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Abstract

With the introduction of targeted agents primarily applicable to non-small cell

lung cancer (NSCLC) of adenocarcinoma histology, there is a heightened unmet

need in the squamous cell carcinoma population. Targeting the angiogenic

fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway is

among the strategies being explored in squamous NSCLC; these efforts are sup-

ported by growth-promoting effects of FGF signaling in preclinical studies

(including interactions with other pathways) and observations suggesting that

FGF/FGFR-related aberrations may be more common in squamous versus ade-

nocarcinoma and other histologies. A number of different anti-FGF/FGFR

approaches have shown promise in preclinical studies. Clinical trials of two

multitargeted tyrosine kinase inhibitors are restricting enrollment to patients

with squamous NSCLC: a phase I/II trial of nintedanib added to first-line gem-

citabine/cisplatin and a phase II trial of ponatinib for previously treated

advanced disease, with the latter requiring not only squamous disease but also

a confirmed FGFR kinase amplification or mutation. There are several ongoing

clinical trials of multitargeted agents in general NSCLC populations, including

but not limited to patients with squamous disease. Other FGF/FGFR-targeted

agents are in earlier clinical development. While results are awaited from these

clinical investigations in squamous NSCLC and other disease settings, addi-

tional research is needed to elucidate the role of FGF/FGFR signaling in the

biology of NSCLC of different histologies.

Introduction

Histologic determination in advanced non-small cell lung

cancer (NSCLC) has only recently become a fundamental

consideration in guiding treatment decisions [1]. The

most common histologic subtypes of NSCLC, which

accounts for an estimated 85% of lung cancers, are ade-

nocarcinoma (~30–50% of cases), squamous cell carci-

noma (~30% of cases), and large cell carcinomas (~10%
of cases) [2]. Historically, squamous cell carcinomas had

been the predominant subtype but were supplanted by

adenocarcinomas, likely reflecting changes related to the

composition of cigarettes [2].

NSCLC-directed targeted therapies introduced into

clinical practice over the past decade are mainly applica-

ble to the treatment of patients with adenocarcinomas.

These include the epidermal growth factor receptor

(EGFR) tyrosine kinase inhibitors (TKIs) gefitinib

(Iressa�, AstraZeneca; Wilmington, DE) [3] and erlotinib

(Tarceva�, Genentech; South San Francisco, CA) [4] and

the anaplastic lymphoma kinase (ALK) inhibitor crizoti-

nib (Xalkori�, Pfizer; New London, CT) [5]. Underlying

aberrations conferring response to these agents (i.e.,

EGFR mutations and ALK gene rearrangements, the

presence of which are to be confirmed by molecular analy-

sis) are predominantly seen in adenocarcinomas [1, 6].
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Additionally, the anti-vascular endothelial growth factor

(VEGF) monoclonal antibody bevacizumab (Avastin�,

Genentech; South San Francisco, CA) [7] is approved

specifically for nonsquamous NSCLC because of height-

ened bleeding-related safety issues among patients with

squamous tumors [8, 9], an observation that has

extended to some small molecule inhibitors, including

sorafenib (Nexavar�, Bayer; Leverkusen, Germany) [10],

sunitinib (SU11248, Sutent�, Pfizer; New London, CT)

[11], and motesanib (Amgen; Thousand Oaks, CA) [12].

With the lack of applicability of the newest agents for

treating NSCLC, squamous NSCLC poses unique chal-

lenges in the clinic and is being recognized as a subset

with particularly high need for new therapies. Among

tumors classified as squamous NSCLC, heterogeneity in

angiogenic and proliferative behavior has been described

[13]. To date, identifying serum tumor markers and

growth factors with prognostic relevance specifically in

squamous NSCLC has proved to be an elusive goal [14].

However, there is accumulating evidence that points

toward a role for inhibiting the angiogenic fibroblast

growth factor (FGF)/FGF receptor (FGFR) signaling path-

way in squamous NSCLC [15–17]. Following an overview

of the FGF/FGFR signaling pathway, this article discusses

key observations regarding its role in the development

and progression of NSCLC and opportunities for its ther-

apeutic inhibition in NSCLC, particularly for squamous

cell disease.

