

insert:vector. After dialyzing the reaction with 0.025 µm VSWP membrane filters (Merck 

Millipore) for 1.5 h, the product was concentrated 4X by speed-vac. 6 µL of the concentrated 

reaction were transformed into 100 µl of electrocompetent E. coli (NEB® 10-beta 

Electrocompetent E. coli, NEB) according to the manufacturer’s protocol. Cells were 

allowed to recover in SOC (NEB® 10-beta/Stable Outgrowth Medium) for 30 min and later 

transferred to 150mL of LB medium with Ampicillin 4X overnight. A total of ~9.59x106 

transformants were estimated. Given the complexity of the library, each variant was 

therefore represented ~1,849 times on average. 50 mL of E. coli saturated culture was 

harvested to extract the plasmid library by plasmid midi prep (QIAfilter Plasmid Midi Kit, 

Qiagen).

3 Selection experiment

3.1 Yeast strain and conditional growth defect in different environmental 
conditions—The HSX1 deletion strain was obtained by replacing the HSX1 gene with a 

Nourseothricin resistance cassette in the haploid laboratory strain BY4742 (MATα his3Δ1 
leu2Δ0 lys2Δ0 ura3Δ0 hsx1::natMX4) and later confirmed by colony PCR. The deletion of 

the single copy Arginine tRNA CCU (HSX1) in yeast was previously reported to lead to a 

conditional growth defect when the temperature is raised from 30ºC to 37ºC15. We found 

that a similar growth defect is observed if the growth medium contains high salt 

concentrations (1M NaCl), and that a combination of high temperature and high salt gives an 

even stronger defect (Extended Data Fig. 1a). SC-HIS 1M NaCl at 37ºC was therefore used 

as the selective condition for the library selection experiment.

3.2 Large-scale yeast transformation—The high-efficiency yeast transformation 

protocol was derived from Melamed et al.7. Two pre-cultures of the tRNA deletion strain 
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were grown independently in 25 mL standard YPDA at 30ºC overnight. The next morning, 

the cultures were diluted into 175 mL of fresh YPDA at an OD600nm = 0.3. The two cultures 

were incubated at 30ºC for 4 h (~2-3 generations). After growth, the cells were harvested 

and centrifuged for 5 min at 3,000g, washed in sterile water and later in SORB (100mM 

LiOAc, 10mM Tris pH 8.0, 1mM EDTA, 1M sorbitol). The cells were re-suspended in 8.6 

mL of SORB and incubated at room temperature for 30 min. After incubation, 175 µL of 

10mg/mL boiled salmon sperm DNA (Agilent Genomics) was added to each tube of cells, as 

well as 3.5 µg of plasmid library. After 10 min of gentle shaking at room temperature, 35 

mL of Plate Mixture (100mM LiOAc, 10mM Tris-HCl pH 8, 1mM EDTA/NaOH, pH 8, 

40% PEG3350) were added to the cells and incubated at room temperature for 30 more min. 

3.5 ml of DMSO was added to each tube and the cells were then heat shocked at 42ºC for 20 

min (inverting tubes from time to time to ensure homogenous heat transfer). After heat 

shock, each independent tube of cells was centrifuged and re-suspended in 350 mL of YPD 

+ 0.5M Sorbitol and allowed to recover for 1h at 30ºC. The cells were then centrifuged, 

washed twice with SC-HIS medium and re-suspended in 350 mL SC-HIS. The two 

independent transformations were grown at 30ºC for ~60 h until saturation. For the two 

independent transformations, 1.5x106 and 1.1x106 transformants were obtained, which 

ensured that each variant of the library was on average represented ~250 times34.

3.3 Competition assay—The competition experiment had two different phases. In 

phase one, the environment had minimal selection on the tRNA functionality (SC-HIS at 

30ºC), allowing the pool of variants to be amplified and the cells to enter the exponential 

growth phase (input library)34. In the second stage, the medium was changed to a condition 

(SC-HIS 1M NaCl medium at 37ºC) where non-functional tRNA variants would lead to a 

severe growth defect phenotype (output library). The assay was performed immediately after 

yeast transformation to avoid recovering cells from frozen glycerol stocks. Once the two 

independently transformed cultures reached saturation (~60 h after plasmid transformation), 

they were inoculated at an OD600nm of 0.08 in 500 mL of SC-HIS medium and grown for 4 

generations at 30ºC (~11 h). When exponential phase was reached after 4 generations of 

growth, the cells were harvested and washed with selection medium (warm SC-HIS NaCl 

1M) and then inoculated in 500 ml of selection medium at OD600nm 0.015. The remainder of 

the cells was harvested and stored at -20ºC for later DNA extraction of the input libraries. 

Each independent input library was divided into three different output libraries (six 

replicates in total). Cells were grown in selective conditions for ~6.5 generations (~26.5 h). 

This number of generations was chosen so that null alleles, which grow ~0.18 generations 

every 3 h, would be detected after sequencing with an average read coverage of ~150 reads 

per variant. After 6.5 generations, the cells were harvested and the cell pellets stored at 

-20ºC for later DNA extraction of the output libraries.

