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Simple Summary: Testicular cancer predominantly affects young adult men and is the most common
cancer affecting this demographic. An important prognostic factor for early-stage disease is the
presence of tumours within blood vessels or lymphatic channels, which is termed lymphovascular
invasion. This is identified by careful microscopic examination of the tumour after orchidectomy,
which is frequently challenging and time-consuming. We trained a proof-of-concept deep learning
artificial intelligence algorithm to automatically identify areas suspicious for lymphovascular invasion
in digital whole slide images from testicular tumours. Our study demonstrates that automated
detection of areas suspicious for lymphovascular invasion by artificial intelligence algorithms is
feasible and may prove useful in the context of a decision support tool.

Abstract: Testicular cancer is the most common cancer in men aged from 15 to 34 years. Lympho-
vascular invasion refers to the presence of tumours within endothelial-lined lymphatic or vascular
channels, and has been shown to have prognostic significance in testicular germ cell tumours. In
non-seminomatous tumours, lymphovascular invasion is the most powerful prognostic factor for
stage 1 disease. For the pathologist, searching multiple slides for lymphovascular invasion can be
highly time-consuming. The aim of this retrospective study was to develop and assess an artificial
intelligence algorithm that can identify areas suspicious for lymphovascular invasion in histological
digital whole slide images. Areas of possible lymphovascular invasion were annotated in a total of
184 whole slide images of haematoxylin and eosin (H&E) stained tissue from 19 patients with testicu-
lar germ cell tumours, including a mixture of seminoma and non-seminomatous cases. Following
consensus review by specialist uropathologists, we trained a deep learning classifier for automatic
segmentation of areas suspicious for lymphovascular invasion. The classifier identified 34 areas
within a validation set of 118 whole slide images from 10 patients, each of which was reviewed by
three expert pathologists to form a majority consensus. The precision was 0.68 for areas which were
considered to be appropriate to flag, and 0.56 for areas considered to be definite lymphovascular
invasion. An artificial intelligence tool which highlights areas of possible lymphovascular invasion
to reporting pathologists, who then make a final judgement on its presence or absence, has been
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demonstrated as feasible in this proof-of-concept study. Further development is required before
clinical deployment.

Keywords: testicular cancer; germ cell tumours; lymphovascular invasion; deep learning; artifi-
cial intelligence

1. Introduction

Testicular cancer is the most common cancer in men under 45, with the vast major-
ity being testicular germ cell tumours (TGCT). With modern therapeutic regimes, these
tumours have an extremely high cure rate greater than 90% overall, but challenges still
remain [1]. Current stratification tools are imperfect, resulting in both under and over-
treatment. Some groups of patients do poorly, and 20–30% show resistance to standard
chemotherapeutic agents, with extremely limited subsequent therapeutic options [2]. Four
hundred men per year die of TGCT in the United States (US) at a median age of 30 [3].

Patients are usually treated with primary orchidectomy, and the tumour type is ascer-
tained histologically using the World Health Organisation (WHO) classification system [4],
where tumours are broadly divided into those that are derived from the precursor lesion
Germ Cell Neoplasia In-Situ (GCNIS) or not. Within the GCNIS derived lesions, tumours
can be divided broadly into seminoma or non-seminomatous germ cell tumours (NSGCT),
with the latter generally being more aggressive. TGCT are notoriously heterogenous as
they can be mixed germ cell tumours composed in any combination of the elements of
seminoma, embryonal carcinoma, yolk sac tumour (post pubertal type), teratoma (post
pubertal type) and choriocarcinoma.

The generally good prognosis of these tumours makes powering of studies to evaluate
prognostic factors difficult, with much evidence based on large cohort studies. One of the
few parameters that is a powerful predictor for metastasis or disease recurrence in stage I
disease [5] is the presence of lymphovascular invasion (LVI) in NSGCT [6]. The evidence is
summarised in several review articles, and the risk of an adverse outcome varies in the
literature from approximately 46–62% in NSGCT when LVI is present [7]. The evidence
for LVI is less clear in seminoma, with some studies demonstrating an adverse impact on
outcome [8] and others not [9,10]. Other pathological features associated with adverse
prognosis include tumour size [11,12], invasion of structures, such as the hilum [13] and
rete testis stroma [9], although the evidence remains less strong than for LVI. The presence
of embryonal carcinoma or predominance of this component within a tumour (for example,
comprising >50% of the tumour) [14] has a similar predictive power for metastasis on a
meta-analysis [15], but there is no agreed-upon way to assess for its percentage.

