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Abstract: Increasing evidence suggests the utility of magnetic resonance imaging (MRI) as an
important technique for the diagnosis of Alzheimer’s disease (AD) and for predicting the onset of this
neurodegenerative disorder. In this study, we present a sophisticated machine learning (ML) model
of great accuracy to diagnose the early stages of AD. A total of 373 MRI tests belonging to 150 subjects
(age ≥ 60) were examined and analyzed in parallel with fourteen distinct features related to standard
AD diagnosis. Four ML models, such as naive Bayes (NB), artificial neural networks (ANN), K-nearest
neighbor (KNN), and support-vector machines (SVM), and the receiver operating characteristic (ROC)
curve metric were used to validate the model performance. Each model evaluation was done in three
independent experiments. In the first experiment, a manual feature selection was used for model
training, and ANN generated the highest accuracy in terms of ROC (0.812). In the second experiment,
automatic feature selection was conducted by wrapping methods, and the NB achieved the highest
ROC of 0.942. The last experiment consisted of an ensemble or hybrid modeling developed to combine
the four models. This approach resulted in an improved accuracy ROC of 0.991. We conclude that the
involvement of ensemble modeling, coupled with selective features, can predict with better accuracy
the development of AD at an early stage.
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1. Introduction

Adult-onset dementia disorders are among the prevalent global medical issues in industrialized
countries that have a high impact on individuals’ lifestyles. These disorders represent a great challenge
for the community over their advancement from early diagnosis to end of life [1]. Statistical studies
have estimated that every three seconds, a new dementia case is developing in the world. This means
that approximately 50 million patients are suffering from this disease worldwide [1,2]. These numbers
might double every twenty years and possibly reach 100 million patients by 2040.

Dementia is a syndrome that develops largely in older adults. It affects brain functionality,
daily activities, and communication efficiency [1,3]. Alzheimer’s disease (AD) represents the prevalent
form of adult-onset dementias. Some studies have highlighted that the early diagnosis of dementia
is useful for starting treatments and for predicting outcomes of the disease but did not offer reliable
methods for the early diagnosis of AD [4–6]. At the same time, some forms of mild cognitive impairment
(MCI) do not evolve into overt dementia, whereas other forms of MCI represent a very mild form of
AD [7]. In view of this, advanced computer techniques may represent a tool for the early diagnosis of
AD and for predicting the evolution of prodromal forms of the disease or MCI into dementia.
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Magnetic resonance imaging (MRI) techniques are becoming a relevant tool for prodromal AD
and MCI evaluation [8]. A few studies based on the comparative analysis of cognitive testing and
neuroimaging have hypothesized that AD neuroimaging may be enough to predict disease [8–10].
On the other hand, dementia forecasting with machine learning (ML) is becoming a more diffused
approach in clinical practice [11]. In spite of the practical interest to quantify AD evolutions based on
MRI data, only a few studies have calculated AD incidence rates based on MRI.

Neuroimaging and primarily MRI provide essential information for AD dementia classification
and prediction [12–14]. ML models, coupled with MRI information, can provide high diagnostic
accuracy of age-related cognitive decline (ARCD) in dementia subjects [15]. It has been hypothesized
that ML-supervised methods generate the knowledge of features necessary to correlate AD sample
data [16]. It is also reported that logistic regression, coupled with cross-validation, can enhance the
accuracy of AD prediction by speech amalgamation [17]. On the other hand, support vectors, along with
feature reduction techniques, were able to classify dementia subjects with 70% accuracy [4].

The present study was designed to detect AD based on MRI findings along with the use of four ML
models, such as naive Bayes, neural networks, k-nearest neighbor, and support vectors. Each model
was validated separately by tenfold cross validation (CV). The receiver operating characteristic (ROC)
curve value was used to evaluate the model accuracy. Three individual experiments were designed
to test the model, and model performance was separately evaluated with given MRI characteristic
information. The experiments that were done included

1. Models with manual selection of MRI features,
2. Models with automatic feature selection, and
3. A single model with ensemble learning or hybrid modeling.

The subsequent part of this paper is organized as follows. In Section 2, subject information of MRI
features, feature selection techniques, and adopted models of AD prediction are analyzed. In Section 3,
the experimental results of the four models are presented. In Section 4, each model is discussed and
compared by accuracy and ROC parameters. Finally, Section 5 summarizes the main results of the
present work.

