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Abstract: Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted
repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes
are generally conserved. This study reports plastome sequences of five additional species, Fedia
cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dip-
sacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published
plastomes, these plastomes provide new insights into the structural evolution of plastomes within
the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated
nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of
accD sequence divergence in the family are dynamic with structural changes, including interruption
of the conserved domain and increases in nonsynonymous substitution rates. In particular, the
Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific
polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found
a correlation between intron losses and increased ratios of nonsynonymous to synonymous sub-
stitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae
plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to
the nucleus was confirmed.

Keywords: accD; amino acid repeat motifs; clpP; intron loss; positive selection; intracellular gene transfer

1. Introduction

The plastid genome (plastome) of angiosperms is generally conserved and has a
quadripartite structure with a pair of inverted repeats (IR) separated by large and small sin-
gle copy (LSC and SSC) regions [1]. Plastomes generally range from 120 to 160 kb in length
and contain 113 unique genes, 79 protein-coding genes, 30 tRNAs, and 4 rRNAs. However,
accumulating data on complete plastome sequences exhibit variations in gene and intron
content [2]. Plastid gene loss requires functional transfer to the nucleus before the loss in
its plastome [3]. Extensive genome rearrangements, including IR boundary shifts, have
also been reported for several lineages such as Campanulaceae [4], Caryophyllaceae [5],
Fabaceae [6], Geraniaceae [7], Oleaceae [8], and Papaveraceae [9,10].

Lineage-specific variation in the rate of plastome sequence evolution has been docu-
mented in angiosperms [5,11–13]. Higher substitution rates are associated with structural
rearrangements [5,14]. Accelerated rates of nucleotide substitution are affected by the
whole genome as well as a subset of protein-coding genes. Compared with other plastid-
encoded genes, acetyl-CoA carboxylase subunit β (accD), ATP-dependent Clp protease
proteolytic subunit (clpP), DNA-directed RNA polymerase subunit α (rpoA), some subunits
of ribosomal proteins, and the chloroplast factors ycf1, ycf2, and ycf4, show dynamic accel-
eration [5,9,11,15–18]. Multiple mechanisms, including dysfunction of DNA replication,
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repair, and recombination (DNA-RRR) machinery, localized hypermutation, mutagenic
retroprocessing, and pseudogenization, have been hypothesized to explain this accelera-
tion [11,14,16,19].

The most extreme accelerations are found in the plastid-encoded accD and clpP, which
have undergone a history of insertions and deletions (indels) of amino acid sequences or
intron losses in multiple independent lineages, respectively [9,15]. Several angiosperm
lineages have experienced losses in the accD or clpP genes [10,20,21]. The plastid-encoded
accD has been functionally replaced via gene transfer to the nucleus or gene substitution in
eukaryotic ACCase [15,16,20,22–26]. However, clear evidence of plastid clpP transfer to the
nucleus in angiosperms is lacking. Highly divergent accD and clpP genes are likely caused
by compensatory mutations in the interactions between nuclear-encoded plastid-targeted
subunits [27,28]. This is because the function of the two genes depends on nuclear-encoded
proteins that assemble plastid-localized subunits. For example, the plastid-encoded accD
plays an essential role in the fatty acid biosynthesis pathway [29], which is a subunit
of the prokaryotic acetyl–CoA carboxylase (ACC) complex [30]. The prokaryotic ACC
complex consists of four subunits, three of which are nuclear-encoded proteins: acetyl–CoA
carboxylase subunit α (ACCA), biotin carboxyl carrier protein subunit (ACCB), and biotin
carboxylase subunit (ACCC). Plastid-encoded clpP is a subunit of the caseinolytic protease
(CLP) complex [31] and is involved in multiple processes of chloroplast development [32].
Multiple subunits (CLPP2 to CLPP6) of the CLP complex are encoded in the nucleus [31].
Thus, the nuclear-encoded subunits interact with plastid-encoded subunits.

