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Abstract

Objective: Develop a novel methodology to create a comprehensive knowledge graph (SuppKG) 

to represent a domain with limited coverage in the Unified Medical Language System (UMLS), 

specifically dietary supplement (DS) information for discovering drug-supplement interactions 
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(DSI), by leveraging biomedical natural language processing (NLP) technologies and a DS domain 

terminology.

Materials and Methods: We created SemRepDS (an extension of an NLP tool, SemRep), 

capable of extracting semantic relations from abstracts by leveraging a DS-specific terminology 

(iDISK) containing 28,884 DS terms not found in the UMLS. PubMed abstracts were processed 

using SemRepDS to generate semantic relations, which were then filtered using a PubMedBERT 

model to remove incorrect relations before generating SuppKG. Two discovery pathways were 

applied to SuppKG to identify potential DSIs, which are then compared with an existing DSI 

database and also evaluated by medical professionals for mechanistic plausibility.

Results: SemRepDS returned 158.5% more DS entities and 206.9% more DS relations than 

SemRep. The fine-tuned PubMedBERT model (significantly outperformed other machine learning 

and BERT models) obtained an F1 score of 0.8605 and removed 43.86% of semantic relations, 

improving the precision of the relations by 26.4% over pre-filtering. SuppKG consists of 56,635 

nodes and 595,222 directed edges with 2,928 DS-specific nodes and 164,738 edges. Manual 

review of findings identified 182 of 250 (72.8%) proposed DS-Gene-Drug and 77 of 100 (77%) 

proposed DS-Gene1-Function-Gene2-Drug pathways to be mechanistically plausible.

Discussion: With added DS terminology to the UMLS, SemRepDS has the capability to find 

more DS-specific semantic relationships from PubMed than SemRep. The utility of the resulting 

SuppKG was demonstrated using discovery patterns to find novel DSIs.

Conclusion: For the domain with limited coverage in the traditional terminology (e.g., UMLS), 

we demonstrated an approach to leverage domain terminology and improve existing NLP tools to 

generate a more comprehensive knowledge graph for the downstream task. Even this study focuses 

on DSI, the method may be adapted to other domains.

Keywords

Dietary supplements; Drug supplement interactions; Knowledge discovery; Natural language 
processing; Text mining

1. Introduction

The 1994 Dietary Supplement Health and Education Act (DSHEA) defines a dietary 

supplement (DS) as “a product intended to supplement the diet that contains one or more of 

the following dietary ingredients: a vitamin, a mineral, an herb or other botanical, an amino 

acid, a dietary substance to supplement the diet or a concentrate, metabolite, constituent, 

extract, or combination of any ingredients thereof” [1]. Data from the 2017–2018 National 

Health and Nutrition Examination Survey (NHANES) found that 57.6% of U.S. adults aged 

over 20 used some sort of DS. The data also shows that across the age groups for both men 

and women, prevalence of DS use increases with age [2].

The DSHEA also classifies DSs as a category of food and thus do not require pre-market 

approval by the FDA like pharmaceutical drugs. Furthermore, many DS are non-patentable 

so there is less incentive to conduct research to clarify their interactions with pharmaceutical 

drugs [3]. This leads to the effects of many DS not being adequately understood. With 
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this comes the risk that an individual may experience an interaction between a DS they 

are taking and a pharmaceutical substance. Some systematic reviews have investigated the 

literature for interactions between drugs and DSs [4-9]. However, they note the limited 

literature studying drug-supplement interactions (DSI), the quality of the reviewed studies, 

the sample size in the reviewed studies, etc. as being limitations. The literature suggests 

that there is still insufficient knowledge surrounding DS and their potential interactions with 

other substances, adverse or otherwise.

A couple challenges were identified to better understand DSIs. First, while there is some 

research regarding DS in general, there is limited research into DS interactions with 

pharmaceuticals, although there are many studies on DS. So, we will use literature-based 

discovery methods to discover DSIs. The absence of a dataset suited towards our purposes 

and the infeasibility of creating an annotated dataset is a major obstacle to using state of 

the art machine learning models for named entity recognition (NER) and relation extraction 

tasks. Second, the UMLS was found to have a lack of representation of DS terminology 

[10]. While there exist various biomedical tools, such as MetaMap and SemRep (see 

details in section 2.1), which are benchmark tools to extract entities and relations from 

text, they rely on the UMLS to perform these tasks. As such, a lack of representation of 

DS in the UMLS means that extracted DS entities and relations involving DS will also be 

under-represented in the output of these tools. This under-representation affects the ability 

of methods, such as literature-based discovery, to find potentially meaningful information 

regarding DS and DSIs.