Overview of FGF and FGFRs

Biology and hallmarks

FGFs belong to a family of highly conserved polypeptide

growth factors [18, 19]. Most of the FGFs have a similar

internal core structure, consisting of six identical amino

acid residues and 28 highly conserved residues, with 10

of the latter interacting with the FGFRs [19]. Each of the

four FGF tyrosine kinase receptors (FGFR1, FGFR2,

FGFR3, and FGFR4) contains an extracellular component

of three immunoglobulin-like domains (Ig-like I–III), a

transmembrane domain, and an intracellular tyrosine

kinase domain responsible for signal transmission to the

cellular interior [18, 19]. Alternative splicing in Ig-like III

of FGFR1 through three results in isoforms with varying

degrees of binding specificity; FGFR IIIb and IIIc iso-

forms are mainly epithelial and mesenchymal, respectively

[18, 19]. When FGFs bind to the FGFRs, dimerization

results from a complex of two FGFs, two FGFRs, and

two heparin sulfate chains (Fig. 1) and ultimately leads

to FGFR activation, with the adaptor protein FGFR sub-

strate two serving to recruit the Ras/mitogen-activated

protein kinase (MAPK) and phosphoinositide-3 kinase

(PI3K)/protein kinase B (Akt) pathways [18].

Genetics of FGFRs

A total of 22 FGF genes have been identified in humans,

of which the chromosomal locations have been estab-

lished with one exception (FGF16) [19]. Clustering within

the genome (e.g., FGF3, FGF4, and FGF19, all on chro-

mosome 11q13, and both FGF6 and FGF23 on chromo-

some 12p13) illustrates formation of the FGF family via

gene and chromosomal duplication and translocation

[19]. FGFR mutations have been associated with develop-

mental disorders and identified across a number of malig-

nancies, including lung cancer (Table 1) [18]. In addition

to somatic FGFR1 and FGFR2 mutations (Table 1),

FGFR4 mutations have been observed in lung adenocarci-

noma with a potential contributing role to carcinogenesis

[20, 21]. In a Japanese study of FGFR4 mutations and

polymorphisms in surgically resected NSCLC, there were

no FGFR4 mutations in the analyzed samples per direct

sequencing [22]. However, when applying a genotyping

assay, homozygous or heterozygous FGFR4 Arg388 allele

was present in 61.8% of patients.

Biologic effects of FGF signaling in normal
physiology

FGF/FGFR signaling plays a role in stimulating cell prolif-

eration and migration and promoting survival of various

types of cells [18]. Overall, FGFs are key contributors to

not only angiogenesis but also organogenesis, including

the formation of the heart, lungs, limbs, nervous system,

and mammary and prostate glands [18].

Role of the FGF Signaling Pathway in
NSCLC

Serum basic FGF (bFGF) levels have been shown to be

increased in the NSCLC population (including both squa-

mous cell and adenocarcinoma histologies) relative to

healthy controls [23, 24]. In the past decade, research to

elucidate the role of the FGF signaling pathway in NSCLC

proliferation and differentiation has intensified. In one

preclinical study performed with this research question in

mind, Kuhn and colleagues found that intracellular levels

and mRNA expression of bFGF correlated with the prolif-

eration rate of all three NSCLC cell lines evaluated and

that intracellular bFGF appears to function as an intrinsic

growth factor in the setting of NSCLC [25].

There is a substantial and growing body of literature to

support that the FGF signaling pathway interacts with
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and influences other signaling pathways involved in the

development and progression of NSCLC. For example,

the VEGF and FGF/FGFR pathways have been shown to

act synergistically in promoting tumor angiogenesis [26],

while an upregulation of bFGF was recently proposed as

one of the mechanisms by which the janus kinase 2/signal

transducer and activator of transcription 3 (JAK2/STAT3)

pathway mediates tumor angiogenesis in NSCLC [27].