2. Materials and Methods

2.1. Subjects

A longitudinal collection of 150 subjects and 373 MRI sessions was considered for this study.
Each subject had undergone full screening of complete clinical assessment conducted at the Alzheimer’s
Disease Research Center (ADRC) of Washington University. All subjects included, both men and
women, were right-handed with a minimum age of 60 years and a maximum age of 96 years [18].
The subjects included 72 nondemented (ND) individuals and 64 demented (D) individuals (including
51 with mild to moderate AD). The remaining 14 subjects were identified as nondemented at the initial
visit but resulted as demented when examined in subsequent visits. These subjects were defined as
belonging to the converted (C) type.

Subjects undergoing age-related normal brain changes, such as leukoaraiosis, mild atrophy,
and regular dementia cases of AD, were included in this study. All MRI sessions were done in one
year. These sessions were followed by clinical tests made on 0–352 days (mean—111 days) after
MRI. Twelve confirmed demented subjects were scanned with a delay ranging from 374 to 924 days
(mean—653 days) and were included in this study as they had a clinical dementia rating (CDR) higher
than zero in previous clinical assessments. Two nondemented subjects, with a scan delay range of 392
to 431 days, were also included because they did not display dementia symptoms in successive clinical
evaluations. With this approach, each subject had at least two individual scan sessions with a mean
delay of 719 days (range: 183–1707 days) between each visit. The demographic characteristics of the
subjects are presented in Table 1. Diagnostic characteristics of subjects of different age groups on the
initial clinical visit are detailed in Table 2.
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Table 1. Demographic characteristics of the subjects investigated.

Subjects 78 D 72 ND
Male 40 D 22 ND

Female 38 D 50 ND
Age range (years) 60–96

Median 77.0
Mean ± SD 77.01 ± 7.3

D: demented; ND: nondemented; SD: standard deviation.

Table 2. Age and characteristics of the individuals investigated on the first clinical visit [18].

Non-Demented Demented

Age Group N n Mean Male Female Convert n Mean Male Female CDR 0.5/1

60s 34 23 65.71 6 17 3 11 65.67 8 3 8/3
70s 71 35 74.91 11 24 4 36 73.97 20 16 29/7
80s 41 26 84.30 9 17 7 15 82.33 7 8 13/2
90s 4 2 92.50 0 2 0 2 93.00 1 1 1/1
Total 150 86 75.82 26 59 14 64 74.95 36 29 52/13

CDR: clinical dementia rating.

2.2. MRI Acquisition Methods

Three or four separate T1-weighted MRI scans were acquired with a 1.5T Siemens Vision MRI
scanner for each single subject. A high-resolution Magnetization Prepared Rapid Acquired Gradient
Echo (MP-RAGE) was used to handle the classification of subject scans. For each subject, separate
scan files were generated using Siemens proprietary IMA to 16-bit NiFTI1 format by employing
the traditional conversion program. The MR images were corrected for interscan head rotation and
wrapped spatially into atlas space. The transformation outcome placed the brains in a correlated
coordinate system, with the bounding box as the actual atlas. With this procedure, every image
was turned out as a unique, high contrast, averaged MP-RAGE image in an atlas-space. The insight
explanation on image acquisition and postprocessing steps are detailed in [18].

The estimated total intracranial volume (eTIV) was defined manually across intracranial volume
on an atlas. Normalized whole-brain volume (nWBV) was computed with the FAST program of the
FSL software suite. Image segmentation was done to classify brain tissue as spinal fluid or white or
gray matter. This segmentation process was iteratively assigned as voxels to tissue classes based on
high probability estimates of hidden Markov random field models. In the end, nWBV was calculated
as the proportion of accumulated voxels across the brain mask, and the normalized volume was
expressed in a percentage of total gray and white matter voxels of eTIV [18]. The atrophy rates were
estimated as the slope of the line that connects to nWBV. Details of the MRI acquisition characteristics
are summarized in Table 3.

Table 3. Magnetic resonance imaging (MRI) acquisition details [17].

MR Characteristics Values

Sequence MP-Rage
TR (repetition time) 9.7 msec

TE (echo time) 4.0 msec
Flip angle 10◦

TI 20 msec
TD 200 msec

Orientation Sagittal
Thickness 1.25 mm

Gap 0 mm
Slice number 128

Resolution 256 × 256 (1 × 1 mm)

MP-RAGE: Magnetization Prepared Rapid Acquired Gradient Echo; TI: Inversion time; TD: Dead time.
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2.3. Feature Description

The dataset included 373 pieces of MRI information with 15 independent characteristics (attributes).
The description of each feature is detailed in Table 4. The subject attribute “Group” specifies the
dementia status (Demented/Nondemented) and is considered as an outcome of a binary classifier.
In this study, scoring rules of Clinical Dementia Rating (CDR), Mini-Mental State Evaluation (MMSE),
and Visit were used to determine the dementia status (Table 5). All subjects underwent similar
procedures and received the same tests, including MMSE.