To address these challenges, we propose an approach for generating a comprehensive DS 

knowledge graph (SuppKG) from the literature by leveraging a DS specific terminology 

(iDISK) and improving an NLP tool and later demonstrate its usage for a literature-based 

discovery (LBD) task on DSI discovery. This approach can potentially be adapted for 

other under-represented domains. Specifically, in this study, we contribute in the following 

aspects. First, we created an extended version of SemRep, called SemRepDS, by integrating 

DS terms from a DS specific knowledge base with the UMLS to enable better recognition of 

DS terms in biomedical literature. We use SemRep for NER and relation extraction because 

SemRep does not require large amounts of annotated training data and showed strong 

performance in a recent evaluation [11]. Relation extraction is an NLP task that attempts to 

identify a subject, object, and the relationship between them from text. Applying relation 

extraction to a large corpus of text, such as PubMed abstracts, allows for relationships 

to be found where they were previously unknown. SemRep is such an existing tool to 

extract relationships from literature (details in section 2.1). However, SemRep is limited 

when it comes to DS because SemRep relies on the UMLS, which has been found to have 

a lack of DS representation [10]. Therefore, we will extend the UMLS using iDISK to 

expand SemRep’s coverage of DS entities and semantic relations. This method allows for 

expanding SemRep’s coverage while not requiring extensive, time-consuming annotation 

efforts. Second, we created a comprehensive DS knowledge graph, SuppKG, containing all 

identified relationships involving DS concepts by the expanded SemRepDS. To improve the 

quality of the semantic relations in SuppKG, we developed an accuracy classifier to identify 

which semantic relations are incorrect. Finally, we demonstrate the usage of SuppKG on the 

LBD task of discovering novel DSIs using discovery patterns. Of the 350 potential DSIs 
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we discovered, 325 were not found in well-known knowledge bases. Through evaluation by 

domain experts, we identified 76 DSIs are mechanistically plausible.

2. Background and related work

2.1. SemRep and SemMedDB

MetaMap [12,13] links entity mentions in biomedical text to concepts in the UMLS 

Metathesaurus. It returns a mapping decision for each identified phrase in a body of text. 

SemRep is a rule-based tool for extracting semantic relations from biomedical text using 

MetaMap to map text to concepts in the UMLS [14]. A semantic relation is comprised of 

three parts, the subject concept, a predicate, the object concept. An example of a semantic 

relation is:

“Effects of Asian sand dust, Arizona sand dust, amorphous silica and aluminum oxide on 

allergic inflammation in the murine lung.”

• Subject: DC0002374 - Alumina

• Predicate: EFFECTS

• Object: C0021375 – Inflammation, allergic

• Relation: Alumina EFFECTS Inflammation, Allergic

In the example above, the subject and object are identified by MetaMap in the UMLS 

Metathesaurus. These concepts are used by SemRep along with a set of trigger rules 

and limited by the Semantic Network to produce semantic relations. Henceforth, we will 

use “SemRep identified X DS” with the implication being that MetaMap did the entity 

extraction, but the results from the MetaMap extraction were included in the SemRep output. 

The DC0002374 is a DCUI (a letter D was added before a concept unifier identifier [CUI] to 

represent it as a DS concept) used to identify DS concepts in iDISK. See our prior work [15] 

for additional details.

Applying SemRep to the entire collection of PubMed citations produces a large database 

of relations, entities, and source sentences called SemMedDB [16]. While an extension 

of SemMedDB has been produced before (SemMedDB UTH [17]) this method involved 

extending SemRep by modifying the Metathesaurus directly to undo the suppression of the 

drugs in the National Cancer Institute Thesaurus. Prior work has demonstrated that SemRep 

can be extended to the domains of disaster information management [18] and medical 

informatics [19] using various knowledge engineering techniques.

2.2. Literature based discovery

Literature Based Discovery (LBD) is a method for generating hypotheses by finding implicit 

relationships in the research literature [20]. Two categories of LBD are open and closed 

LBD. Open LBD involves providing a term and the task is to find connections between two 

concepts that may not be directly related. Closed LBD takes two terms and finds concepts 

shared between them [21]. Discovery patterns exploit the explicit relationships between 
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UMLS concepts by imposing conditions on what pathways are valid, potential relationships 

[20].

Previous work on Drug-Drug Interactions (DDIs) discovery has used a variety of data 

sources and techniques. One study identified combinations of Drug-Gene relationships 

associated with known DDIs using Medline abstracts and a random forest classifier [22]. 

Another used electronic medical records (EMR) to narrow a set of potential DDIs generated 

from in vitro studies to a collection of drug pairs that were found to have higher risk ratios 

for myopathy [23]. SemMedDB [24] has also been used in the past to discover potential 

DDIs using discovery patterns based on semantic types of the UMLS concepts extracted 

from PubMed abstracts in combination with patient EMR data [25].

In a recent study that performed LBD for drug repurposing [26], a BERT [27] model was 

fine-tuned on annotated semantic relations to identify which relations were correctly implied 

by their source sentence. The fine-tuned BERT model was used to remove incorrect relations 

from SemMedDB before open LBD was performed for drug repurposing.

2.3. The integrated dietary supplement knowledge base (iDISK)

The Integrated Dietary Supplement Knowledge base (iDISK) is a data model that contains 

terminology of DS ingredients. The DS information was gathered from four well-trusted DS 

resources: Natural Medicines Comprehensive Database, Memorial Sloan Kettering Cancer 

Center, Dietary Supplement Label Database, and the Natural Health Products Database and 

compiled into a data model with the assistance of domain experts [15].

Like the UMLS data model, the core iDISK data elements are atoms, concepts, concept 

attributes, relationships, and relationship attributes. Included in the iDISK data model are 

links to other controlled vocabularies to allow for wider use and integration with existing 

biomedical knowledge representations such as the UMLS. iDISK contains 144,654 unique 

concepts, of which 4,208 are concepts for DS ingredients and 137,568 concepts for DS 

products.