One in vitro series involving a newly developed squamous

NSCLC line (SCC-35), in which there was a highly signif-

icant correlation between the overexpression of FGF3 and

EGFR, supports that co-overexpression of both growth

factors may be implicated in the pathogenesis of lung car-

cinoma [28]. Furthermore, cancer-associated fibroblasts

and the FGF/FGFR signaling pathway have been impli-

cated in the development of intrinsic and acquired resis-

tance to EGFR TKIs in patients with NSCLC [29–32].
Interestingly, there appear to be some FGF/FGFR sig-

naling pathway-related distinctions between NSCLC cases

of squamous cell versus adenocarcinoma histology [15–
17, 33, 34]. Recently, researchers from the Dana–Farber
Cancer Institute (DFCI) and the Broad Institute

described a high prevalence of FGFR1 amplification spe-

cifically in squamous NSCLC, with amplification of a

Figure 1. FGFR structure and function. FGFRs are single-pass transmembrane receptor tyrosine kinases consisting of an extracellular Ig-like

domain and an intracellular split tyrosine domain. Upon ligand binding, FGFRs dimerize, resulting in transphosphorylation and activation of

downstream signaling cascades. After activation, the receptor complex is internalized by endocytosis and degraded by lysosomes. Reproduced

with permission from Wesche and colleagues 2011 [18], Biochem J, 437:199-213 © the Biochemical Society. FGFR, fibroblast growth factor

receptor; FGF, fibroblast growth factor; HSPG, heparan sulfate proteoglycan.
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region of chromosome segment 8p11-12 (which includes

the FGFR1 gene) in 21% of squamous tumors versus 3%

of adenocarcinomas (P < 0.001) [15]. Similarly, a previ-

ously published German study had identified frequent

and focal FGFR1 amplification in squamous NSCLC but

not other histologic subtypes of lung cancer [16], while

Japanese researchers have since reported a significantly

higher rate of increased FGFR1 copy number in surgi-

cally resected squamous versus nonsquamous NSCLC

(41.5% vs. 14.3%; P = 0.0066) [17]. However, there have

been some reports to the contrary; for example, a recent

German study designed to further elucidate the relevance

of FGFR1 in lung cancer found that the proportion of

samples displaying ≥4 copies of the FGFR1 gene was

numerically but not statistically higher for squamous ver-

sus adenocarcinoma histology (10.5% vs. 4.7%;

P = 0.278) [35].

Accumulating evidence points to a role for FGF signal-

ing in the disease invasion and metastasis characteristic of

NSCLC [36, 37]. In a recent study focused on identifying

angiogenesis-related microRNAs (miRs) altered in

NSCLC, one miR (miR-155) was found to be significantly

Table 1. FGFR aberrations identified in human cancer.1

Cancer Receptor Aberration Estimated prevalence

Association with

other syndromes Molecular consequence

Breast FGFR1 8p11-12 amp ~10% [18] Not known Amplification of FGFR1

Bladder FGFR3 R248C 5–20% [71–80] TDI Enhanced kinase activity

FGFR3 S249C 25–69% [71–82] TDI Enhanced kinase activity

FGFR3 G370/372C 2–9% [71–81] TDI Enhanced kinase activity

FGFR3 S371/373C 1–4% [71–73, 76, 79, 80] TDI Enhanced kinase activity

FGFR3 Y373/375C 9–30% [71–81] TDI Enhanced kinase activity

FGFR3 G380/382R <1–4% [71–73, 80, 82] ACH Enhanced kinase activity

FGFR3 A391/393E <1–1% [71, 73, 75, 81, 82] CS Enhanced kinase activity

FGFR3 K650/652E/Q/M/T <1–6% (E), TDI, TDII, HCH, SADDAN, AN Enhanced kinase activity

<1–2% (Q),

1–3% (M),

<1% (T) [71, 74–77, 79, 81, 82]