Table 4. Dataset feature description.

Features Description

Subject ID Subject identification number
MRI ID Image identification number of an individual subject

Visit Number of subject visits
Gender Male/Female
Hand Right/Left handed
EDUC Subject education level (in years)

SES Socioeconomic status
MMSE Mini-mental state examination score
CDR Clinical dementia rating score
eTIV Estimated total intracranial volume result

nWBV Normalized whole brain volume result
ASF Atlas scaling factor
Age Subject age while scanning

Group Demented/Nondemented/Converted
MR delay Magnetic resonance (MR) delay is the delay time that is prior to the image procurement

Table 5. Scoring rules.

Features Range Condition

CDR 0–3 None—0, Very mild—0.5, Mild—1, Moderate—2, Extreme—3

MMSE 1–30

Extreme impairment (<10)
Moderate dementia (10–19)

Early-stage Alzheimer’s aliment (19–24)
Normal (>25)

Visit 0 or 1 Low status—0High status—1

2.4. Feature Selection

In this step, the machine performed an autonomous selection of input features that correlates to
the subject group [19]. Selection techniques are largely used and standardized to reduce unnecessary
features and to enhance model accuracy [20]. Moreover, this approach measures the relationship
between independent variables and the target outcome. Feature selection can be conducted by three
approaches, namely, filtering, regularization, and wrapping [20,21]. In this study, the wrapping
technique was used because it amplifies model performance with limited features.

2.5. Feature Importance

This method results in a “feature score” assigned to independent characteristics and a defined
score to each characteristic that is highly correlated with the subject “group”. The correlation between
each characteristic-associated group variable is shown in Figure 1. The CDR rating was excluded during
model development because it did not have the highest relevance, but it helps in subject groupings.
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2.6. Feature Selection with Wrapping

In the wrapping method, feature search represents a big challenge in calculating model
accuracy [22]. Feature selection can be made as either step backward or forward, and exhaustive.
Feature search helps the identification of primary features in the enhancement of model performance.
The MRI characteristics with a correlation of at least 0.5 can automatically help to develop a model.
Figure 2 shows the scatter plot of feature results following the wrapping method.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 6 of 15 
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2.7. Model Classifiers

The purpose of the present study is to develop a sophisticated ML model of dementia detection in
aged subjects based on MRI findings. It is unanimously recognized that advanced age is the greatest
risk factor for AD [23]. In this work, four popular ML models such as neural networks (NN) [24],
k-nearest neighbor (KNN) [25], naive Bayes (NB) [26], and support vector machines (SVM) [27] were
used. These models were selected because of the easy implementation and production of high accuracy
during model development. A short description of each model is provided below.

Neural networks are able to learn from independent features to predict target outcomes. They allow
the design of an artificial neural network (ANN) to admit machines with the integration of new data [28].
ANN is largely associated with clustering (combining the unlabeled data of similar features) and
classification (trained data grouping) procedures. One of the conventional and popular neural networks
is the multilayer perception (MLP) type, which includes one or more neuron layers [29]. These neuron
layers largely intervene to develop predictive models for forecasting clinical diagnoses [30].

KNN is a comprehensive model used to perform both regression and classification problems [25].
It is also called a “lazy” learner because instead of the model development approach, it calculates the
nearest neighbors during prediction. When KNN initiates predictive analysis, it searches for nearest
neighbors (i.e., K) in the trained dataset. The neighboring distance is then calculated with the Euclidean
function, which defines the similarity between two points [31].

NB is a probabilistic model that predicts output based on Bayes’ principle. It calculates the outcome
value of individual groups, which is not associated with other variables [26]. Due to its simplicity
during target prediction, it has become popular in classification and multiclass predictions [32].

SVM is another algorithm developed for subject classification. In SVM plotting, dataset features
are described in n-dimensional space (here, “n” is feature count), and classification is done to decide
the optimal hyperplane [27]. In more detail, SVM produces an optimal hyperplane with the trained
label data that classifies new feature examples. This hyperplane is a line of binary classification
and tuning parameters, such as “kernel”, “gamma”, and “C”, that can help to improve SVM model
performance [33,34].