2.4. Drug supplement interactions

There are limited studies that use LBD to discover DSIs. Our group previously discovered 

interactions between cancer drugs and DS through LBD [28]. We leveraged SemMedDB to 

identify both known and unknown DSIs through expert validation. Recently, the Allen AI 

Institute conducted DSI identification using articles from Semantic Scholar and RoBERTa 

[29,30]. Supp.AI mined the literature to find published DSIs. The Supp.AI lexicon of DS 

is based on data mined from Medline articles that have UMLS CUIs. Our prior work 

has shown that the UMLS coverage for DS terminology and synonyms is incomplete [10] 

which imposes an inherent limitation on the terminology Supp.AI can use. Comparing terms 

available in iDISK [15] and in Supp.AI, we found that 87.3% of the concepts in Supp.AI 

were contained in iDISK but only 43.5% of the concepts in iDISK were contained in 

Supp.AI. In addition, Supp.AI is designed to extract DSI mentioned in the literature but not 

to discover novel DSI, which is the focus of this study.
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3. Materials and methods

Fig. 1 provides a visual summary of the entire process. First, we used the terminology and 

relations contained in iDISK to extend the domain of MetaMap in SemRep, which resulted 

in the SemRepDS system. Second, we collected abstracts from PubMed that were processed 

by SemRepDS to extract semantic relations to construct a comprehensive DS knowledge 

graph, SuppKG. Finally, we demonstrate the usage of SuppKG using discovery patterns to 

discover novel DSIs.

3.1. Extend SemRep

The first phase in our process was creating SemRepDS. We have two steps described as 

follows.

3.1.1. Integrating iDISK into the UMLS Metathesaurus—Since SemRep relies on 

the UMLS Metathesaurus and the Metathesaurus’ coverage of DS is limited [10], we added 

iDISK terminology to the UMLS Metathesaurus. To achieve this, the MetaMap Datafile 

Builder1 pipeline was used to generate the necessary data files required for MetaMap 

[12,13], which were then mapped to the DS extended Metathesaurus. The extended 

Metathesaurus was then linked to SemRep for relation extraction, henceforth, SemRepDS. 

The users can choose to use the 2006AA or 2018AA UMLS versions for SemRep, and we 

chose to use the 2006AA version since SemRep is optimized for this version and concept 

ambiguity that is present in later UMLS versions [11]. Additionally, a recent evaluation of 

SemRep used the 2006AA version and obtained strong performance on various corpora [11].

We extend the UMLS 2006AA Metathesaurus with DS ingredient concepts from iDISK as 

follows. For each iDISK concept with no existing links to any UMLS concept, we created 

a new concept entry in the UMLS MRCONSO.RRF file. This involved 1) defining a new 

concept unique identifier (CUI) for the DS concept, and 2) writing all the concept’s atoms 

to MRCONSO.RRF. The UMLS defines preferred terms for each concept, which specify the 

canonical name for the concept, and which are determined according to a source vocabulary 

ranking defined in MRRANK.RRF. iDISK also specifies preferred terms for each concept 

according to a source ranking, and we designated atoms as “preferred” accordingly for 

all new DS concepts added to the UMLS. In our prior study [10], we found the overlap 

between iDISK terms and UMLS terms. To address this, concepts were merged wherever 

synonymy was found to reduce the likelihood of duplicate concepts. Adding iDISK concepts 

that do have existing links to the UMLS is a similar process, but we used the CUI of 

the linked UMLS concept instead of creating a new one, and we kept the existing UMLS 

preferred term rather than using the iDISK preferred term. For all iDISK concepts added, 

we ensured that they were assigned the “Pharmacologic Substance (phsu)” semantic type, as 

this semantic type is used by SemRep to determine which concepts are potential candidates 

for our target semantic relations, INTERACTS_WITH, INHIBITS, AUGMENTS, etc. The 

semantic types for each concept were written to MRSTY.RRF. We also added entries for 

the iDISK source vocabularies to MRSAB.RRF and MRRANK.RRF. Finally, the RRF files 

1https://metamap.nlm.nih.gov/DataFileBuilder.shtml.
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were fed into the MetaMap Data File Builder, which indexed the files and generated a 

concept database that can be used by MetaMap.

3.1.2. SemRepDS—The files resulting from running the MetaMap Data File Builder, 

as described above, were then used to replace the files that come packaged with SemRep. 

This is done by replacing the corresponding files in the SemRep installation. By using the 

new files, SemRep will have access to the standard UMLS as well as the specialized DS 

vocabulary contained within iDISK. We refer to SemRep using these expanded files as 

SemRepDS. We further evaluate the SemRepDS in section 3.2.3.

3.2. Build SuppKG

The next phase was to use SemRepDS and a collection of abstracts from articles on 

PubMed to extract semantic relations that were used to build a specialized knowledge graph, 

SuppKG. This required us to, first, collect PubMed abstracts for SemRepDS to extract 

semantic relations from, second, filter out potentially incorrect semantic relations, third, 

evaluate the SemRepDS output pre- and post- filtering, and fourth, load the filtered output 

into a graph data structure.