TGCT are often managed in supra-regional networks. For example, in the United
Kingdom (UK), these cover a population of 2–4 million and manage 50–100 new patients
per year. This means that expertise, including pathological expertise, is concentrated in
specialist centres. Specialist assessment for LVI is valuable, as identification of genuine
LVI is often challenging. Tumour may be artefactually displaced into vessels during
specimen cut up or processing. Atypical histiocytes within vessels, intratubular tumour
and retraction artefact, may also be mistaken for LVI [16–18]. Central pathology review
of TGCTs aims to improve the reproducibility of factors such as LVI assessment. This
approach is supported by limited evidence; one study showed 27% of cases reviewed at a
central pathology laboratory were reclassified as containing LVI, and 19% were reclassified
as containing no LVI; only the centrally reviewed LVI assessment correlated with node
metastases [19].

LVI can be present within the tumour, spermatic cord, tunica albuginea or hilar
soft tissue. Regardless of location, its presence is regarded as TNM category
pT2 [18,19]. As the presence of LVI may trigger adjuvant chemotherapy, accurate as-
sessment of this parameter is vital, and when its presence is uncertain, it is recommended
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that it is considered equivocal and assigned as ‘not identified’ (no LVI is present) to avoid
triggering unnecessary chemotherapy [6,7,16].

Assessment for LVI by pathologists is inherently limited by being undertaken by
human observers. Examination of large areas of tumour for LVI is time-consuming and
challenging, as foci of LVI may be small and subjective. Nonetheless, the presence of LVI
may markedly affect patient management when present, and identification of a single
focus deemed to be genuine is enough to mark a case as positive. As such, automated
identification of foci likely to represent LVI may be of significant clinical utility.

Digital pathology (DP) refers to the generation of whole slide images from histology
slides, which can be viewed on a screen to form a diagnostic report. Histological diagnosis
and pathological staging by cellular pathologists have traditionally been achieved using
glass slides and microscopy [20,21]. There is now a significant push for implementation
in laboratories of DP, and digitally-enabled care is seen as a core component of health
service planning to increase efficiency, network working and improve quality [22,23]. In
the UK, the Government’s Industrial Life Sciences Strategy highlighted pathology as being
“ripe” for innovation by the use of DP and artificial intelligence (AI) [24]. There is great
potential for the use of AI to assist pathologists and derive novel biological insights into
disease biology, which are not appreciable by human observers [25]. As many pathology
departments do not have sufficient pathologists for the workload, it is important to explore
the potential of these technologies [26].

AI algorithms utilising convolutional neural networks (CNNs) for image analysis
have already shown significant promise in the pathological assessment of a range of
tumours, including screening for prostate cancer in prostate biopsies [27,28], providing
novel assessments of clinical outcome [29,30] or predicting the presence of mutations [31]
or molecular subtypes [32] from haematoxylin and eosin (H&E) stained sections. The
utility of such algorithms in the identification of small areas of prognostic significance in
digital whole slide images has been demonstrated previously in the context of identifying
metastatic breast cancer within lymph nodes [33,34].

There is relatively sparse literature on the use of AI in TGCT, due to the challenges of
training and validating algorithms in these heterogeneous tumours, as well as the relative
rarity of these tumours and their concentration in specialist centres. One AI study evaluated
the ability of a deep learning model to assess tumour infiltrating lymphocytes (TILs) in
both seminoma and NSGCT. An AI algorithm was able to evaluate lymphocyte density
in tumours beyond the capacity of human visual assessment, counting more than 100,000
cells per sample. Although previous studies involving human observers had failed to
identify lymphocyte density as a significant prognostic factor, the AI tool was able to use
lymphocyte density to predict clinical stage and disease relapse in seminoma [35].

In this study, we demonstrate a proof-of-concept AI algorithm that aims to highlight
foci of likely LVI for the attention of the reviewing pathologist, who then ultimately makes
the decision as to the presence or absence of LVI.

2. Materials and Methods
2.1. Patients

This study was conducted under the Oxford Radcliffe Biobank (ORB) Research Ethics
Approval (reference 19/SC/0173). A total of 29 cases of primary TGCT were retrospectively
selected and included in sequence from the period January 2019 to July 2020 from the
Cellular Pathology Department archives of the John Radcliffe Hospital, Oxford, after a
check of the research consent section of the procedure consent form. These were cases
that had primary management within the trust (i.e., had orchidectomy in Oxford, and
not referrals). This reflects the typical number of cases seen of this tumour type in the
department. Sixteen of the tumours were pure seminomas, and 13 were NSGCTs (including
10 mixed germ cell tumours and 1 spermatocytic tumour). One prepubertal type teratoma
was also included to increase the cohort size, acknowledging that it is not a malignant
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TGCT. Ten patients had metastatic disease at presentation, and one patient later developed
metastatic disease. Thirteen of the patients went on to have adjuvant chemotherapy.