2.8. Performance Measures

After model development, it is important to evaluate individual model performance. This is
calculated through the prediction of the trained model of a test dataset. Different parameters like
accuracy (Acc), sensitivity (Se), specificity (Sp), and receiver operating characteristic (ROC) curve define
model performance. To calculate each parameter, the confusion matrix (CM) was used to identify
misclassifications in tabular form (Table 6). A subject is true-positive when it is diagnosed as demented
(X = D), and a subject is true-negative when it diagnosed as “nondemented” (Y = ND).

Table 6. Simple confusion matrix (CM).

Prediction X Y

X = D TP FN
Y = ND FP TN

D: demented; ND: nondemented; TP: true-positive; TN: true-negative; FP: false-positive; FN: false-negative.

The performance measures evaluated by CM are given below:

• Accuracy: Percentage of total true predicted outcomes from total outcomes, i.e., Accuracy (%) =

( TP+TN
TP+TN+FP+FN ∗ 100).

• Sensitivity: It measures the proportion of true-positives, i.e., Sensitivity (%) =
(

TP
TP+FN ∗ 100

)
.

• Specificity: It measures the proportion of true-negatives, i.e., Specificity (%) = ( TN
TP+FN ∗ 100).
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• ROC: ROC is a performance visualization tool of binary classifiers with the false-positive rate (FPR)
on the X-axis and the true-positive rate (TPR) on the Y-axis. In this study, we mainly highlight the
ROC value to determine model performance because it is frequently used in medical diagnosis.

2.9. Model Validation and Framework

Model validation can be done by either holdout (spilt) or cross-validation (CV) techniques.
During his study, we adopted the CV technique because of its popularity in target prediction, with
low bias. Simultaneously, it also applies a resampling method with limited features during model
validation [35]. In CV, the dataset is distributed into N-folds of equal size. The first fold is used for
validation, and the remaining k-1 folds are kept for training. The model framework used during
simulation is represented in Figure 3.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 7 of 14 

 

• ROC: ROC is a performance visualization tool of binary classifiers with the false-positive rate 
(FPR) on the X-axis and the true-positive rate (TPR) on the Y-axis. In this study, we mainly 
highlight the ROC value to determine model performance because it is frequently used in 
medical diagnosis. 

2.9. Model Validation and Framework  

Model validation can be done by either holdout (spilt) or cross-validation (CV) techniques. 
During this study, we adopted the CV technique because of its popularity in target prediction, with 
low bias. Simultaneously, it also applies a resampling method with limited features during model 
validation [35]. In CV, the dataset is distributed into N-folds of equal size. The first fold is used for 
validation, and the remaining k-1 folds are kept for training. The model framework used during 
simulation is represented in Figure 3.  

 

Figure 3. Model framework for evaluating predictive classifications. 

2.10. Experiments Design 

A large number of MRIs for a low number of subjects could generate bias in dementia detection. 
Therefore, we considered final MRI scans that define the status of each subject. Three experiments 
were conducted, including manual and automatic feature selection techniques. 

In the first experiment, model training was done using the original dataset with manual feature 
selection. In ANN, the number of layers (N) is used as a search parameter during model evaluation. 
In KNN, k is tuned to one (i.e., 1NN). In SVM, the linear kernel coupled to regularization parameter 
“C” and a standard deviation of radial basis function “r” are implemented in model tuning. Finally, 
model validation was done with a 10-fold CV to avoid data fitting issues [36]. The model performance 
was, therefore, assessed by the above parameters.  

In the second experiment, limited features that occurred as the result of wrapping were 
considered for conducting model training. For NB and KNN, an exhaustive search was used to 
calculate model accuracy with potential feature alliance in order to select the best of them [37]. In 
SVM, genetic algorithms (GAs) were used for the feature search. GAs are frequently applied in 

Figure 3. Model framework for evaluating predictive classifications.

2.10. Experiments Design

A large number of MRIs for a low number of subjects could generate bias in dementia detection.
Therefore, we considered final MRI scans that define the status of each subject. Three experiments
were conducted, including manual and automatic feature selection techniques.

In the first experiment, model training was done using the original dataset with manual feature
selection. In ANN, the number of layers (N) is used as a search parameter during model evaluation.
In KNN, k is tuned to one (i.e., 1NN). In SVM, the linear kernel coupled to regularization parameter
“C” and a standard deviation of radial basis function “r” are implemented in model tuning. Finally,
model validation was done with a 10-fold CV to avoid data fitting issues [36]. The model performance
was, therefore, assessed by the above parameters.