3.2.1. Gather and process PubMed abstracts—To build a knowledge graph 

containing DS information, we queried PubMed for abstracts using the Entrez API. Due to 

resource constraints, we could not simply use all of the available PubMed abstracts. Instead, 

we used the terms contained in iDISK as search terms to collect PMIDs. We restricted 

results to English abstracts and used the “Human Subjects” filter in PubMed to restrict the 

results further to studies conducted in humans.

After the queries using all of the terms in iDISK were run, we had collected 608,725 unique 

PMIDs. We used the Entrez API to collect the abstracts associated with each PMID. Due 

to requirements for MetaMap, all abstracts were pre-processed to remove any non-ASCII 

characters. Where necessary, Greek letters were replaced with their English written form 

(i.e., β was replaced with “beta”). The abstracts were batched into multiple files to allow for 

data parallelization.

To compare the ability of SemRepDS for extracting DS entities and semantic relations, we 

processed the abstracts separately using both base SemRep v1.8 and SemRepDS (mentioned 

in 3.1.2). By comparing the two, we hoped to show that more information related to DS can 

be found and used to create a more comprehensive knowledge graph to discover DSIs.

3.2.2. Filtering and ranking semantic relations with diverse BERT models—
To improve the quality of the final knowledge graph, relations were filtered for correctness 

using a BERT [27] model that had been fine-tuned for the binary classification task using 

6000 annotated relations (inter-annotator agreement = 0.842) [31], developed previously 

[26]. The annotated relations were sampled from the December 2016 release of SemMedDB 

and were annotated by two health informaticians for use as a gold standard. The relations are 

split equally between substance interactions and clinical medicine relations.
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To further include semantic relations with DS mentions, we randomly collected 300 

abstracts containing 492 relations with DS mentions for annotation by two informatics 

graduate students with backgrounds in pharmacy and pharmaceutical sciences (AB and YZ). 

Each relation was labeled as correct or incorrect, with a “correct” relation indicating that 

the extracted relation was verified as included in the source sentence. Among the combined 

annotated dataset, 67.02% (4,251/6,492) were labeled as correct relations.

The combined dataset was split 70/20/10 for training, development, and test sets, 

respectively. The train and development sets were sampled so that they were balanced evenly 

between correct and incorrect labelled relations. The test set was sampled to match the 

original distribution of correct/incorrect relations.

We chose six BERT variants and traditional machine learning models to evaluate for 

the accuracy classifier. This included the base uncased BERT to use as a baseline and 

five biomedical domain-specific BERT models that had attained SotA results on various 

biomedical NLP tasks: PubMedBERT abstracts only, PubMedBERT abstracts and full 

text [32], BioBERT [33], BlueBERT [34], and BioClinicalBERT [35]. We also chose to 

use traditional machine learning models (i.e., logistic regression, random forest, gradient 

boosting, and support vector machine) to compare against the BERT models.

All models were evaluated using permutation testing [36]. Fifty random shuffles of the 

labels were generated to use for the permutation testing. We used permutation testing since it 

approximates variations in the test data and provides a better sense of generalization to new 

data.

Hyperparameters for training the BERT models were: five epochs, learning rate of 0.0003, 

weight decay of 0.1, gradient clipping was used with a max of 1, batch size was 16, and 

200 warmup steps were used at the beginning of each training cycle. Optimization was 

performed using Adam [37] with decoupled weight decay and a cosine learning rate decay.

Based on the results from both the permutation testing and multiple training cycles, we 

found the PubMedBERT abstract only model to obtain the highest F1 score in both tests. The 

PubMedBERT model was then finetuned and used as the accuracy classifier for the semantic 

relations.

3.2.3. Evaluating SemRepDS—We evaluated the entity extraction and the semantic 

relation extraction for SemRep and SemRepDS. The entity extraction, or named entity 

recognition (NER), was evaluated using a previously labeled dataset [10].

To evaluate the accuracy of the semantic relation extraction, we used SemRepDS to process 

the same 300 abstracts (described in section 3.2.2) followed by human evaluation to identify 

any potential systematics errors. Since the relations from the 300 abstracts were used to train 

the PubMedBERT accuracy classifier, we also sampled 50 additional abstracts containing 

224 relations before filtering. The same informatics students (AB and YZ) assessed the 

correctness of these relations based on the source sentences. We then report the precision of 

semantic relations before and after filtering.
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3.2.4. Creating SemMedDB-DS and SuppKG—We used the fine-tuned 

PubMedBERT model to filter the output from SemRepDS (see section 3.2.1). A semantic 

relation was removed if the PubMEDBERT model returned a likelihood score below 0.5. 

The semantic relations that remained after filtering we refer to as SemMedDB-DS.

This collection of semantic relations can be represented using a graph-structured data model 

where the subjects and objects form the set of graph nodes, N, and the predicates form 

the set of directed edges, E. We thus created a knowledge graph, called SuppKG, using 

only the filtered set of relations from SemRepDS. Equivalently, SuppKG was created by 

loading the semantic relations contained in SemMedDB-DS into a graph data structure. We 

will make both SemMedDB-DS and SuppKG available on our GitHub (https://github.com/

zhang-informatics/SemRep_DS/tree/main/SuppKG).

The potential usage for SuppKG includes discovering potential DSIs, repurposing DS for 

treatments, discovering adverse events associated with DS, providing interpretation for 

mechanism of action for DS with diseases, etc. In this study, we will demonstrate this 

usage for discovering potential DSIs.