2.2. Digitisation of Slides

Three hundred and two archived whole slide images from these patients were ex-
ported in TIFF format to the Visiopharm platform, using the Philips De-ID tool (Version
1.1.5, Philips Digital Pathology Solutions Document DP-174226) with all personally identi-
fiable information removed. Images were imported into our in-house annotation platform,
Annotation of Image Data by Assignments (AIDA) [32,36]. Only slides showing sections
sampled from testicular parenchyma were included. It is acknowledged that LVI can be
seen in other blocks, such as cord blocks, but due to the infrequent nature, we did not focus
on those in this study.

Slides were derived from 4–5 µm thick sections cut from formalin-fixed, paraffin-
embedded blocks of tissue, stained with H&E. Slides were scanned using the Philips
IntelliSite Ultrafast Scanner using a 40× objective.

2.3. Training the Model

Information from the deidentified reports was used to split the patient cohort
(Table 1) into a training set of 19 cases (comprising 184 whole slide images) and a validation
set of 10 cases (comprising 118 whole slide images). Six of the training set cases and 3 of the
validation set cases were reported to have confirmed LVI (32% and 30%, respectively). The
training set included 11 cases of pure seminoma and 8 cases of NSGCT. This set included
the 1 prepubertal teratoma and 1 spermatocytic tumour, as well as 6 mixed germ cell
tumours. The validation set included 5 cases of pure seminoma and 5 cases of NSGCT (4 of
which were mixed germ cell tumours).

Table 1. Summary of cohort and total numbers of foci of possible lymphovascular invasion (LVI)
used for training. One non-seminomatous germ cell tumour (NSGCT) case (14 whole slide images)
was excluded from validation assessment following a quality check (see results).

Cohort Summary Training Set Validation Set

Cases 19 10

Seminoma 11 5
Non-seminoma 8 5

Whole slide images 184 118
Round 1 141 -
Round 2 43

Total initially annotated LVI
Candidate foci 471 -

Round 1 350
Round 2 121

Total foci used for training (after
consensus review) 272 -

Round 1 196
Round 2 76

Three hundred and fifty candidate foci were manually annotated by a pathologist (AG)
on 141 of the 184 training whole slide images using the Visiopharm platform. Annotated
slides were then exported to the AIDA platform. Each candidate focus was then reviewed
by two specialist uropathologists (CV, RC) and classified as to whether LVI was considered
present, equivocal or not present as per the International Collaboration on Cancer Reporting
(ICCR) classification [6]. Equivocal foci were defined as those that would be appropriate to
flag to the attention of a pathologist but not considered genuine LVI. One hundred and
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fifty-four foci in which LVI was considered not present by both reviewers were removed as
labels on Visiopharm.

The Visiopharm AI module uses manually classified annotations to train a CNN for
automatic segmentation of image structures. The Deeplabv3+ semantic segmentation
architecture was used [37]. This neural network extracts features from input images
through multiple layers of processing, aggregating features at multiple scales. Training
using manual annotations teaches extraction of appropriate features and generates a model
which is able to segment images into areas according to the input classifications.

Following initial training, the model was applied to the remaining 43 training slides,
and parameters were empirically adjusted to select for areas with a high prediction con-
fidence for LVI only. These areas were initially reviewed by another pathologist (AG) to
remove any clearly misclassified areas and add additional candidate foci to produce 121
more foci for review. These foci were then reviewed by three specialist uropathologists (CV,
RC, LB) and again classified depending on whether LVI was considered present, equivocal
or not present. The uropathologists used for final classification have 13 years (CV), 2 years
(RC) and 11 years (LB) experience post-specialist registration and regularly review cases for
the supraregional germ cell MDT. CV is the supraregional pathology lead for the Thames
Valley germ cell tumour network.

Eighteen foci that were considered not appropriate to flag by all reviewers were
then removed as labels on Visiopharm, and a further round of training performed on the
entire labelled training set. The final model was configured to highlight pixels with high
prediction confidence only and predicted foci dilated to combine those in close proximity
to each other and aid subsequent human review. An overview of the training process is
shown in Figure 1a.

2.4. Assessment of Model Performance

The model algorithm was applied to the validation set of 118 whole slide images.
A quality check was performed on the image and the detected foci to exclude tissue
processing artefacts. One NSGCT case, encompassing 14 whole slide images, was excluded
due to failure of the algorithm within a stroma-rich tumour, a morphology that was not
represented in the training set (See results). A final set of 104 whole slide images was used
for testing algorithm performance.

Thirty-four foci within 12 slides were identified by the algorithm for evaluation. Each
of these foci was then evaluated by the three uropathologists using the AIDA platform.
The pathologists were instructed to classify each focus depending on whether LVI was
considered present (including cases where confirmatory immunohistochemistry (IHC)
would be used), equivocal or not present. An overview of the validation process is shown
in Figure 1b.