Prostate FGFR3 S249C <1–6% [83, 84] TDI Enhanced kinase activity

FGFR3 A391E <1–2% [83, 84] CS Enhanced kinase activity

Endometrial FGFR2 S252W 4–6% [85–87] AS Altered ligand specificity

FGFR2 P253R 3% [85] AS Altered ligand specificity

FGFR2 N549K 3–4% [86, 87] Not known Enhanced kinase activity

FGFR2 K659N 1% [85–87] CR Enhanced kinase activity

Lung FGFR1 8p12 amp 11–20% (SSC) [35, 88, 89] Not known Amplification of FGFR1

FGFR2 W290C 2–3% [85, 90, 91] PS Not known2

Rhabdomyosarcoma FGFR4 N535K 3% [92] Not known Enhanced kinase activity

FGFR4 V550E 3% [92] Not known Enhanced kinase activity

Multiple myeloma FGFR3 t(4:14) trans 15–23% [93–96] Not known Overexpression of FGFR3

FGFR3 R248C 1–2% [93, 97] TDI Enhanced kinase activity

FGFR3 K650/652M <1–5% [93, 98, 99] TDI, SADDAN Enhanced kinase activity

Brain FGFR1 N56K 5% [100] Not known Enhanced kinase activity

FGFR1 K656E NA Not known Enhanced kinase activity

Head and neck FGFR3 R248C 5% [101] TDI Enhanced kinase activity

FGFR3 S249C 1% [102] TDI Enhanced kinase activity

FGFR3 G697C NA Not known Enhanced kinase activity

Melanoma FGFR2 I642V 1% [103] Not known Reduced kinase activity

EMS FGFR1 8p11-12 trans 100% [104] Not known Constitutively active

FGFR1-fusion proteins

FGFR, fibroblast growth factor receptor; amp, amplification; TDI/II, thanatophoric dysplasia I/II; ACH, achondroplasia; CS, Crouzon syndrome;

HCH, hypochondroplasia; SADDAN, severe achondroplasia with developmental delay and acanthosis nigricans; AN, acanthosis nigricans; AS, Apert

syndrome; CR, craniosynostosis; SCC, squamous cell carcinoma; PS, Pfeiffer syndrome; trans, translocation; NA, not available; EMS, 8p11 myelo-

proliferative disorder. The table, except for the column “Estimated prevalence” was reproduced with permission from Wesche and colleagues

2011 [18], Biochem J, 437:199-213 © the Biochemical Society.
1Includes only the aberrations identified in human tumor samples.
2FGFR2 W290G forms ligand-independent dimers.
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correlated with FGF2 in the overall cohort (r = 0.17;

P = 0.002), but even more strongly in the subset with

nodal disease (r = 0.34; P < 0.001) [36].

FGFs/FGFRs have been identified as potential predic-

tive and prognostic markers in NSCLC. In a number of

studies, pretreatment bFGF levels have been correlated

with prognosis in the NSCLC population [38–43]. In

addition, recent evidence supports FGFR1 amplification

as an independent negative prognostic factor (while

exhibiting a dose-dependent association with cigarette

smoking) in patients with squamous NSCLC [44]. A ser-

ies of studies by Brattstr€om and colleagues yielded mixed

findings, with elevated serum bFGF levels reported as a

favorable prognostic factor in an early series [45], but as

a negative prognostic factor in subsequent reports [38,

39]. One of the studies was based on samples from 58

patients with surgically resected NSCLC, in whom a

number of variables (including bFGF, as well as tumor

volume, platelet counts, and serum VEGF levels) were

significant prognostic factors on univariate analysis,

whereas significance was retained only for bFGF on mul-

tivariate analysis [38]. There was a significant correlation

between bFGF and disease recurrence (r = 0.34;

P = 0.01), with rates of 78% and 40% for patients with

elevated and normal bFGF levels, respectively. Addition-

ally, this study found a significant correlation between

bFGF levels and VEGF levels (r = 0.44; P < 0.001) and

that the combination of growth factors was a significant

prognostic factor on univariate but not multivariate

analysis, although conclusions were confounded by the

presence of elevated levels of both bFGF and VEGF in

only six patients. In a Japanese retrospective analysis of

predictors of long-term survival among 71 patients with

surgically resected NSCLC of adenocarcinoma or squa-

mous histology, mean bFGF levels were significantly

higher in cases of metastatic nodal involvement and high

levels were most strongly correlated with poor prognosis

in patients also exhibiting high VEGF levels (P < 0.0001)