3.3. Use case for the SuppKG: LBD for DSI discovery:

The final phase of our process was to demonstrate the utility of SuppKG, and thus the 

utility of extending SemRep with a specialized vocabulary. We did this by performing 

literature-based discovery (LBD) using discovery patterns on SuppKG. The pathways found 

using the discovery patterns were then evaluated by experts with pharmaceutical and clinical 

backgrounds for mechanistic plausibility.

3.3.1. Discovery of DS-Drug interactions (DSI)—A discovery pattern is a form of 

link prediction that uses a template, or pattern, of a series of concepts that suggests a direct 

relationship between the initial and terminal concepts [20]. The idea being that a pattern 

defined by experts, when applied to a knowledge graph, should return a link between the 

initial and terminal concepts where a direct link was not previously known to exist. In the 

context of our work, a discovery pattern is a series of concepts found in the collection of 

concepts identified by SemRepDS.

Two discovery patterns were used for interaction discovery: DS-Gene-Drug (DsGD) and 

DS-GeneA-Biological_Function-GeneB-Drug (DsGFGD). We used these discovery patterns 

since they were found to have produced meaningful drug-drug interactions similar to 

our prior study [25]. The DsGD pathway means that the pattern would return potential 

interactions between a DS concept and a pharmaceutical drug concept that both acted on a 

shared gene concept. To ensure the novelty of the found pathways, we filtered out any that 

had direct links between the DS and drug concepts in SuppKG.

For each pathway, the interactions were ranked in descending order based on the sum of 

each semantic relations’ accuracy confidence scores assigned by the classifier.

3.3.2. Evaluation of discovered DSIs—The evaluation of the top 250 DsGD DSI 

pathways and 100 DsGFGD DSI pathways was conducted by two of the authors (TA 
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and JB), who are pharmacists with pharmaceutical sciences and clinical backgrounds. A 

protocol was developed to operationalize a review and evaluation process and ensure similar 

resources were used by both experts. A sample size of 350 pathways was used in the 

mechanistic evaluation. Based on Yamane’s sample size formula [44], which assumes a 95% 

confidence interval and maximum variance, the resulting level of precision is 0.0534.

The first step in evaluating a pathway was to identify all terms. A term is a particular 

instance of a concept in the UMLS, for example, “cardiovascular stroke” and “heart attack” 

are both specific instances of the concept “myocardial infarction”. This was accomplished 

by confirming that the text-to-concept mapping was correct then checking the UMLS, 

PubMed, and, as a final effort, an internet search to identify the terms. The term to concept 

mapping required verification since MetaMap does not always perfectly map terms to the 

proper concept.

The second step was to evaluate the relationships themselves by confirming the relations 

were correctly extracted from the abstract, checking the associated paper(s), and, finally, 

an internet search. If after these steps, they felt that the DSI suggested by the pathway 

was correctly extracted from the associated abstracts and if each relation in the pathway 

represented a logical biochemical/microbiological connection, they rated the DSI as 

‘plausible’. Otherwise, the DSI was determined to be ‘implausible’. We then report the 

percentage of plausible DSIs and discuss some examples.

As an example, for the process above, consider the sentence and the extracted semantic 

relation below.

“While calcium has been shown to reduce the risk of pre-eclampsia and maternal mortality, 

calcium, phosphorus, potassium, magnesium and manganese can have negative impacts on 

organoleptic properties, so many products tested have not included these nutrients or have 

done so in a limited way.”

Semantic Relation: manganese prevents pre-eclampsia.

SemRepDS correctly identified “manganese” and “pre-eclampsia” from the text, so the 

first step does not rule the pathway out as being incorrect because we have proper term 

to concept mappings. In the second step, however, we see that the relation was not 

correctly extracted. Due to the structure of the sentence, most likely, SemRepDS erroneously 

determined that manganese prevents pre-eclampsia in the preceding clause. However, 

manganese is being discussed as having negative impacts on organoleptic properties, 

thus rendering the semantic relation false. So, if this semantic relation were part of a 

proposed DSI pathway, the entire pathway would be deemed “implausible” regardless of the 

plausibility of any other semantic relations in the proposed pathway. Not all the semantic 

relations are as straightforward as the example above and many required our experts to 

review the source abstract or do additional research to confirm a particular relation.

To check if our DSI approach identified known DSIs, we compared our list against the 

Natural Medicine Interaction Checker database [38]. Natural medicine is expert-curated 

monographs for natural products, which include drug-supplement interactions.
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4. Results

4.1. Comparison between SemRep and SemRepDS

Each semantic relation was paired with its source sentence in a database for comparison and 

further processing. In this study, Table 1 demonstrates that SemRepDS increased the number 

of DS entities identified by 158.52% after adding the iDISK terminology with UMLS. The 

expanded DS entities further improved the identification of additional 148,308 (206.93%) 

relations with at least one DS entity.

The gold standard evaluation set we used [10] contained only DS entities, so non-DS entities 

extracted by SemRepDS were not counted in the evaluation. Note that SemRepDS use the 

entities as the output of the MetaMap with the updated terms (details in section 3.1.1). The 

performance of SemRepDS on DS NER task is comparable with other non-DS entities. For 

an understanding of SemRep’s performance for NER on non-DS entities, please refer to a 

prior evaluation paper on SemRep [39] and Table 2 below.