Each focus was categorised based on the majority vote from the three reviewers. If a
focus was considered to contain LVI or was considered equivocal for LVI by two or more of
the three reviewers, the focus was considered appropriate to flag. If a focus was considered
to contain LVI by two or more of the three reviewers, the focus was considered to contain
LVI by consensus. To reflect the real-world usage of the tool, the overall precision was
calculated, defined as the number of appropriate foci identified divided by the total number
of foci identified. Precision was also calculated separately for consensus LVI.

The detected foci were ordered by area on the basis that multiple adjacent high
probability foci may have been combined during post-processing, and these areas should
represent the first foci to review, as these are the areas most likely to be true positives.
Precision-recall curves were used to assess performance on the ordered results. To estimate
sensitivity (recall) in the validation set for the construction of a precision-recall curve, a total
of 124 more candidate foci, in addition to those identified by the algorithm, were annotated
on the validation slides by another pathologist (AG). These foci were independently
reviewed by an expert uropathologist (CV) and classified depending on whether LVI
was considered present, equivocal or not present. Estimated recall for appropriate areas
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was defined as the number of appropriate areas detected, divided by this figure plus
the total number of additional appropriate foci identified on review by the single expert
pathologist. Similarly, estimated recall for LVI was defined as the number of areas of
consensus LVI detected, divided by this figure plus the total number of additional definite
LVI foci identified on review by a single expert pathologist.
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Figure 1. Summary of training and testing of a deep-learning segmentation model for identifying regions of lymphovascular
invasion (LVI) in testicular cancer. (a) One hundred and forty-one digitised whole slide images were annotated manually,
and consensus review by expert pathologists was performed to determine foci appropriate to use for training. These foci
were used to train a deep-learning classifier to segment areas with a high prediction probability for LVI. The trained model
was applied to a further 43 digitised whole slide images, which were again manually reviewed by specialist uropathologists,
and the resulting annotations were used to tune the classifier. The total training set included 184 whole slide images from
19 patients. (b) One hundred and four digitised whole slide images from nine distinct cases were used for final validation.
Each image was processed through the classifier, and the detected foci were reviewed independently by three specialist
pathologists. A majority vote was used to determine ground truth as to areas appropriate to highlight and areas with
LVI present.

2.5. Statistical Analysis

Interobserver variability was estimated by Fleiss kappa statistics, performed on the
classification of each focus by the three independent uropathologists. Kappa statistics
were calculated separately based on the classification of foci as LVI or not, as well as the
classification of foci as appropriate to flag or not. Interpretation of the kappa statistic was
based on previously published thresholds, suggesting; <0 as poor or no agreement, 0–0.2 as
slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80
as substantial agreement, and 0.81–1.00 as almost perfect agreement [38].

For the purposes of statistical evaluation, no distinction was made between foci that
were classified as definite LVI and those that a pathologist would classify as definite LVI
with the aid of immunohistochemistry.
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The number of foci of consensus LVI was compared between cases with metastatic
disease at presentation (or who developed metastatic disease subsequently) and those
without metastatic disease using the unpaired t-test.

3. Results
3.1. Classifier Precision

The deep-learning classifier identified 34 foci across 104 validation whole slide images.
Examples of the detected areas are presented in Figure 2. An example slide and focus from
the case in which the algorithm failed is shown in Figure 3. In this stroma-rich tumour,
tumour was extensively present adjacent to the non-neoplastic stroma, mimicking tumour-
containing blood vessels. This tumour morphology was not included in the training dataset
and was, therefore, excluded from the final validation review.
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albuginea, and (o,p) are rete epithelium. Images are shown at varying magnification (scale bar is 100 µm in each).
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tumour, and image (c) highlights the misclassified foci, in which non-neoplastic stroma mimics blood vessel walls. (Scale
bar is 3 mm in the whole slide image and 100 µm in the magnified areas).

Twenty-nine of the 34 identified foci were peritumoural, and 5 were intratumoural.
Twenty-three of the 34 identified foci were assessed as being appropriate to flag based
on consensus expert review, comprising foci that were categorised as LVI (including
those that would be confirmed using immunohistochemistry), and those which were
considered equivocal (but ultimately negative) [6,7,16]. The overall precision in identi-
fying areas appropriate to flag was 0.68 (Figure 4). Of the areas identified appropriate
to flag, 19 contained embryonal carcinoma, 2 contained seminoma, and 1 contained yolk
sac tumour.