In the second experiment, limited features that occurred as the result of wrapping were considered
for conducting model training. For NB and KNN, an exhaustive search was used to calculate model
accuracy with potential feature alliance in order to select the best of them [37]. In SVM, genetic
algorithms (GAs) were used for the feature search. GAs are frequently applied in bioinformatics to
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generated models with high accuracy [38]. For ANN, the feature search was excluded, and the search
consisted of the identification of the hidden neuron layers. Model tuning was adjusted by maintaining
batch size as 100 in NB, (C, gamma) as (1.0, 1.0 × 10−12) in SVM, and k = 1 in KNN. MRI characteristics
that were highly correlated (≥0.5) with subject groups were selected (see Figure 2).

In the third experiment, the four models were combined to develop an ensemble or hybrid
model. By doing this, there is the advantage of getting a high prediction accuracy of the adopted
dataset. Moreover, combining several models can enable noise reduction (bagging), low bias (boosting),
and better predictions (voting). We used a voting technique in this experiment because of the capability
to create standalone models from trained data [39].

3. Results

3.1. Experiment 1: Handling of the Feature Set Prior to Autonomous Feature Selection

Table 7 summarizes the performance outcomes of the four models in manual feature selection.
The CDR rating was excluded as it represents a dementia factor that can affect model accuracy. From the
performance comparison matrix, it can be seen that the 1NN model offers better performance compared
to the other tested models in terms of accuracy, sensitivity, and specificity. As already mentioned,
the ROC curve plays a relevant role in diagnostic assessments to differentiate the true state subjects
and to find optimal cutoff values. Moreover, a higher ROC offers better dementia prediction in given
subjects [40]. In view of this, the ANN model correctly discriminates against the true demented
subjects, with a ROC of 0.812. The ROC of NB, 1NN, and SVM models produced ROCs of 0.753, 0.787,
and 0.796, respectively.

Table 7. Performance comparison matrix (4 × 4) of four classifiers.

Model Accuracy (%) Sensitivity (%) Specificity (%) ROC

NB 88.76 82.43 85.72 0.753
ANN 83.56 89.92 88.84 0.812
1NN 91.32 89.92 89.56 0.787
SVM 89.67 89.24 89.45 0.796

NB: naive Bayes; ANN: artificial neural networks; 1NN: 1-nearest neighbor; SVM: support vector machines;
ROC: Receiver operating charactersitcs.

3.2. Experiment 2: Automatic Feature Selection with Wrapping

Table 8 shows the model performance outcomes obtained with automatic feature selection.
With this approach, progress in terms of accuracy and ROC compared to manual feature selection was
noticeable. SVM resulted in high accuracy (96.12%), and 1NN, NB, and ANN produced an accuracy of
95.92%, 93.44%, and 83.56%, respectively. With regard to ROC, NB was a better diagnosis predictor,
with 0.942, followed by 1NN, SVM, and ANN, with 0.916, 0.834, and 0.817, respectively.

The results of the present experiment, in which performance results were better than those
obtained in the previous one, stimulated the identification of other approaches for maximizing
prediction accuracy. We, therefore, extended our work to explore the outcomes of joint modeling with
limited features.

Table 8. Model performance evaluation after feature selection (with selective features).

Model Accuracy (%) Sensitivity (%) Specificity (%) ROC

NB 93.44 98.21 97.32 0.942
ANN 83.56 89.92 88.84 0.817
1NN 95.92 94.92 97.36 0.916
SVM 96.12 94.94 98.23 0.834
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3.3. Experiment 3: AD Predictions with Hybrid Modeling

To check if a model correctly predicted the target variable (occurrence of dementia), a confusion
matrix was used. In this analysis, vertical labeling presents actual subjects, and horizontal labeling
presents predicted subjects. As shown in Figure 4, 76 subjects were correctly predicted as AD among
78 subjects, and 71 subjects were correctly predicted as non-AD among 72. Collectively, 147 subjects
were properly predicted out of 150 subjects. This results in 98% accuracy. For reaching these conclusions,
a hybrid-modeling technique, combining the four adopted models, was introduced.
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Table 9. Performance statistics of hybrid modeling.