The honeysuckle family (Caprifoliaceae sensu lato [s.l.]) comprises approximately
825 species in 28-42 genera with widespread cosmopolitan distribution [33]. Caprifoli-
aceae s.l. has been classified into seven major groups (six subfamilies and one genus):
Diervilloideae, Caprifolioideae, Linnaeoideae, Morinoideae, Dipsacoideae, Valerianoideae,
and Zabelia (Rehder) Makino [34]. A recent phylogenomic study based on nuclear loci
and plastome sequences suggested that Zabelia is recognized as a new subfamily of Zabe-
lioideae [35]. To date, complete plastomes of 22 genera have been sequenced (National
Center for Biotechnology Information; NCBI, accessed on 18 August 2021). The sequenced
Caprifoliaceae s.l. plastomes range in size from 151.3 to 161.6 kb with a quadripartite
organization. Variations in inverted repeat (IR) boundary shifts and nucleotide substitution
rates have been documented in the Caprifoliaceae s.l. plastomes [34,36]. Despite broader
sampling and sequencing across the family, very little is known about the gene evolution,
including structural changes and rate variation in the plastid-encoded accD and clpP genes.

In this study, we generated the complete plastome sequences of three species from the
subfamily Valerianoideae and two species from the subfamily Dipsacoideae. Genome orga-
nization and nucleotide substitution rates were estimated and compared to the published
Caprifoliaceae s.l. plastomes. In particular, the correlation between structural evolution
and nucleotide substitution rates in the plastid-encoded accD and clpP genes across this
family was examined. In addition, we examined intra- and infraspecific length variations
in the accD coding region of Valeriana fauriei Briq. and V. sambucifolia f. dageletiana (Nakai
ex F.Maek.) Hara.

2. Results
2.1. Plastome Organization

We sequenced and assembled the complete plastomes of three Valerianoideae (Fedia
cornucopiae (L.) Gaertn., V. fauriei, and Valerianella locusta (L.) Laterr.) and two Dipsacoideae
(Dipsacus japonicus Miq. and Scabiosa comosa Fisch. ex Roem. & Schult.) species (Figure S1,
see Supplementary Materials). Among the five species, the plastome size ranged from
149,809 bp (V. locusta) to 160,243 bp (D. japonicus) (Table 1). Dipsacus japonicus had the
largest LSC (87,066 bp), whereas F. cornucopiae had the smallest SSC (15,862 bp). The GC
content of the D. japonicus (38.8%) was higher than that of the other species (Table 1). The
three Valerianoideae plastomes encoded 79 protein-coding genes, 30 tRNA genes, and
4 rRNA genes (Table 1). However, the ribosomal protein subunit S15 (rps15) appears to



Int. J. Mol. Sci. 2021, 22, 10485 3 of 15

be a pseudogene in two Dipsacoideae plastomes (Table 1). Functional replacement by
gene transfer of rps15 from plastid to the nucleus was detected in Dipsacus transcriptome
data (Figure S2). The plastome of D. japonicus was missing trnT-GGU and contained two
trnE-UUC with 90.4% nucleotide identity (Figure S3). The duplicated gene content in the
IR region varied as a result of IR expansion and contraction. The intron content also varied
owing to the loss of intron in the clpP gene. The plastome of F. cornucopiae was missing the
first intron of the clpP gene. The plastome of V. locusta was missing both introns in the clpP
gene (Figure S1).

Table 1. Comparison of Caprifoliaceae plastomes sequenced in this study.