Nineteen of the 34 identified foci were assessed as containing LVI (including those that
would be confirmed using immunohistochemistry), and all of these contained embryonal
carcinoma. Of the 15 foci not considered LVI, 5 contained smear artefact (examples in
Figure 2k,l), 2 contained lymphoid cells within connective tissue, 2 contained hyperchro-
matic areas of rete epithelium (examples in Figure 2m,n), 2 contained congested background
blood vessels, 1 contained embryonal carcinoma within tunica albuginea (example in
Figure 2o,p) and 1 contained a focus of embryonal carcinoma within the stroma. Whilst
smear artefact is not genuine LVI, such areas would often require expert consideration
depending on the extent, and it was considered valuable to bring such areas to the attention
of a reviewing pathologist.

The overall precision of the classifier in identifying areas containing consensus definite
LVI (or LVI to be confirmed with immunohistochemistry) was 0.56 (Figure 4).
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number of adjacent high probability pixels).

3.2. Interobserver Variability

The kappa statistic for interobserver agreement between three expert pathologists
based on the categorisation of each focus as appropriate to flag or not was 0.62 (substantial
agreement). Unanimous agreement for appropriateness to flag was seen in 25 foci (74%).

The kappa statistic for interobserver agreement between three expert pathologists
based on the categorisation of each focus as LVI or not was 0.57 (moderate agreement).
Unanimous agreement for the presence or absence of LVI was seen in 23 foci (66%).

3.3. Ranked Retrieval Results

The 34 foci identified by the deep-learning classifier were ranked based on focus size.
The top five foci were all classified as appropriate to flag, with LVI deemed to be present
in each on consensus review. The overall precision of the top 10 foci for categorisation as
appropriate to flag or not was 0.7, and all of the appropriate foci identified in this top 10
were deemed to be LVI on consensus review. This is summarised in Figure 4.



Cancers 2021, 13, 1325 10 of 15

3.4. Metastatic Disease

There was no evidence of a significant association between the number of LVI foci
identified and the incidence of metastatic disease at presentation in this study (p = 0.96).

4. Discussion

Examination of H&E-stained histological slides of TGCTs is an important part of the
clinical decision-making process in these cancers, and the presence or absence of LVI is a
powerful predictor for relapse or metastatic disease [6]. To our knowledge, there are no
other examples of the utilisation of artificial intelligence techniques to detect lymphatic or
vascular invasion in cancer histology. Identification of LVI often informs the decision to
administer chemotherapy to patients with stage 1 disease.

In this study, we demonstrated a proof-of-concept deep learning based-approach
to identifying candidate foci of LVI within digitised whole slide images of H&E
stained sections.

Deep learning is a machine learning technique in which artificial neural networks
are instructed to learn from large amounts of training data and progressively improve
performance at a specific task. CNNs are a class of such neural networks, which have
shown great promise in a range of medical applications, including diagnostic support
for pathologists.

Deep learning techniques are often applied to situations where a ground truth mea-
surement is clearly evident. However, morphological diagnosis of LVI is one of a range
of problems where significant interobserver variability exists [16,17]. The identification
of tumour within a vessel is only part of the difficulty; tumour is frequently artefactually
displaced into vessels, and as such, pathologists must consider a range of less easily de-
finable contextual features to come to a decision about whether genuine LVI is present.
Immunohistochemistry may sometimes be used in challenging cases, but it is of limited
value and is not recommended for routine use [6,7,16].

As well as subjectivity in its diagnosis, the challenge of LVI identification is often
compounded by only the focal presence within sections. As such, it is an unbalanced
task, and the evaluation by automated tools for its identification is different compared to
problems of tumour categorisation.

We have demonstrated in this study that a deep learning classifier is able to identify
small areas within whole slide images with a high probability of being genuine LVI. Only
one focus of genuine LVI is required to mark a case as positive and hence potentially trigger
subsequent management interventions. Indeed, in this study, there was no evidence of a
statistically significant association between the number of LVI foci and metastatic disease
at presentation, although this cohort may be too small to draw a definite conclusion, and
further work is required.

As such, an automated tool with a relatively high precision may lead to significantly
increased efficiency when assessing large areas of tissue. In this study, we showed that
the model was able to identify foci of LVI at a precision of 0.56, which increased to 0.68 if
including foci that required expert human consideration, but were eventually considered
equivocal (and thus negative [6,7,16]). The latter figure of 0.68 is the most important as
the tool is designed to highlight to pathologists when LVI might be present, not make the
decision of when it is present. These precision values should be interpreted in the context of
the inherent subjectivity in the interpretation of LVI and/or which foci pathologists would
deem appropriate to flag, and thus the ground truth is also inherently subjective; indeed,
unanimous agreement for the presence or absence of LVI amongst three pathologists was
seen in only 66% of the flagged foci. However, this would be considered as an acceptable
or moderate level of agreement for pathologist-based agreement [39]. Our results suggest
that only a small number of flagged areas would need to be examined to generate a high
probability of finding a consensus positive focus.