[42]. Per multivariate analysis, bFGF and VEGF levels

were each independent prognostic factors regardless of

histology. Adding complexity to the topic of FGF as a

prognostic factor in NSCLC, the implications of

increased FGF expression have been shown to differ

based on its presence in tumor cells (negative prognostic

marker) versus stroma (favorable prognostic marker) [46,

47], with stromal expression postulated to inhibit NSCLC

progression [48]. From a predictive biomarker stand-

point, data on the contribution of baseline FGF levels on

response to treatment for NSCLC have been mixed, with

some but not all studies supporting a potential role for

FGF to predict for treatment outcomes in various

settings (including but not limited to antiangiogenic regi-

mens) [49–52].

Therapeutic Inhibition of FGF/FGFR
Signaling

Preclinical observations in NSCLC

A number of preclinical observations collectively suggest

that FGF/FGFR signaling may be exploited as a therapeu-

tic target in the NSCLC population. In the aforementioned

DFCI study, in which 21% of squamous tumors exhibited

FGFR1 amplification, cell growth inhibition of an NSCLC

line with focal FGFR1 amplification was demonstrated via

FGFR1-specific small hairpin ribonucleic acids (shRNAs)

or small molecule inhibitors [15]. Earlier preclinical series

had supported inhibitory activity against NSCLC for a

number of different anti-FGF/FGFR therapies, including a

bFGF-neutralizing monoclonal antibody, antisense oligo-

nucleotides, or bFGF antisense cDNA-expressing vector in

one study [25] and a dominant-negative FGFR1 IIIc-green

fluorescent protein fusion protein or small molecule

inhibitors in another study [53]. Additional preclinical

data have described the antiangiogenic and antitumor

activities of individual multitargeted small molecule inhib-

itors—specifically those for which the targets include FGF/

FGFRs—against NSCLC; these include cediranib (Recen-

tinTM, AstraZeneca; Wilmington, DE) [54], nintedanib

(BIBF 1120, Boehringer Ingelheim; Ingelheim, Germany)

[55], pazopanib (VotrientTM, GlaxoSmithKline; London,

UK) [56], ponatinib (Iclusig�, ARIAD Pharmaceuticals,

Inc, Cambridge, MA) [57], and a number of other investi-

gational agents [16, 58–61]. Of note, inhibiting bFGF has

been shown to increase the secretion of VEGF in NSCLC

lines, supporting a therapeutic role for bFGF inhibition as

a component of a multitargeted approach that also

includes VEGF inhibition [62].

Clinical trials of FGF-targeting agents in
NSCLC

Ongoing clinical trials of FGFR-inhibiting multitargeted

tyrosine kinases in advanced squamous NSCLC or

advanced NSCLC in general, including but not limited to

squamous histology, are summarized in Table 2. Two

multitargeted agents are being evaluated in a squamous-

exclusive NSCLC population: (1) nintedanib, an inhibitor

of VEGFR1 through 3, FGFR1 through 4, platelet-derived

growth factor receptor (PDGFR) a and b, fms-related

tyrosine kinase 3 (FLT-3), and members of the src family

[55] and (2) ponatinib, a breakpoint cluster (BCR)–c-abl
oncogene 1, nonreceptor tyrosine kinase (ABL) inhibitor

(approved in December 2012 for treating two types of

leukemia) that has also been shown to inhibit the four

FGFRs, fueling research to determine its therapeutic

potential as an FGFR inhibitor [57]. In an ongoing
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placebo-controlled phase I/II study, nintedanib is being

added to gemcitabine/cisplatin as first-line treatment of

advanced or recurrent NSCLC specifically of squamous

histology (NCT01346540). An estimated 165 patients will

be enrolled, with primary outcomes of adverse events and

dose-limiting toxicities in phase I and progression-free

survival in phase II. In a completed, open-label, phase I

trial (N = 26, including three with squamous histology)

of first-line nintedanib in combination with carboplatin/

paclitaxel in advanced NSCLC, among seven patients with

a confirmed partial response, two had squamous histology

and one had mixed large cell/squamous histology [63].