3.4 DNA extraction and quantification—Cell pellets (eight tubes, two inputs and six 

outputs) were re-suspended in 1.5 mL extraction buffer (2% Triton-X, 1% SDS, 100mM 

NaCl, 10mM Tris-HCl pH8, 1mM EDTA pH8), frozen by dry ice-ethanol bath and 

incubated at 62ºC water bath twice. Subsequently, 1.5 mL of Phenol/Chloro/Isoamyl 25:24:1 

(equilibrated in 10mM Tris-HCl, 1mM EDTA, pH8) was added, together with 1.5 g of glass 

beads and the samples were vortexed for 10 min. Samples were centrifuged at RT for 30 min 
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at 4,000 rpm and the aqueous phase was transferred into new tubes. The same step was 

repeated twice. 0.15 mL of NaOAc 3M and 3.3 mL of cold ethanol 100% were added to the 

aqueous phase. The mix was incubated at -20ºC for 30 min and after that, centrifuged for 30 

min at full speed at 4ºC to precipitate the DNA. The ethanol was removed and the DNA 

pellet allowed to dry overnight at RT. DNA pellets were re-suspended in 900 µL TE 1X and 

treated with RNaseA (10mg/mL, Thermo Scientific) for 30 min at 37ºC. To desalt and 

concentrate the DNA solutions, QIAEX II Gel Extraction Kit was used (75 µL of QIagen 

beads). The samples were washed 3 times with PE buffer and eluted twice in 375 µL of 10 

mM Tris·Cl buffer, pH 8.5.

3.5 Sequencing library preparation—The plasmid concentration in each total DNA 

sample was quantified in triplicate by real time quantitative PCR, using primers that had 

homology to the origin of replication region of the pJD001 plasmid backbone 

(Supplementary Table 3). On average, we obtained ~3.5 x106 plasmid molecules per µL of 

DNA sample.

A 2-step PCR using high fidelity Q5 Hot Start High-Fidelity DNA Polymerase (NEB) was 

used to amplify the input and output libraries for sequencing. In each sample, ~30 million 

plasmid molecules were amplified for 10 cycles using primers with overhang homology to 

Illumina sequencing adapters (Supplementary Table 3). The first PCR reaction was 

performed independently for each of the eight samples. The samples were then treated with 

ExoSAP (Affymetrix) and cleaned by bead purification with a QIAEX II kit. The whole 

eluates, corresponding to the entire first PCR reactions, were used for the second PCR 

reactions (15 cycles), where the rest of the Illumina adapter was added as overhangs on the 

primers, in addition to sample-specific indexes. The DNA concentration of each individual 

second PCR was quantified by fluorometric quantitation (Quant-iT™ PicoGreen® dsDNA 

Assay Kit) and pooled together at an equimolar ratio. finally, the pooled sequencing library 

was gel purified (QIAEX II Gel Extraction Kit) and subjected to 125 bp paired-end 

sequencing on an Illumina HiSeq 2500v5 sequencer at the EMBL Genomics Core Facility 

(Heidelberg, Germany).

4 Data analysis

4.1 From sequencing reads to fitness values—The sequencing reads of each 

sample (two inputs and six outputs) were processed and filtered independently. Each 

sequencing read covered the entire tRNA. The 5’ and 3’ constant regions of the read 

(primers annealing sites) were removed with the ‘cutadapt’ software35. The forward and 

reverse reads were merged using PEAR36 and sequences that were either not assembled due 

to low quality or unexpected length were discarded. Unique genotypes were called and 

quantified with custom python scripts. Genotypes with less than nine input reads in any 

input replicate, unexpected nucleotide substitutions (sequencing or PCR errors) or zero reads 

in the outputs were discarded. After filtering, we ended up with a total of 4,176 sequence 

genotypes quantified in all inputs and outputs.

To obtain accurate fitness and error estimates for each variant we took into account the 

replicates’ hierarchical structure37 as well as sampling error due to low number of read 
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counts38. Input and output frequencies for each genotype for each independent competition 

experiment were first calculated and then these were combined into a single output 

measurement for each input replicate. The number of cells expressing each genotype in each 

input and output replicate was calculated using the formula:

fingi
= ODinij

*
countsingi

∑g = 1
1 countsingi

foutgij
= ODoutij

*
countsoutgij

∑g = 1
1 countsoutgij

where g is the genotype (from 1 to l, with l being the total number of genotypes after 

filtering), i is the number of input replicates (1 or 2) and j is the number of output replicates 

per input replicate (1 to 3).

This formula assumes that each read derives from an individual cell, so that by multiplying 

the frequency of reads in the output with the final (ODout) and initial culture density (ODin) 

we can estimate the number of cells for a particular genotype at the beginning (fin) and end 

(fout) of the competition experiment.

Each input and output frequency is associated to a Poisson variance given the number of 

read counts of each genotype and the total read count38:

σingi
= 1

countsingi
+ 1

∑g = 1
n countsingi

σoutgij
= 1

countsoutgij
+ 1

∑g = 1
1 countsoutgij

We calculated a single output frequency score for each input replicate using a weighted 

average where the weight of each score foutgij
 is the inverse of the genotype's variance 

σoutgij
2 :

foutgi
=

∑j = 1
3 foutgij

* 1
σoutgij

2

∑j = 1
3 1

σoutgij
2
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The output frequency errors of each replicate were then combined to yield an overall output 

frequency error:

σoutgi
= 1

∑j = 1
3 σoutgij

−2

The number of generations (ngi) was then calculated as the log2 ratio of the normalized input 

and output frequencies:

ngi = log2
foutgi
fingi

with an associated error of:

σngi
= 1

ln(2) * σoutgi
2 + σingi

2

The number of generations in each input replicate (ng1 and ng2) was combined using a 

weighted average as previously to obtain a single growth measurement and an error for each 

genotype:

ng =

∑i = 1
2 foutgij

* 1
σngi

2

∑i = 1
2 1

σngi
2

σng
= 1

∑i = 1
2 σngi

−2

Finally, relative fitness values (in log-scale) to the S. cerevisiae wild type and the propagated 

error were calculated as follows:

ωg = ln
ng

nwt

σωg
=

σng
ng

2
+

σnwt
nwt

2
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In log-space, if a particular genotype grew faster or slower than the wild type, the ln(fitness) 

value would be >0 or <0, respectively.