Furthermore, it is possible to rank retrieval using a variety of parameters. In this study,
we have ranked each focus by size, based on the rationale that many very high probability
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pixels in close proximity are more likely to represent a human-appreciable area of genuine
LVI. When evaluating the highest-ranked foci in this way, the largest five foci were all
classified as LVI on consensus review. Other methods of ranking foci could include the
distance from the main tumour mass, as foci of tumour in vessels distant from the mass
may be more likely to be interpreted as genuine LVI. Further work is required to investigate
automated ranking in this way. Rational ranking of identified foci is likely to increase the
precision of such a tool in practice greatly.

The challenging nature of agreeing on genuine LVI was demonstrated by measuring
interobserver variability in the validation slides. Moderate agreement was reached when
deciding whether LVI was present or not (κ = 0.57; Figure 4), which is similar to the
slide-level rate of interobserver variability seen as part of a previous study in NSGCTs [18].
The discrepancy between experts can be seen for a variety of reasons, but ultimately, it
is an opinion-based judgement and would be subject to variables such as experience,
level of fatigue and individual differences as to when a focus has met the threshold for
genuine LVI. There are attempts to minimize these by producing international guidelines
and strict criteria for which features constitute genuine LVI [16], but there still remain
individual differences in interpretation of parameters such as LVI versus mimics, such as
smear artefact or intratubular carcinoma [17,18]. In diagnostic practice, these cases would
often require assessment and agreement by two or more pathologists. Our majority vote
approach to the ground truth replicates this approach. Other similar scenarios, such as the
agreement between pathologists as to the presence or absence of extraprostatic extension
in prostatectomy specimens, show similar levels of discrepancy [40,41]. The agreement
level highlights the difficulty in training and assessing algorithms based on subjective
morphological features but emphasises the value of a tool to identify candidate regions,
with the pathologist ultimately making the decision.

Our study included a training set of 184 whole slide images from 19 patients and
a final validation set that included 104 whole slide images from 9 patients. This reflects
the annual number of cases of this relatively uncommon tumour type originating in our
supraregional centre; datasets are inherently small in this tumour type, and the availability
of high-quality, curated datasets is limited. Although the relatively small number of
cases is a limitation, germ cell tumours are highly heterogeneous, creating a diverse
training and validation set from these cases, with 10 of the cases representing mixed
germ cell tumours. Furthermore, as our approach used data sampled across whole slide
images, rather than a more selective patch-based approach, a large amount of training
and validation data was available. The number of whole slide images in our dataset is
comparable to those in previous studies investigating other histopathological features of
prognostic importance [34,35,42]. Future development of the tool would leverage publically
available datasets and national/international networks and collaborators to address this.

Further training may help to exclude misclassified areas that are more readily recog-
nised by pathologists as negative. The failure of the algorithm in one NSGCT case likely
reflects this morphology not being present in the training set, which is a problem associated
with the great morphological heterogeneity of TGCTs; additional training may also help
increase the reliability of the tool. In a previous study evaluating TILs by AI in TGCT, the
algorithm failed in 31.8% NSGCT and 14.5% seminomas [35]. Many of the detected areas
represented foci of embryonal carcinoma (Figure 2), and future studies involving larger
numbers of different tumour types within vessels are required to evaluate the tool further
and assess sensitivity. Although the evidence for LVI as a prognostic factor in seminoma is
less clear [8–10], the loosely cohesive nature of such tumours increases the chance of smear
artefact [17]. More cases of seminomatous LVI could be included in future studies.

Our approach in this study was to focus on high specificity, i.e., areas with a high
probability of being considered as LVI. An alternative approach would be to focus on
sensitivity, but the flagging of large numbers of foci at lower specificity diminishes the
value of the tool, as this is little different from primary screening for LVI by a pathologist.
This does, however, raise an important training point for pathologists; those using such
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tools should understand the functionality and appreciate that even if a case is not flagged as
having LVI, it may still be present, and a full screen of the case still needs to be undertaken.
The ’roadmap’ to taking proof-of-concept tools such as this on through to full diagnostic
practice is a complex one [43]. We do not claim that this tool makes the assessment of
definitive LVI, but that it highlights to pathologists when a case is likely to contain LVI
such that the pathologist can assess those areas first, potentially saving time and reducing
the risk of missing such areas in some cases. We acknowledge that this tool would require
further versions with more training and validation, including cases from multiple centres
and validation by multiple expert pathologists from different centres before being tested in
a real-life laboratory setting.