4.2. Evaluation of semantic relations generated by SemRepDS

Among the 300 abstracts included based on random sampling, the precision of the pre-

filtering SemRepDS output was found to be 0.67. This is comparable to a recent evaluation 

of SemRep that found a precision of 0.69 [11]. We compared several machine learning-

based and BERT-based models for classifying the correctness of semantic predications 

(detailed results shown in Supplementary Table 1). PubMed BERT (the best performing 

classifier) was then used to filter generated semantic relations down to 2,710,240 (59.94%) 

For the sample of 50 random abstracts, before filtering the precision was 0.72 and after 

filtering increased to 0.91.

4.3. Statistics of DS knowledge graph - SuppKG

Our combined contains graph contains 130,763 nodes with 1,434,007 directed edges. 

SuppKG alone contains 56,635 nodes with 595,222 directed edges. SuppKG will be made 

available as a NetworkX graph object stored in a pickled file and a json file2.(See Table 3).

Of the 2.7 million semantic relations, the most common predicates that remained after 

filtering the SemRepDS output with PubMedBERT were TREATS and COEXISTS_WITH 

(19.4% and 18.9%, respectively). The primary predicates of interest for our discovery 

pathways, TREATS, INTERACTS_WITH, INHIBITS, and STIMULATES, comprised a 

total of 30.92% of all predicates in the filtered semantic relationships.

4.4. Comparison to existing knowledge graphs

See Table 4.

2https://github.com/zhang-informatics/SemRep_DS/tree/main/SuppKG.
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4.5. Mechanistic evaluation

The expert review found that 72.8% (182/250) of the DsGD relations and 77.0% (77/100) 

of the DsGFGD relations were mechanistically correct. The mechanistic correctness of a 

relation does not necessarily imply clinical utility and are considered ‘clinically plausible’.

4.6. Comparison of existing DSI knowledge base

Among 100 DSI list, five DSIs found with the DGD pathway were found in the Natural 

Medicines [39] database and none of the DSIs found with the DGFGD pathway were found 

in the database. The known interactions are:

flaxseed INHIBITS tnf receptor ligands STIMULATES plasminogen activator urokinase.

curcumin INHIBITS interleukin 1, beta STIMULATES plasminogen activator urokinase.

allicin INHIBITS inerleukin 1, beta STIMULATES plasminogen activator urokinase.

activin INHIBITS inerleukin 1, beta STIMULATES plasminogen activator urokinase.

vanadium STIMULATES atp STIMULATES vasopressin.

5. Discussion

DSIs are recognized and have potential risks for patients, however interactions between 

DS and pharmaceutical drugs are neither widely understood nor well identified in 

the biomedical literature. One of such barriers is the incomplete representation of DS 

terminology in the current biomedical terminologies. [10]. Until now, there was no prior 

study that integrated a new, specialized vocabulary (i.e., iDISK in this study) with the UMLS 

and used the resulting extended UMLS for relation extraction. We successfully extended 

the UMLS with a DS-specific vocabulary and used the resulting extended UMLS for 

discovering substance interactions from the literature. We also successfully used a fine-tuned 

PubMedBERT model to filter incorrect semantic relations. As such, we demonstrated the 

utility of vocabulary extension by applying discovery pathways to SuppKG to find novel 

DSIs, most of which were determined to be mechanistically plausible.

5.1. SemRepDS and SemMedDB-DS

We chose to extend SemRep, rather than trying to train a machine learning model for 

relation extraction from scratch for several reasons. First, we do not have access to large 

amounts of training data and manual annotation was deemed infeasible. Second, SemRep is 

a strong baseline (obtaining a precision of 0.9 on the CDR corpus [11]), which builds on 

general linguistic rules, which provide better explainability and transparency to the relation 

extraction process. Third, SemRep can be extended to work with additional terminologies. 

While SemRep generally yields lower recall, this is mitigated, to some extent, because 

we are processing data at the literature-scale. If a relation is missing in one article, 

it may be extracted in another. Furthermore, we improve the quality of the extraction 

semantic relations (i.e., increase the precision) by using an accuracy classifier to allow 

us to filter out potentially incorrect relations. Extending SemRep requires extending the 
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UMLS Metathesaurus, which MetaMap relies on for entity extraction. A prior evaluation of 

MetaMap found that the F1 scores ranged from 0.37 to 0.67 on various corpora [39].

In our prior work, we found that iDISK can enrich UMLS to represent DS and can further 

improve performance on a NER task [10]. In this study, we further integrated iDISK terms 

with UMLS through MetaMap Data File Builder, which was demonstrated to increase the 

recall of recognizing DS terms and DS-related relations. This results in more relations 

generated by SemRepDS than SemRep. Compared with SemRep, SemRepDS can extract 

entities and relations with specific DS mentions, demonstrating SemRepDS’ ability to 

extract data that would otherwise be absent. Thus, the additional relations extracted with 

SemRepDS are unique and not found in SemMedDB.

There are 49,571 additional relations that were extracted with SemRepDS which gives us 

a richer knowledge graph to work with. Furthermore, 512,201 (25.55%) of the relations 

extracted by SemRepDS contain at least one DS mention. Using a knowledge graph 

constructed from SemRepDS output contains more relations as well as relations with 

specialized terms that will facilitate DSI discovery.