4.2 Single mutation effects, pairwise genetic interactions and higher order 
epistasis—On a log-scale, the fitness effect of a mutation “A” on a genetic background 

“x” was calculated as the relative fitness gain of the variant “Ax” respect to “x”:

εA 𝓍
1 = ωAx − ωx

This fitness effect of a mutation can also be referred to as the first order epistatic term 

(ε1)39.

A pairwise epistatic interaction between two mutations was defined as the difference 

between the observed fitness of the double mutant “AB” and the expected fitness obtained 

by the addition of the two single mutant fitness values (“A” and “B”). The fitness effects of 

the mutations “A”, “B”, and “AB” can be calculated on each genetic background “x” by 

subtracting the fitness of “x” itself from the fitness of “Ax”, “Bx” and “ABx”, as described 

above. Pairwise epistasis (or second-order epistasis ε2) is then the change in the effect of 

each single mutation in the presence of the second mutation:

εAB 𝓍
2 = ( ωABx − ωx ) − ( ωAx − ωx) + ( ωBx − ωx )

= ωABx − ωAx − ωBx + ωx

= εA B𝓍
1 − εA 𝓍

1 = εB A𝓍
1 − εB 𝓍

1

This same analysis can be expanded to higher order terms22,39. For example, a third-order 

interaction (ε3) is the degree to which second-order epistasis is different when a third 

mutation is present in the background:

εABC x
3 = εAB Cx

2 − εAB x
2 = εAC Bx

2 − εAC x
2 = εBC Ax

2 − εBC x
2

= ωABCx − ωABx − ωACx − ωBCx + ωAx + ωBx + ωCx − ωx

Higher order terms follow the same principle, so we can calculate any nth-order term using 

the formula39:

εn = ( − 1)0∑ ωn + ( − 1)1∑ ωn − 1 + ( − 1)2∑ ωn − 2 + ⋯ + ( − 1)n∑ ωn − n = ∑
i = 0

n

where ωn are all fitness terms of order n in a specific genetic background. It is important to 

note that an epistatic term of any order n can only be calculated if the genotype space is 

complete – i.e. that the fitness of all genotypes from order 0 to n were quantified in the 

experiment. In our dataset, higher order epistasis was quantified up to order eight (76 cases 

in this dataset), which was the highest order where the fitness of a combinatorially-complete 

set of genotypes could be quantified after data filtering (Extended Data Fig. 1d).
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To quantify how many epistatic terms were significantly positive or negative across all the 

backgrounds in which they were tested, a one-sample t-test was performed (using the 

epistatic term and its respective propagated error). The false discovery rate (FDR) was 

adjusted across all the tests performed (a total of 203,240 tests for all interactions of all 

orders across all backgrounds) using the Benjamini-Hochberg method40.

4.3 Controlling for background fitness, sequence divergence, and the 
number of input sequencing reads—Across all the data, there was a weak correlation 

between the fitness of the genetic background and both the fitness effect of the single 

mutations and pairwise epistasis (Extended Data Fig. 2c, 5a). We therefore repeated all of 

the analyses on the subset of the genetic backgrounds with fitness close to the S. cerevisiae 
‘wt’ (>-0.15 and <0.15, n = 1,479 library genotypes) and also on genetic backgrounds with 

moderate fitness decreases (>-0.3 but <-0.15, n = 1,577). We also repeated all of the analyses 

on the genetic backgrounds that were closest to the S. cerevisiae sequence (one to four 

mutations away, n = 1,040) or excluding all variants with mean input frequency <100 reads 

(n = 1,315). With each of these filters we excluded approximately two thirds of the original 

number of variants in the library.

4.4 Classifying pairwise epistasis—Significant pairwise interactions in the dataset (n 

= 10,330/47,649) were classified into three categories: magnitude, sign, and reciprocal sign 

epistasis41. Pairwise epistasis was thus classified as follows. When the fitness effect of both 

single mutants differs in magnitude but not in sign in the presence of the other mutation, the 

epistatic interaction was classified as magnitude epistasis. For sign epistasis, the sign of one 

of the individual fitness effects changes in the presence of a second mutation. finally, if the 

sign of effect changes for both individual mutations, the interaction was classified as 

reciprocal sign epistasis. The way a single mutation effect changes in the presence of 

another mutation can be inferred if the fitness effect and sign of the single mutations (“A” 

and “B”) and the fitness of the double mutant (“AB”) are known. For instance, if the two 

single mutations “A” and “B” have significantly beneficial (positive) effects and the double 

mutant has higher fitness than both single mutants, then none of the single mutations are 

changing sign, so this interaction would be classified as magnitude. However, if the double 

mutant has a fitness value lower than both single mutations, then this interaction would be 

classified as reciprocal sign (both single mutations are changing sign in the presence of the 

other). Otherwise, this interaction will be classified as sign (fitness of the double is lower 

than only one of the singles).