AI can be used to support pathologists as described in this study, but it can also be
used to derive novel biological insights, not possible with a human observer. Although a
key focus in other tumour types, to our knowledge, no studies exist predicting molecular
changes in TGCT from morphological appearances (morpho-molecular correlation), and
there are no molecular tests that currently guide clinical practice as in other tumour types,
which would make identification of mutations of high importance. These tumours show a
low rate of mutations compared to common cancers, which would make the prediction of
mutations by AI more challenging [44,45], although somatic mutations of the KIT gene and
its downstream mediators encoded by the KRAS and NRAS genes have shown significance
in seminoma [45]. The primary somatic feature in the development of these tumours is
highly recurrent chromosome arm level amplification and reciprocal deletions [46], with
copy number gain of chromosome 12p being almost universal in TGCT [46,47]. As novel
biomarkers emerge [48], morpho-molecular correlation aided by AI may prove a helpful
adjunct to determine the optimal therapeutic approach.

5. Conclusions

We have shown in this study that deep learning algorithms have the potential to
detect features including LVI, which are considered subjective even by human patholo-
gists. In addition to potential workflow and efficiency benefits in the context of a fully
digitised system, such algorithms may prove useful as decision support tools to improve
diagnostic reliability.

Author Contributions: Conceptualisation, A.G., K.S. and C.V.; methodology, A.G., K.S. and C.V.;
software, A.A. (development of AIDA) and N.K.A. (use of Visiopharm AI); validation, L.B., R.C. and
C.V.; formal analysis, A.G., N.K.A.; data curation, A.G., A.P., E.P., S.J. and C.V.; writing—original
draft preparation, A.G. and C.V.; writing—review and editing, A.G., K.S., N.K.A., L.B., R.C., A.P.,
E.P., S.J., A.A., J.R. and C.V.; visualisation, A.G.; supervision, C.V.; All authors have read and agreed
to the published version of the manuscript.

Funding: This paper is supported by the PathLAKE Centre of Excellence for digital pathology and
artificial intelligence, which is funded from the Data to Early Diagnosis and Precision Medicine
strand of the government’s Industrial Strategy Challenge Fund, managed and delivered by Innovate
UK on behalf of UK Research and Innovation (UKRI). Views expressed are those of the authors and
not necessarily those of the PathLAKE Consortium members, the NHS, Innovate UK or UKRI. C.V.
and L.B. are part funded by the National Institute for Health Research (NIHR) Oxford Biomedical
Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of
the NHS, the NIHR or the Department of Health.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and the Oxford Radcliffe Biobank (ORB) ethics under which this study was
conducted was approved by the South Central Oxfordshire C Research Ethics Committee reference
19/SC/0173 (date of approval/renewal 12 April 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study under the terms of ORB ethics. Patients are not identifiable from the material.



Cancers 2021, 13, 1325 13 of 15

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. Images and annotations may be available on request by separate arrangement
with Oxford University Innovation via approach to the corresponding author.

Acknowledgments: We acknowledge the contribution to this study made by the Oxford Centre
for Histopathology Research and the Oxford Radcliffe Biobank (ORB) which is supported by the
NIHR Biomedical Research Centre. This study was conducted in the setting of Oxford University
Hospitals NHS cellular pathology laboratory, which scans 100% of the surgical histology workload
and enabled this study. The authors would like to thank all of the staff who contributed to this
significant achievement which was a team effort involving the biomedical scientist, secretarial and
pathology staff among others.

Conflicts of Interest: Oxford University and Oxford University Hospitals NHS Foundation Trust
are part of PathLAKE which is one of the UK Government’s five AI Centres of Excellence and
has received in-kind industry investment from Philips for digital pathology equipment, software
and other services. K.S., A.A. and J.R. are co-founders of Ground Truth Labs; an AI and digital
pathology company.

Abbreviations

AI Artificial intelligence
AIDA Annotation of Image Data by Assignments
CNN Convolutional neural networks
DP Digital pathology
GCNIS Germ cell neoplasia in-situ
H&E Haematoxylin and eosin
IHC Immunohistochemistry
ICCR International Collaboration on Cancer Reporting
LVI Lymphovascular invasion
NSGCT Non-seminomatous germ cell tumour
ORB Oxford Radcliffe Biobank
TGCT Testicular germ cell tumour
TIL Tumour infiltrating lymphocyte
WHO World Health Organisation

References
1. Cheng, L.; Albers, P.; Berney, D.M.; Feldman, D.R.; Daugaard, G.; Gilligan, T.; Looijenga, L.H.J. Testicular Cancer. Nat. Rev. Dis.

Primer 2018, 4, 29. [CrossRef] [PubMed]
2. Fukawa, T.; Kanayama, H. Current Knowledge of Risk Factors for Testicular Germ Cell Tumors. Int. J. Urol. 2018, 25, 337–344.