Perhaps more importantly, we have demonstrated that specialized terminology can 

successfully be integrated with the UMLS Metathesaurus using the Data File Builder and 

the resulting extended Metathesaurus used to identify additional entities and relations. 

Extending the UMLS with a specialized terminology can be done with other domains 

beyond DS [18,19]. Additionally, the use-cases for an extended UMLS are not limited to 

DSI discovery. The extended UMLS was used for other types of literature-based discovery, 

information extraction, and other informatics tasks.

Because SemRep-DS still contains the original CUIs found in the UMLS, it is possible to 

integrate SemMedDB-DS and SuppKG with SemMedDB, and any graphs derived from it, 

by mapping nodes based on matching CUIs. Additionally, because of how DCUIs were 

assigned in iDISK, it is possible to map DS concepts with DCUIs to UMLS concepts with 

CUIs. SuppKG could be combined with SemMedDB to likely improve the results of DSI 

discovery since SemMedDB is formed by performing entity extraction on the entirety of 

Medline and would likely contain some relations that would open up new pathways not 

present in SuppKG alone.

5.2. Semantic relation correctness classifiers

A sample of 50 abstracts had a pre-filtering precision of 0.72 and a post-filtering precision 

of 0.91. This is a substantial improvement over the raw output from SemRepDS. While the 

resulting knowledge graph is smaller, the likelihood of any path being comprised of true 

relations is higher. The potential DSIs identified by our pathways are likely to be of a higher 

quality than if we used the same pathways on the pre-filtered graph.

It is somewhat surprising that the PubMedBERT model trained on abstracts only 

outperformed the one trained on abstracts and full-text articles. However, it was observed 

by the authors in [33] that the abstract-only out-performed the abstract + full-text model on 

some tasks. Since our dataset is derived from PubMed abstracts, the inclusion of full-text 
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articles likely resulted in a shift away from the target distribution that hindered the full-text 

model compared to the abstract only model, which contains many of the abstracts included 

in our sample. An abstract contains more distilled statements regarding the exact nature of 

a study and its findings. Thus, the abstract-only model would have a more unadulterated 

representation of the relationships that SemRepDS is extracting. The PubMedBERT model 

used for filtering obtained an F1 score of 0.87 which suggests that the model was reasonably 

successful in identifying correct relations.

5.3. Link prediction for proposed DSIs

Below are some examples of relations found with our method that were deemed to be of 

potential clinical interest by our experts. The examples are all from the DS-Gene-Drug 

pathway. (see Table 5).

5.4. Error analysis

We conducted error analysis on false positives during evaluation. Errors stem from how 

terms are mapped to concepts when MetaMap tries to map text to a concept in our extended 

UMLS. An example of a mapping error due to MetaMap we observed is ‘diet’ mapping to 

‘Bill Henderson Protocol’, a proposed diet to help fight cancer. Another involved contextual 

differences in the meaning of a word. For example, “contracted” identified in one context 

based on relationships with contraction of gel media in a laboratory experiment versus 

contraction of blood vessels.

Another source of error is with SemRepDS. The extraction of semantic relationships by 

SemRepDS has a precision of only 0.67. While filtering improved this to 0.91, there is still 

a non-trivial proportion of incorrect relations contained in SemMedDB-DS. As such, any of 

the proposed pathways that contained an incorrect relation would be rendered invalid based 

on our evaluation criteria.

The most common types of errors found in the sample of filtered relations were either 

SemRepDS missing the negation of a predicate or the improper attribution of an entity 

to a relation in a different clause. We include some illustrative examples of pathways 

that were incorrect due to a semantic error or extraction error. For example, “manganese 

prevents pre-eclampsia” extracted from “While calcium has been shown to reduce the risk 

of pre-eclampsia and maternal mortality, calcium, phosphorus, potassium, magnesium and 

manganese can have negative impacts on organoleptic properties, so many products tested 

have not included these nutrients or have done so in a limited way.” Here, SemRepDS 

incorrectly associated manganese with “reduce the risk of” from the first clause containing 

“pre-eclampsia”.

5.5. Limitations and future work

One major limitation of this work is a consequence of the performance of SemRepDS for 

NER. The precision, recall, and F1 scores are 0.4458, 0.4752, and 0.4600, respectively, 

which means there is a non-trivial amount of error that can be introduced in the information 

extraction step. This can propagate to downstream tasks and affect the DSIs being extracted 

from SuppKG. The errors will be incorrect term extractions or missing terms entirely which 
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can result in erroneous links in SuppKG and incompleteness, respectively. We take steps 

to mitigate this by using a trained biomedical BERT model to filter out incorrect semantic 

predications. The BERT model is trained using the semantic triple and the source sentence, 

as such, if a term present in the triple is not in the source sentence, then there is a chance it 

would be scored low enough by the BERT model to not be included in SuppKG. However, 

we do not know the extent to which this occurs. This limitation could be partially addressed 

by using more sophisticated relation extraction tools or models rather than SemRepDS. 

Additionally, more work could be done to filter out incorrect semantic predications before 

building SuppKG.

Available DS concepts and terms are inherently limited by those included in sources for 

iDISK, which imposes a limitation on the terms SemRepDS can identify. Thus, there might 

be abstracts that contain DS mentions and relations but cannot be identified by SemRepDS. 