The most commonly reported adverse events (occurring

in ≥10% of patients) related to nintedanib were diarrhea

(53.8%), fatigue (50.0%), and nausea (46.2%). For po-

natinib, a phase II trial is underway in patients with

advanced squamous NSCLC that had progressed after the

most recent treatment regimen, also requiring that

patients have confirmed FGFR kinase amplification or

mutation per genotyping (NCT01761747). This trial has a

target accrual of 40 patients and a primary endpoint of

response. Orantinib (formerly TSU-68 and SU6688; Taiho

Pharmaceutical Co. Ltd, Tokyo, Japan), an oral TKI that

targets VEGFR2, PDGFRb, and FGFR1, was evaluated in a

phase I trial (N = 37, including five patients with squa-

mous NSCLC) in combination with carboplatin/paclitaxel

as first-line therapy for advanced NSCLC, with 13 partial

responses observed among 33 evaluable patients [64]. It

was not specified as to whether any of these responses

were in the squamous participants, and there are no

known active clinical trials of this agent in advanced

NSCLC as of this writing.

As shown in Table 2, two phase III trials have been initi-

ated in NSCLC populations without exclusion of squamous

cell histology, one of nintedanib plus docetaxel as second-

line therapy in advanced or recurrent NSCLC (LUME-

Lung 1 [NCT00805194]) and the other of cediranib in

combination with first-line paclitaxel/carboplatin for

advanced NSCLC (CAN-NCIC-BR29 [NCT00795340]).

Results of LUME-Lung 1 show improvement in the pri-

mary outcome of progression-free survival with ninteda-

nib/docetaxel versus placebo/docetaxel in the entire study

population (median, 3.4 vs. 2.7 months; P = 0.0019) as

well as in the histologic subsets with squamous disease

(P = 0.02) or adenocarcinoma (P = 0.02) [65]. Significant

improvement in overall survival (OS) was also observed in

the nintedanib group among patients with adenocarcinoma

histology (median, 12.6 vs. 10.3 months with placebo plus

docetaxel; P = 0.0359). Cediranib primarily targets

VEGFR2 but has demonstrated some inhibitory activity

against FGF-induced proliferation, albeit 275-fold less

selective than its inhibition of VEGF-induced proliferation

[54]. A prior phase II trial (CAN-NCIC-BR24) found that

cediranib (using a higher dose than in the phase III CAN-

NCIC-BR29 trial above) plus paclitaxel/carboplatin was

not tolerable. However, compared with other histologies,

the squamous participants did not have an increased risk

of severe pulmonary hemorrhage or adverse efficacy

Table 2. Ongoing trials1 of multitargeted antiangiogenic tyrosine kinase inhibitors in squamous NSCLC.

Agent Phase Regimen Trial identifier

General NSCLC (including squamous)2

Cediranib III Cediranib + first-line paclitaxel/carboplatin for

advanced or metastatic NSCLC

NCT00795340

Nintedanib (BIBF 1120) III Nintedanib + second-line docetaxel for locally advanced

and/or metastatic, or recurrent NSCLC

NCT00805194

Pazopanib II/III Pazopanib as maintenance therapy after first-line

chemotherapy for advanced NSCLC

NCT01208064

II Pazopanib as second-line therapy after progression on

bevacizumab-containing first-line therapy

NCT01262820

II Pazopanib + erlotinib as second- or third-line therapy for advanced NSCLC NCT01027598