Accuracy (%) Sensitivity (%) Specificity (%) ROC Class

98.6 98.7 98.6 0.992 ND
97.4 97.4 97.4 0.989 D
98.0 98.05 98.0 0.991 Weighted average
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4. Discussion

ML models are highly acknowledged in real-time clinical practice and also in diagnosis and
AD treatment selection [41]. Several MRI works have been integrated into ML models to make AD
predictions [12,17,42], but there has been no comprehensive model to amplify model accuracy. In view
of this, we introduced a hybrid model to enhance the precise detection of AD based on the analysis
of MRIs.

In this paper, the significance of joint ML modeling for AD-onset prediction in elderly people has
been demonstrated. Three different experiments were conducted, including manual and automatic
feature selection techniques. Fourteen independent MRI features were used to identify the AD
group using standard diagnostic approaches. Four supervised predictive models (NB, ANN, KNN,
and SVM) were used, and the obtained results indicate the prediction accuracy of each model,
constantly increasing between experiments. Figure 6 compares the prediction accuracy of the three
experiments. 1NN generated 91.32% accuracy by manual feature selection; SVM had a high 96.12%
accuracy by automatic feature selection, whereas joint or hybrid modeling enabled 98% accuracy in
predicting AD in older adults. The outcomes suggest that joint modeling, with limited features, is a
best practice to assess AD-onset by subject prediction.

In the first experiment, all the designed classifiers revealed enough performance values in terms
of true-positive rates (sensitivity). ANN and 1NN produced the highest sensitivity (89.92%), followed
by SVM (89.24%) and NB (82.43%). As mentioned, ROC curve values between 0.5 and 0.7 indicate
low prediction accuracy, between 0.7 and 0.9 indicate moderate prediction accuracy, and between 0.9
and 1 indicate high prediction accuracy [43]. From Table 7, it is obvious that the four adopted models
produce moderate prediction accuracy when checking with manual feature selection.
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To amplify model performances, the second experiment was conducted with selective features
after wrapping. This resulted in NB of 98.21% sensitivity, followed in descending order by SVM
(94.94%), ANN (94.92%), and 1NN (89.92%). Both NB and 1NN predict subject class in a comparatively
better manner, with ROC of 0.942 and 0.916, respectively. However, we argued that there could be
other possibilities for enhancing prediction accuracy to values higher than those identified in the
above two experiments. To support this claim, a hybrid model was developed by combining the four
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investigated models. A simulation of four recruited models was then performed, and thanks to this
approach, the sensitivity of the model attained the highest predicted value of 97.4%, and its ROC was
nearly equal to one (Figure 7).
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The developed model produced better accuracy than other conventional models, but the present
study has some limitations. First, the limited number of subjects investigated could hamper the final
dementia subject prediction to the overall AD subjects; second, the outcome of the integration of three
experiments may have influenced the results. The use of external MRI information does not guarantee
data quality and can affect the significance of the study as a whole.

Brain studies corroborated with artificial intelligence analysis may offer relatively faster investigation
methods to modern neurological research. However, it would be preferable to avoid data limitations
and, therefore, to enlarge as much as possible the size of the sample investigated in future studies.
At the same time, it is also recommended to apply hybrid modeling to younger subjects or subjects
with mild AD and to anticipate prediction accuracy with other biological tests like cerebrospinal fluid
(CSF) or blood markers.

5. Conclusions

Adult-onset dementia disorders are serious brain pathologies caused by the loss of neuron
functions and to progressive atrophy. AD is the most common of these pathologies. It affects primarily
elderly people and has a tremendous impact on the lives of people suffering from it. In view of the long
time passing between brain lesions bringing about dementia and the onset of clinical symptomatology,
early identification of the preclinical and prodromal forms of the disease represents a challenge for
medicine. This will reduce medical costs and could contribute to undertaking therapeutic approaches
for delaying the conversion of the disease into overt dementia.

Unfortunately, the identification of AD at very early stages is extremely difficult, and there are
no tools for its simple detection. We have developed different ML models to predict dementia in the
elderly based on MRI findings. The hybrid model with selective features was found to enhance the
accuracy of dementia prediction. Experiments with manual feature selection prior to automatic feature
selection with 1NN produced 91.32% of accuracy, and the experiment of automatic feature selection
generated 96.12% accuracy by SVM. This value significantly increased using multi modeling and
produced 98% accuracy. The predictive models developed in this study forecast early AD diagnosis and



J. Clin. Med. 2020, 9, 2146 12 of 14

the associated risk of developing dementia. Although it is difficult to develop longitudinal projection
models in older adults as compared to the younger population, future research in the field should
consider addressing both genetic and nongenetic features of multifactorial hazards.
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