The sign of each of the single mutants in the dataset (n = 21,450) was assigned after 

performing a one-sample t-test (Benjamini-Hochberg’s FDR controlled across all tested 

interactions of all orders from 1 to 8, n=203,240 as described in section 4.2.). Single mutants 

with q-value >=0.1 were assigned as neutral (or not-significant) and the rest as positive 

(beneficial) or negative (deleterious) when the fitness effect of the mutation was >0 or <0 

respectively.

Exceptional interactions between two mutations where both single mutations had a neutral 

(not-significant interaction at FDR<0.1) category were classified as magnitude epistasis 

(either positive or negative). When only one of the single mutations had a neutral category 
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they were then classified as sign or magnitude epistasis depending on whether the other 

single mutation changed sign or not. Whenever both single mutations have either positive or 

negative categories, epistasis was classified as explained above.

4.5 Background-averaged epistatic interactions—We quantified the background-

averaged epistatic interaction of a particular mutation combination (ranging from order 1 to 

8) by averaging all epistatic coefficients of that same combination of mutations across all 

backgrounds in which it was tested. To assess the significance of the average epistatic 

coefficient, the errors of all individual fitness terms were propagated and a one-sample t-test 

was performed. The p-value was adjusted for all tests performed from order 1 to 8 (a total of 

3,691 tests) using Benjamini-Hochberg’s FDR method40.

After identifying those mutations that interacted significantly when averaging across 

backgrounds (at FDR<0.1), we counted the number of times the interactions between two 

mutations changed due to another mutation in the background, or calculated the number of 

times a single mutation was able to change a pairwise interaction (Fig 4b, c).

4.6 Comparisons to theoretical fitness landscapes—We used three different 

landscape statistics (gamma statistic28, roughness-to-slope ratio42 and proportion of 

epistasis types42) to compare the tRNA fitness landscape to theoretical landscapes. To 

estimate the robustness of these measurements, all the statistics were calculated for all 

possible di-allelic (two possible nucleotide substitutions per position) complete tRNA sub-

landscapes from three to eight loci that started from the S. cerevisiae ‘wt’ genotype (n = 293, 

568, 638, 403, 132, 18 landscapes with 3 to 8 loci respectively).

4.6.1 Generation of theoretical landscapes: We generated five different model 

landscapes using the software MAGELLAN (http://wwwabi.snv.jussieu.fr/public/magellan/

Magellan.main.html): an additive model (fitness effect of each mutation is independent of 

the genetic background), the House of Cards model (HoC, fitness values of different 

genotypes are independent and identically distributed random variables), the Rough Mount 

Fuji model (RMF has both additive and HoC components), the Kauffman NK model (where 

each locus interacts with K other loci in the landscape) and the egg box model (maximally 

epistatic, anti-correlated fitness landscape, where neighbouring fitness changes 

systematically from low to high, or vice versa, between genetic backgrounds one step apart). 

Further descriptions of the models can be found in2,13,28,42. We simulated 250 di-allelic 

landscapes of each theoretical model of size n (n = 3 to 8) with an average fitness value and 

associated error similar to the tRNA landscape (average fitness effect of 0.04 and an 

associated standard error of 0.012). The RMF landscape was modelled with a mix of 50% 

additive and 50% HoC and the K parameter of the NK model (each locus interacts with K 

loci) was set to K = n/2. These parameters were selected as they resulted in landscape 

statistics most similar to those of the tRNA sub-landscapes (data not shown).

4.6.2 Gamma statistic: correlation of fitness effects: The gamma statistic (γ) was 

recently introduced by Ferretti et al.28 and extended by others13. γ quantifies the 

correlation of fitness effects of the same mutation in single-mutant neighbours. It measures 

how the effect of a focal mutation is altered by another mutation at another locus in the 
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background, averaged across the whole landscape. The statistic is bounded between -1 and 

1. In a scenario without epistasis (the effect of a mutation is completely independent of the 

background), γ = 1. The γ measure gives information on the amount of epistasis in a 

combinatorially-complete landscape, but does not discriminate between different landscape 

topographies (two landscapes that differ in structure can have the same γ value). As γ, γd 

(the decay of correlation of fitness effects with mutational distance) can be defined as the 

correlation of fitness effects of mutations between genotypes that are 1, 2, 3 … d mutations 

away. γd gives extra information about the structure of the landscape, since it describes the 

cumulative epistatic effect of d mutations13,28. In a completely additive landscape, γd is 

always 1 because the effect of a mutation is independent of the background genotype that is 

1, 2, 3 or d mutations away. However, in a maximally rugged fitness landscape (where the 

effect of a mutation depends entirely on its genetic background) γ1 is 0 and γd is 0 for all 

values of d. The behaviour of γd as a function of d varies for different theoretical landscape 

models13,28 (Extended Data Fig. 9a).

We calculated γd values for all possible complete di-allelic tRNA sub-landscapes of three to 

eight mutations combinations that contained the S. cerevisiae genotype using the software 

MAGELLAN (eight being the maximum number of loci where a complete genotype space is 

available in the dataset). We later compared the statistic to the values for the theoretical 

landscapes. As a measure of similarity, we calculated the Euclidean distance between the γd 

of all tRNA sub-landscapes and the γd of the theoretical models (each tRNA landscape was 

compared to the 250 simulations of each theoretical landscape, n = 73,250, 142,000, 

159,500, 100,750, 33,000 and 4,500 for tRNA landscapes from three to eight mutations 

respectively).