This poses a limitation on all downstream tasks, particularly any tasks using the final 

knowledge graph. SuppKG will be restricted to the concepts contained in the UMLS and 

iDISK and thus any LBD performed using SuppKG will have similar restrictions. As such, 

any potential DSIs involving DS concepts not contained in iDISK or the UMLS cannot be 

discovered using our discovery patterns. We acknowledge this as a limitation of this specific 

implementation of the work and future work could include expansion of the DS terminology 

by incorporating other sources to mitigate the impact of this limitation. However, even with 

these limitations, we still believe that the methodology at large is successful at expanding 

SemRep with DS concepts, that would otherwise be lacking, to create a more comprehensive 

knowledge graph than one made without integrating iDISK.

Another limitation is that the DSI discovery was performed on a graph generated by 

a subset of PubMed abstracts rather than all abstracts. This may have resulted in the 

unintentional exclusion of some relations and potential DSIs from our final list. This was 

due to computational limitations as processing the entirety of PubMed with SemRep takes 

around one month. There is additional work that can be done to improve the ability of 

SemRepDS to properly extract relations when negation is involved. We also plan to explore 

a larger knowledge graph that uses the entirety of SemMedBD and SuppKG.

We see that the BERT filtering significantly improved the precision of the relations, but there 

is still room for incorrect relations to have been included in SuppKG. This means that there 

are still potentially incorrect relations that were used in some of the pathways found with 

our patterns. The BERT filtering model substantially improved the precision of the semantic 

relations but there is room (e.g., increase the annotated data set, etc.) to further improve the 

quality of SuppKG with additional or refined filtering methods.

While the pathways we used produced novel interactions not found in the literature, there 

are other methods we would like to use. There are limitations to the use of rules based 

DSI discovery, namely that the pathways need to be decided on by experts and that the 

pathways are not precise since they don’t use information contained in the knowledge graph 

aside from semantic types, resulting in a large volume of meaningless interactions. We 

will explore machine learning based methods such as standard embedding models (e.g. 

TransE), graph neural networks and transformer-based models which are not as interpretable 
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as discovery patterns since they only give the initial and terminal nodes rather than a full 

pathway [26].

The evaluation of only 50 DSIs from each of the discovery patterns is also a limitation of 

our study. Due to the very labor-intensive nature of the determining if a pathway is plausible 

(see section 3.3.2), we were limited to using only 100 DSIs. In future work, especially if 

considering more sophisticated learning-based approaches, a larger sample would ideally be 

used if there is the person-power available to review the pathways.

6. Conclusion

The UMLS Metathesaurus contains limited data specific to the growing DS domain. 

In this study, we demonstrate successful augmentation of SemRep with a DS specific 

terminology (iDISK) by using the Data File Builder to expand DS representation in the 

UMLS Metathesaurus. The resulting comprehensive DS knowledge graph, SuppKG, was 

improved by training models to remove incorrect relations, thus reducing downstream error 

propagation. We also demonstrated its usage by discovering several novel DSIs not found in 

the literature and some that have potential clinical interest. The proposed approach can be 

also adapted to other domains with limited coverage in the UMLS.
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Fig. 1. 
Overview of the methodology.
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Table 1

Comparison of the output from SemRep and SemRepDS.

SemRep SemRepDS Difference

DS Entities Mentions 539,863 1,395,653 855,790 (+158.52%)

Relations with at least one DS Entity 71,669 219,977 148,308 (+206.93%)
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Table 2

Performance of SemRepDS on a DS NER task.

Precision Recall F1 Score

SemRepDS 0.4458 0.4752 0.4600
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Table 3

Distribution of the predicates after filtering the combined relations with PubMedBERT.

Predicate Count Predicate Count

TREATS 525,719 (19.40%) ISA 24,383 (0.90%)

COEXISTS_WITH 511,108 (18.86%) PREDISPOSES 21,236 (0.78%)

PROCESS_OF 257,484 (9.50%) COMPARED_WITH 19,295 (0.71%)

CAUSES 235,599 (8.69%) ADMINISTERED_TO 18,940 (0.70%)

INTERACTS_WITH 213,407 (7.87%) METHOD_OF 15,203 (0.56%)

AFFECTS 209,644 (7.74%) DIAGNOSES 6,531 (0.24%)

LOCATION_OF 169,137 (6.24%) MEASURES 4,562 (0.17%)

PART_OF 131,192 (4.84%) PRECEDES 3,132 (0.12%)

ASSOCIATED_WITH 120,297 (4.44%) COMPLICATES 1,846 (0.07%)

USES 96,211 (3.55%) HIGHER_THAN 1,817 (0.07%)

INHIBITS 59,524 (2.20%) OCCURS_IN 1,535 (0.06%)

AUGMENTS 55,167 (2.04%) MANIFESTATION_OF 1,199 (0.04%)

DISRUPTS 45,017 (1.66%) CONVERTS_TO 1,055 (0.04%)

PRODUCES 41,402 (1.53%) SAME_AS 156 (0.01%)

STIMULATES 39,332 (1.45%) LOWER_THAN 110 (0.00%)

PREVENTS 39,104 (1.44%)

TOTAL 2,710,240
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