[CrossRef]
3. Barrett, M.T.; Lenkiewicz, E.; Malasi, S.; Stanton, M.; Slack, J.; Andrews, P.; Pagliaro, L.; Bryce, A.H. Clonal Analyses of Refractory

Testicular Germ Cell Tumors. PLoS ONE 2019, 14, e0213815. [CrossRef]
4. Moch, H.; Humphrey, P.; Ulbright, T.M.; Reuter, V. WHO Classification of Tumors of the Urinary System and Male Genital Organs;

France International Agency for Research on Cancer (IARC): Lyon, France, 2016.
5. International Germ Cell Consensus Classification: A Prognostic Factor-Based Staging System for Metastatic Germ Cell Cancers.

International Germ Cell Cancer Collaborative Group. J. Clin. Oncol. 1997, 15, 594–603. [CrossRef]
6. Berney, D.M.; Comperat, E.; Feldman, D.R.; Hamilton, R.J.; Idrees, M.T.; Samaratunga, H.; Tickoo, S.K.; Yilmaz, A.; Srigley,

J.R. Datasets for the Reporting of Neoplasia of the Testis: Recommendations from the International Collaboration on Cancer
Reporting. Histopathology 2019, 74, 171–183. [CrossRef] [PubMed]

7. Berney, D.M.; Verrill, C. Royal College of Pathologists’ Standards and Datasets for Reporting Cancers: Dataset for the Histological Reporting
of Testicular Neoplasms, 4th ed.; The Royal College of Pathologists: London, UK, 2020.

8. Mortensen, M.S.; Lauritsen, J.; Gundgaard, M.G.; Agerbæk, M.; Holm, N.V.; Christensen, I.J.; von der Maase, H.; Daugaard, G.
A Nationwide Cohort Study of Stage I Seminoma Patients Followed on a Surveillance Program. Eur. Urol. 2014, 66, 1172–1178.
[CrossRef]

9. Chung, P.; Daugaard, G.; Tyldesley, S.; Atenafu, E.G.; Panzarella, T.; Kollmannsberger, C.; Warde, P. Evaluation of a Prognostic
Model for Risk of Relapse in Stage I Seminoma Surveillance. Cancer Med. 2015, 4, 155–160. [CrossRef] [PubMed]

10. Kamba, T.; Kamoto, T.; Okubo, K.; Teramukai, S.; Kakehi, Y.; Matsuda, T.; Ogawa, O. Outcome of Different Postorchiectomy
Management for Stage I Seminoma: Japanese Multiinstitutional Study Including 425 Patients. Int. J. Urol. 2010, 17, 980–987.
[CrossRef]

http://doi.org/10.1038/s41572-018-0029-0
http://www.ncbi.nlm.nih.gov/pubmed/30291251
http://doi.org/10.1111/iju.13519
http://doi.org/10.1371/journal.pone.0213815
http://doi.org/10.1200/JCO.1997.15.2.594
http://doi.org/10.1111/his.13736
http://www.ncbi.nlm.nih.gov/pubmed/30565308
http://doi.org/10.1016/j.eururo.2014.07.001
http://doi.org/10.1002/cam4.324
http://www.ncbi.nlm.nih.gov/pubmed/25236854
http://doi.org/10.1111/j.1442-2042.2010.02645.x


Cancers 2021, 13, 1325 14 of 15

11. Scandura, G.; Wagner, T.; Beltran, L.; Alifrangis, C.; Shamash, J.; Berney, D.M. Pathological Predictors of Metastatic Disease in
Testicular Non-Seminomatous Germ Cell Tumors: Which Tumor-Node-Metastasis Staging System? Mod. Pathol. 2020. [CrossRef]

12. Aparicio, J.; Maroto, P.; García del Muro, X.; Sánchez-Muñoz, A.; Gumà, J.; Margelí, M.; Sáenz, A.; Sagastibelza, N.; Castellano, D.;
Arranz, J.A.; et al. Prognostic Factors for Relapse in Stage I Seminoma: A New Nomogram Derived from Three Consecutive,
Risk-Adapted Studies from the Spanish Germ Cell Cancer Group (SGCCG). Ann. Oncol. 2014, 25, 2173–2178. [CrossRef] [PubMed]

13. Yilmaz, A.; Cheng, T.; Zhang, J.; Trpkov, K. Testicular Hilum and Vascular Invasion Predict Advanced Clinical Stage in
Nonseminomatous Germ Cell Tumors. Mod. Pathol. 2013, 26, 579–586. [CrossRef]

14. Feldman, D.R. Treatment Options for Stage I Nonseminoma. J. Clin. Oncol. 2014, 32, 3797–3800. [CrossRef]
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