4.6.3 Other quantitative measures of landscape ruggedness: In addition to the gamma 

statistic, for all complete tRNA and theoretical sub-landscapes from three to eight loci, we 

also calculated the roughness-to-slope ratio (r/s ratio) and characterized the local pairwise 

epistatic interactions. The r/s ratio measures how well the landscape can be described by a 

linear model, which corresponds to the purely additive limit42. The roughness is given by 

the variance of the residuals from the linear model and the slope by the average of the 

absolute values of the linear coefficients. The higher the r/s, the higher the deviation from 

the linear model and the more epistasis is present (in a non-epistatic scenario, r/s = 0). To 

characterize the local interactions of each landscape we calculated the fraction of magnitude, 

sign or reciprocal sign pairwise epistasis within each landscape. We used the software 

MAGELLAN to calculate all the described statistics.

4.7 Accessible paths between extant species—An accessible path between two 

genotypes in the landscape was defined as a mutation trajectory in which none of the 

intermediate genotypes has significantly lower fitness than both the initial and final 

genotypes that they connect (t-test between all the intermediate genotypes against the origin 

and end-point genotypes, n = 1 to 8 tests). A path that had at least one deleterious 

intermediate genotype (p-value <0.05) was classified as inaccessible. We measured the 

number of accessible direct (shortest) paths between 20 pairwise comparisons of the extant 

genotypes in the landscape using the R package ‘igraph’.
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4.8 Genetic prediction—As described in section 4.2, epistatic terms were calculated as 

linear combinations of the fitness values of genotypes of different orders. This system of 

linear combination can be represented in a matrix form, which allows the epistatic 

coefficients to be calculated from fitness values, and fitness values back from epistasis39.

In a complete n loci di-allelic genotype space, where each locus can harbour 2 different 

nucleotides, epistatic terms can be calculated as follows:

ε = G ω

Where ω corresponds to a vector with the fitness values of the 2n genotypes from order 0 to 

n, ε is a vector with all the corresponding epistatic terms and G is a matrix that defines the 

linear mapping between ω and ε for all orders. G can be recursively constructed as follows:

Gn + 1 =
Gn 0

−Gn Gn
with G0 = 1

In this case, epistatic terms are calculated relative to a single background (0th order genotype 

or ‘w). However, within a complete landscape, epistatic terms can be calculated across many 

different backgrounds. For instance, in a di-allelic landscape of three loci, the same single 

mutation effect (epistasis term of order one) can be measured four times from four different 

backgrounds. To obtain epistatic coefficients averaged among backgrounds we can use a 

similar version of the previous equation:

e = VH ω

In this case, the e vector corresponds to the background average epistatic coefficients. H (the 

Walsh-Hadamard transform22,39) defines the mapping from fitness to epistatic coefficients 

and can be recursively constructed as follows:

Hn + 1 =
Hn Hn
Hn −Hn

with H0 = 1

The coefficient obtained by multiplying H by ω would correspond to the sum of the same 

coefficient across backgrounds, not the average. Moreover, coefficients of odd orders would 

have an opposite sign. The V matrix weights the coefficients by averaging and corrects the 

sign of odd orders depending on the order of each term.

Vn + 1 =
1
2Vn 0

0 −Vn
with V0 = 1

Fitness values can be obtained by a linear combination of epistatic coefficients using the 

inverse mapping, for both relative or background-averaged epistatic coefficients:
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ω = G−1ε

ω = (VH)−1e

For an overview and extended definitions, we refer the reader to39.

4.9 Cross-validation—To avoid model over-fitting, we used a 10-fold cross-validation 

approach where the background-averaged epistatic coefficients were quantified using 90% 

of genotypes (training set) with the remaining 10% held-out for evaluation (test set). With 

10% of genotypes within each 8-loci sub-landscape missing, computation of coefficients of 

7th or 8th order coefficients is no longer possible. Coefficients of other orders were averaged 

across backgrounds for which all intermediate genotypes were available. To asses the 

significance of each epistatic coefficient, the estimates of fitness errors where propagated 

accordingly and the t-statistic for a one sample t-test was calculated. Within each of the 10 

training sets for each complete sub-landscape, the coefficients were ranked by their absolute 

t-statistic and cumulatively used to predict fitness of the held-out test set genotypes (least 

significant coefficients were iteratively set to zero before predicting fitness values) using the 

inverse of the Walsh-Hadamard transform as described above (using a weighting matrix V 

were the weights correspond to the number of backgrounds each coefficients had been 

averaged across). The best predictive model for each of the 10 training sets of each sub-

landscape was selected as the model that gave the lowest prediction error on the 

corresponding test set (Extended Data Fig. 8).

The accuracy of all the above predictions was quantified using Root-mean-square error 

(RMSE):

RMSE =
SSres

n

where SSres is the residual sum of squares and n is the total number of predicted genotypes. 

To calculate the percentage of variance explained (% VE) we used the formula:

% VE = 1 −
SSres
SStot

where SStot is the total sum of squares.