II Pazopanib + paclitaxel as first-line therapy for advanced NSCLC NCT01179269

I Pazopanib + vinorelbine in metastatic NSCLC or breast cancer NCT01060514

Dovitinib II Dovitinib after recent anti-VEGF therapy for advanced

NSCLC or advanced colorectal cancer

NCT01676714

Squamous-exclusive NSCLC

Ponatinib II/III Ponatinib for progressive squamous NSCLC or head and neck cancers

with FGFR kinase alterations

NCT01761747

Nintedanib (BIBF 1120) I/II Nintedanib + first-line gemcitabine/cisplatin for advanced

or recurrent squamous NSCLC

NCT01346540

NSCLC, non-small cell lung cancer; VEGF, vascular endothelial growth factor; FGFR, fibroblast growth factor receptor.
1Includes trials indexed on ClinicalTrials.gov with a status of recruiting, not yet recruiting, or active, not recruiting, as of September 2013.
2Phase I and II trials are included only for agents that have not reached phase III development for advanced NSCLC.
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outcomes, which included the primary endpoint of pro-

gression-free survival [66]. Regarding new-onset cavitation,

10 of 40 cases among cediranib recipients and seven of 23

cases among placebo recipients were in patients with squa-

mous tumors.

The EGFR-directed monoclonal antibody cetuximab

(ERBITUX�, ImClone; New York, NY) [67] is another tar-

geted therapy that is currently under clinical evaluation

for squamous NSCLC. A phase II trial investigated first-

line cetuximab in combination with platinum-based

chemotherapy in advanced or recurrent NSCLC (eLung

[NCT00828841]; squamous or nonsquamous disease), with

OS as the primary endpoint. Presented results showed that

median OS with cetuximab-containing chemotherapy was

significantly longer in patients with nonsquamous versus

squamous disease (9.9 vs. 8.7 months; P = 0.0082) [68]. A

phase III study is currently recruiting patients with

advanced NSCLC of any histology (including squamous) to

receive carboplatin/paclitaxel with or without bevacizumab

and/or cetuximab (NCT00946712).

Finally, there are ongoing clinical investigations of

other FGF/FGFR-targeted agents in advanced malignan-

cies, although not specific to NSCLC or squamous

NSCLC. The pan-FGFR inhibitors AZD4547 (AstraZene-

ca; Wilmington, DE; NCT01213160) and BGJ398 (Novar-

tis; Cambridge, MA; NCT01004224; NCT01697605) are

being evaluated in a phase I trial for advanced solid

tumors; for BGJ398, eligibility criteria include confirmed

FGFR-related alterations. A nonrandomized phase II trial

of AZD4547 monotherapy is enrolling previously treated

patients with FGFR1-amplified advanced squamous

NSCLC (or FGFR1-amplified advanced breast cancer or

FGFR2-amplified advanced esophagogastric cancer), with

serial biopsies being performed to assess molecular effects

(NCT01795768) [69]. Results are awaited from a phase I

trial of the FGF ligand trap FP-1039 (FivePrime Thera-

peutics; South San Francisco, CA) in unresectable locally

advanced or metastatic solid tumors (NCT00687505).

Future directions include studies to assess anti-FGF/

FGFR agents in resectable disease (e.g., in combination

with chemotherapy and/or radiation in the adjuvant set-

ting), or even as a chemoprevention strategy [70]. Clinical

trials to date have only investigated the efficacy of anti-

FGF/FGFR agents in advanced NSCLC. Given the potential

role of the FGF/FGFR signaling pathway in the pathogene-

sis of NSCLC, inhibition of this pathway in the adjuvant

setting could provide benefit, especially for patients with

squamous disease.

Conclusions

While there have been several molecularly targeted agents

developed for the treatment of nonsquamous NSCLC,

there appears to be a unique opportunity to develop anti-

FGF/FGFR-based regimens for the treatment of NSCLC

of squamous histology. Recent research findings support-

ing a propensity for squamous NSCLC to exhibit

increased FGFR1 gene amplification strengthen the ratio-

nale for this novel approach. Multitargeted small mole-

cule inhibitors that inhibit FGFR along with other

angiogenic pathways/receptors are the most advanced in

clinical development, although none have yet to reach

phase III evaluation in squamous-exclusive NSCLC study

populations. Further research efforts are needed to more

fully characterize the manner by and degree to which FGF

signaling influences the underlying biology of specific

NSCLC histologies.
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