4.10 Statistical analyses—All statistical analyses were performed in R (version 3.3.3) 

and figures made using the R package ‘ggplot2’. Lower and upper hinges of boxplots 

correspond to the first and third quartiles (25th and 75th percentiles). The upper and lower 

whiskers extend from the hinge to the largest and lower value no further than 1.5 * IQR 

(interquartile range) respectively. Higher or lower points (outliers) are plotted individually 

(or not plotted in those cases were the boxplot is plotted together with a violin plot). Notches 

give roughly 95% confidence interval for comparing the medians.
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Extended Data

Extended Data Figure 1. Experimental design.
a, Maximum growth rate (measured in a plate reader by spectrophotometry) of tRNA-Arg-

CCU (HSX1) deletion strain carrying either an empty plasmid (red) or a single-copy plasmid 

expressing wild-type tRNA-Arg-CCU (blue) at high temperature, high salt, and high 

temperature containing high salt (n = 3 independent colonies from the plasmid 

transformation). SC - synthetic complete media, - HIS - lacking histidine. b, Distribution of 
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number of mutations per genotype in the library relative to the sequence of the tRNA from 

each species. c, Genotype network of the 4,176 tRNA-Arg-CCU variants. Each node is one 

genotype. Colour indicates the ln(fitness) relative to S. cerevisiae. Edges connect genotypes 

differing by a single substitution, acquisition of U2C mutation highlighted in yellow as 

example. Genotypes are arranged in concentric circles according to the total number of 

substitutions (one to ten) from the S. cerevisiae tRNA, which is the central node. 

Highlighted nodes indicate the genotypes of the seven extant species. d, Table showing the 

possible number of mutation combinations from order 1 to 8, with or without a complete 

genotype space (whether all intermediate genotypes are measured in the library or not) when 

using S. cerevisiae as a reference or any other background (the effect of a given combination 

of mutations can be measured from at least one genetic background). The total number of 

unique backgrounds is also indicated, together with the minimum, median and maximum 

number of backgrounds where these mutations can be found.
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Extended Data Figure 2. Mutations have varying fitness effects in different backgrounds.
a, Single mutations (columns) have effects that differ significantly comparing between 

genetic backgrounds from different species (rows). Paired two-sided t-test between fitness 

effects of mutations of tRNAs from different species (145 tests of n = 6). Significant fitness 

effects differences (FDR<0.1) shown in blue (positive) or red (negative), non-significant 

differences (FDR>=0.1) coloured in white. Not shared mutations are coloured in grey (i.e. a 

substitution that would result in a mutation in one species but is part of the ‘wt’ background 

in another). Bar plots show the % (absolute numbers on top) of species comparisons or 
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shared mutations between species where the effect of the mutation significantly changes in 

magnitude (light grey) or switches sign (dark grey). b, Proportion of genetic backgrounds in 

which each mutation has a beneficial (blue) or detrimental (red) fitness effect at different 

FDRs for backgrounds with ln(fitness) >-0.3 and <-0.15 (left), backgrounds with ln(fitness) 

>-0.15 and <0.15 (middle left), genotypes with <= 4 mutations from the S. cerevisiae 
sequence (middle right) and genotypes with average input read counts >= 100 (right,). Q-

values were obtained after adjusting for FDR across the total number of single mutations 

with unique background after filtering (n = 10,746, 6,129, 3,568, 6,338 tests respectively). c, 

Fitness effect of single mutations plotted against the ln(fitness) of the backgrounds in which 

the mutation are made; for all genetic backgrounds (left), backgrounds with ln(fitness) >-0.3 

and <-0.15 (middle) and backgrounds with ln(fitness) >-0.15 and <0.15 (right). rs = 

Spearman correlation coefficient.
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Extended Data Figure 3. Comparison of epistasis scores between all pairs of species.
A, Comparison between epistasis scores of two extant species not shown in Fig 3c. Pairs of 

species that share less than three mutations are not shown. rs = Spearman correlation 

coefficient. B, Decline of correlation between epistasis scores and Hamming distance 

between the tRNA genotypes from different species (right plot, rs = Spearman correlation 

coefficient). Left plot shows how this negative correlation holds when restricting the 

minimum number of shared pairs of mutations between the two species to compute the 

previous.
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Extended Data Figure 4. Changes in pairwise epistasis between mutations across the seven extant 
species.
a, Comparison of pairwise epistasis (rows) between different species (columns) (1000 paired 

two-sided t-tests of n = 6). Differences in epistasis only shown for comparisons with 

FDRs<0.1 in orange or green for positive or negative differences respectively. Comparisons 

with FDR>=0.1 are coloured in white. Pairs of mutations that are not shared between species 

are coloured in grey. Bar plots show the % of species comparisons (right) or shared pairs of 

mutations between species (top) that significantly change (light grey) or switch (dark grey). 
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After applying the different filters, some pairs of mutations are tested in less than a fifth of 

the number of backgrounds in which they were originally tested. b, Interaction networks of 

four extant species not shown in Fig. 3b. Colours indicate epistasis sign (orange for positive, 

green for negative and grey for not significant at FDR<0.1) and edge width indicates 

epistasis magnitude.

Extended Data Figure 5. Pairwise epistatic interactions switch from positive to negative
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a, Epistasis scores between pairs of mutations plotted against the ln(fitness) of the genetic 

background. Scatter plots are divided into double mutants that restore Watson-Crick (WC) 

base pairings (left, n = 1,883), other double mutants where both mutation are in facing bp 

positions (middle left, n = 1,739), in bp positions but not facing each other (middle right, n = 

28,622), and the rest (right, n = 17,144). rs = Spearman correlation coefficient. b, Proportion 

of genetic backgrounds in which each pair of mutations interacts with positive (orange) or 

negative (green) epistasis at different FDRs restricted to genetic backgrounds with fitness 

>-0.3 and <-0.15 (top), with fitness >-0.15 and <0.15 (top middle), with additive expected 

fitness outcome >-0.2 and <0.1 (middle bottom), or when excluding all genotypes with 

average input counts <100 (bottom). 23,128, 23,652, 29,628 and 15,306 one sample two-

sided t-tests (n = 6). c, A small fraction of Arg-CCU-tRNAs from other eukaryotic species 

have lost the base pairing in positions 1-71, 2-70 and 6-66 of the tRNA (Multiple sequence 

alignment, MSA across 1,614 species taken from27; sequences with indels were excluded). 

d, Number of positive, negative or not significant pairwise interactions at FDR<0.1 within 

the Acceptor stem of the tRNA (n = 23,237) when both mutations are found in the same 

helix strand or when each mutation is located in a different strand (n = 13,615). Log2 odds 

ratio shown below together with two-sided Fisher exact test p-values. e, Number of positive, 

negative and not significant background-averaged pairwise interactions when pairs of 

mutations in the Acceptor stem when are found in the same RNA strand, and if not, if 

mutations are in positions that do base paring with each other. Log2 odds ratio and two-

sided Fisher exact test p-values below. f, Distribution of pairwise epistasis values of 

mutation pairs that restore a canonical WC bp depending on the location of their background 

mutations in the Acceptor stem (p-values from Welch two-sided t-test, n = 263 and n = 1,368 

when >1 background mutations are in the same strand or not, respectively). The same result 

is obtained when epistasis values are corrected for the ln(fitness) of the background 

(residuals of a linear model using background ln(fitness) to predict epistasis, data not 

shown).
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Extended Data Figure 6. Changes in base pairing partially explain the consequences on fitness of 
single mutations.
a, A single mutation can either lose or restore a canonical Watson-Crick base pairing (WC 

bp) depending on the background context. b, Percentage of deleterious or beneficial single 

mutations (at FDR<0.1) that restore or lose a canonical WC bp in any base pairing position 

of the tRNA. From total of 4,300 mutations that restore WC bp, 721 are beneficial and 498 

deleterious. 13,195 mutations result in the lost of a canonical WC pair (n = 6,806 mutations 

that create a Wobble bp and n = 6,389 that completely break the bp interaction), of these 
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3,030 and 721 have significant deleterious and beneficial effects respectively. WC – Watson-

Crick, W – Wobble and L – lost bp. c, Same as b but split by mutation identity. d, 

Distribution of the effects of mutations in the tRNA Acceptor stem that break a base pairing 

(left, n = 1,356 single mutations with background fitness >-0.15) have more deleterious 

effects when the neighbour base pairing positions are composed of one or more Wobble 

interactions (n = 921), instead of all canonical WC pairings (n = 435, average fitness effect 

difference = 0.028, Welch two-sided t-test p-value shown). The context of the base pairing of 

the stem is illustrated at the right.
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Extended Data Figure 7. Background-averaged third and higher order interactions.
a, 8/74 most significant background-averaged third order interactions (at FDR<0.1, n = 

3,691 tests for all interactions across all orders). The three first left plots of each row show 

how the distribution of pairwise epistasis of two mutations across different genetic 

backgrounds (each double mutation can be found in a median of 506 different genetic 

backgrounds) change in the presence or absence of a third mutation. The paired differences 

between pairwise interactions in those three cases correspond to third order epistatic 

coefficients (distributions of third order epistasis for the same three mutations are shown at 
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the right). Horizontal lines correspond to the background-averaged third order epistatic term, 

coloured by sign (orange or green for positive or negative respectively). b, Number of 

significantly positive and negative background-averaged epistatic interactions of order one to 

eight (at FDR<0.1). c, Distribution of the absolute magnitude of averaged third order 

interactions plotted against the mean nucleotide distance between the three mutations (n = 

316 triple mutations). Significant interactions (one sample two-sided t-test at FDR<0.1) are 

coloured in orange or green for positive or negative epistasis respectively. d, Number of 

positive, negative or not significant background-averaged third-order interactions (FDR<0.1) 

within the Acceptor stem of the tRNA when both mutations are found in the same helix 

strand or not (n = 129). Below the log2 odds ratio (bottom) of significantly positive 

interactions vs. others or significantly negative interactions vs. other double mutants when 

all three mutations are found in the same strand of the tRNA acceptor stem. P-values 

reported from the two-sided Fisher exact test.

Extended Data Figure 8. Cross-validation approach.
a, Mean root-mean-squared error (RMSE) of the fitness prediction for each of 8 mutations 

sub-landscapes 10-fold cross-validation held-out genotypes (yellow, test set) or genotypes 

included in the training (purple) when progressively adding the 100/256 most significant 

epistatic coefficients. Highlighted in red is the average number of epistatic coefficients to 

obtain the lowest RMSE across all the sub-landscapes. b, Histogram of the minimum 

number of epistatic coefficients needed to obtain the minimum RMSE when predicting 

fitness of the test genotypes by 10-fold cross-validation in all complete 8 mutation sub-

landscapes (top). Histogram of the median number of coefficients for each sub-landscape 

(bottom).

Domingo et al. Page 27

Nature. Author manuscript; available in PMC 2018 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 9. Comparison of the combinatorially-complete tRNA sub-landscapes to 
theoretical fitness landscapes.
a, Expected pattern of the average correlation of fitness effects γd at different mutational 

distances for theoretical di-allelic fitness landscapes with three to eight mutated positions. 

The average γd behaviour is highlighted in bold for each theoretic landscape (n = 250 

simulated landscapes for each theoretical model). The NK landscape was modelled with 

K=L/2 (L = number of mutatd positions) and the RMF as a mixture of 50% additive and 

50% HoC. b, Decay of γd with mutational distance for all tRNA complete di-allelic sub-
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landscapes containing the S. cerevisiae parental genotype of three to eight loci (mean 

behaviour of γd in bold). c, Mean Euclidean distance between the γd for the tRNA sub-

landscapes and the γd of theoretical landscapes (each tRNA landscape was compared to the 

250 simulations of each theoretical landscape, n = 73,250, 142,000, 159,500, 100,750, 

33,000 and 4,500 for tRNA landscapes from three to eight mutations respectively). d, e, 

Mean roughness-to-slope ratio (r/s) (d) and epistasis classes (e) for all combinatorially-

complete tRNA di-allelic landscapes from three to eight mutations, as well as for all 

theoretical landscape models (n = 250 for each theoretical landscape models and 293, 568, 

638, 403, 132 and 18 tRNA landscapes from three to eight mutations respectively). Error 

bars are SDs.

Extended Data Figure 10. Direct paths accessibility between extant species.
Shortest paths between some pairs of extant species (top) together with the proportion of 

them that are accessible (bottom, yellow = accessible, purple = inaccessible). Nodes are the 

ln(fitness) of the species genotypes and the intermediate genotypes between them. Edge 

colours indicate the frequency at which a one step mutation belongs to an accessible path 

(completely accessible = yellow, completely inaccessible = purple). Error bars are ln(fitness) 

SEs of each genotype (propagated error from the n = 6 replicates).
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Figure 1. Combinatorially-complete fitness landscape of a tRNA.
a, Species phylogenetic tree26 and multiple sequence alignment of the tRNA-Arg-CCU 

orthologs. Shown variable positions across the seven yeast species with the synthesized 

library below. R - A or G, B - C, G or T, D - A, G or T, Y - C or T, M- A or C, H - A, C or T. 

b, Secondary structure of S. cerevisiae tRNA-Arg-CCU (varied positions in red). c, 

Selection experiment and structure of the replicates. From each independent yeast 

transformation (input) three independent selection experiments were performed. d, 

Correlation between weighted-averaged input replicates (rs = Spearman correlation 

coefficient, n = 4,176 genotypes). e, Fitness landscape of the tRNA-Arg-CCU genotipes 

(nodes). Colour indicates ln(fitness) relative to the S. cerevisiae tRNA. Edges connect 
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genotypes differing by a single substitution. Genotypes and distribution of fitness values 

(violins) are arranged in the x-axis according to the total number of substitutions from the S. 
cerevisiae tRNA. Highlighted nodes indicate the genotypes of the seven extant species.
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Figure 2. All single mutations switch sign from detrimental to beneficial in different genetic 
backgrounds.
a, The same mutation can have different fitness consequences depending on the genetic 

background. b, Significance of beneficial (blue) or detrimental (red) mutation effects in the 

backgrounds of each species (left) and across all genetic backgrounds (right). FDR = False 

Discovery Rate, n = 21,450 backgrounds, see Methods). c, Proportion of genetic 

backgrounds in which each mutation has beneficial (blue) or detrimental (red) effects.
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Figure 3. Genetic interactions between all pairs of mutations switch from positive to negative 
epistasis in different genetic backgrounds.
a, Proportion of backgrounds (top) and species (middle) in which each pair of mutations 

interacts positively (orange) negatively (green) at different FDRs (n = 47,649 backgrounds). 

Bottom shown background-averaged epistasis (n = 87 pairs of mutations). b, Interaction 

networks for three species (other species in Extended Data Fig. 4b). Edge colours indicate 

epistasis sign (FDR<0.1) and width strength of interaction. c, Comparison of epistasis scores 

between these three species (rs = Spearman correlation coefficient, n = 43, 22 and 6 

comparisons from left to right). d, Number of positive (orange) or negative (green) 

magnitude, sign or reciprocal sign pairwise epistasis (n = 10,330 significant interactions 

from 47,649 tested) e, Consistency of each interaction quantified as the absolute difference 

between the % of backgrounds in which the interaction is positive or negative. Colour 

indicates the predominant sign. The four pairs that restore WC bps are highlighted.
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Figure 4. Averaging coefficients across genetic backgrounds and using higher order epistatic 
terms is important for genetic prediction
a, Changes in the distribution of pairwise epistasis when the genetic backgrounds contain or 

not the indicated mutation (left) and distribution of the corresponding third order epistasis 

values (right). b, Distribution of pairwise interactions altered by a third mutation. c, 

Distribution of single mutations involved in a third order interaction. d, Proportion of 

genetic backgrounds in which each combination of mutations from 3rd to 8th order interact 

positively (orange) or negatively (green) at a FDR<0.1. e, Agreement between observed and 

predicted fitness values of all 8th order complete sub-landscapes (n = 19,456 genotypes, 76 

sub-landscape with 256 genotypes each) when using up to 1st order epistatic coefficients, 

relative to a single background genotype (left) or averaged across backgrounds (right, 10-

fold cross-validation). %VE = Percentage of variance explained. f, Agreement between 

observed and predicted fitness values for all complete 8th order sub-landscapes when using 

the most significant epistatic coefficients, estimated by 10-fold cross-validation. g, Mean 

root-mean-square error (RMSE) across the 76 8th order sub-landscapes when cumulatively 

adding most significant coefficients determined by cross-validation (right, colour indicates 

de median order of the coefficient added across 76 sub-landscapes) or all significant 

coefficients from the same order (left). Error bars are 95% CI. h, Mean orders of most 

significant epistatic coefficients (top, absolute counts; bottom, relative to the possible 

number of coefficients per order). Error bars are 95% CI. i, Example of shortest paths 

between two extant species (top) and accessible proportion (bottom). j, Average frequency 

of accessible paths between species.
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