Taxon
Dipsacoideae Valerianoideae

Dipsacus
japonicus

Scabiosa
comosa

Fedia
cornucopiae

Valeriana
fauriei

Valerianella
locusta

Size (bp) 160,243 159,651 152,196 155,302 149,809
LSC length (bp) 87,066 87,477 82,960 85,541 82,103
SSC length (bp) 17,850 18,716 15,862 15,159 15,796
IR length (bp) 27,664 26,729 26,687 27,301 25,955

Number of protein-coding genes 78 (6) 78 (7) 79 (4) 79 (4) 79 (4)
Number of tRNA genes 29 (8) 30 (7) 30 (7) 30 (7) 30 (7)
Number of rRNA genes 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

Number of introns 21 (5) 20 (5) 21 (5) 21 (5) 19 (5)
GC content (%) 38.8 38.7 38.2 38.4 38.1

Among the analyzed Caprifoliaceae s.l. plastomes, the largest number of repeat
pairs (95) was found in Morina, and the fewest repeats (11) were observed in Valerianella
(Table S1). The average value of repeat pairs from Caprifoliaceae s.l. plastomes was
~10 times higher than that from the outgroups (Table S1). The number of repeat pairs from
the subfamily Valerianoideae was 2–4 times higher than the average value of repeat pairs
from the outgroups, but the number of the repeat pairs from Valerianella was similar to that
from the outgroups.

To understand the evolutionary history of genome rearrangement in the family, we
constructed a phylogenetic tree using 72 plastid genes (Figure 1). The inversions mainly
occurred within the IR and SSC regions and some inversion is likely the result of a series of
IR expansions and contractions (Figure 1). Based on the most parsimonious interpretation,
the ancestral plastome of Caprifoliaceae s.l. had three structural changes: (1) an inversion
associated with the ndhF gene, (2) a contraction at the IRB/SSC boundary to trnN resulting
in the entire ycf1 gene into the SSC region, and (3) a contraction at the IRA/LSC boundary,
from the rps19 to rpl23 gene (Figure 1). The plastome rearrangement model suggests that
lineage- or species-specific events occurred independently after the ancestral structural
changes (Figure 1). For example, an independent contraction to trnI at the IRA/LSC
boundary and contraction to trnR at IRA/SSC occurred in early diverging Weigela. Mauve
alignment among the subfamily Caprifolioideae identified seven locally collinear blocks
(LCBs) with two inversions involving eight breakpoints (Figure S4). Within the subfamily
Caprifolioideae, a contraction to ycf2 at IRA/LSC boundary in Leycesteria and a contraction
to trnR at IRA/SSC occurred in Triosteum, respectively. The inversion in Leycesteria is the
result of IR expansion at the IRB/SSC boundary to ndhH and IR contraction at the IRA/SSC
boundary to trnN, resulting in the relocation of the ycf1-rps15 region (Figure 1). Mauve
alignment among the subfamilies Valerianoideae and Dipsacoideae identified five LCBs
with six inversions involving seven breakpoints (Figure S4). Contraction to trnI at the
IRA/LSC boundary, followed by an expansion to trnH at the IRB/LSC boundary and an
expansion back to ycf1, indicated synapomorphic events in the subfamily Valerianoideae
(Figure 1). After that, four IR boundary shift events occurred in the common ancestor
of the Fedia/Valerianella/Valeriana clade. The rpl32-ndhF region in Fedia, Valerianella, and
Valeriana plastomes were relocated as a result of two expansions and two contractions.
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Expansion at the IRA/SSC boundary resulted in the duplication of ccsA and included
a C-terminal portion of ndhD (Fedia: 1265 bp; Valerianella: 1286 bp; Valeriana: 1314 bp),
generating a truncated ndhD fragment in IRB (Figure 1). Within the subfamily Dipsacoideae,
an expansion from trnH to rps3 at the IRA/SSC boundary and an expansion from trnN to
ycf1 occurred in the common ancestor of the Dipsacus/Scabiosa clade. The inversion event
associated with ccsA-trnL-rpl32-ndhF is unique to Scabiosa (Figure 1). In Weigela, two IR
contractions occurred at the IRA/LSC and IRA/SSC boundaries.
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Figure 1. Plastome rearrangement in the analyzed Caprifoliaceae s.l. Schematic diagrams (gray open boxes) of the genomic
regions surrounding the inverted repeat (IR) region. Genes drawn below the horizontal line indicate sequences found in an
inverted orientation. Gray shadings indicate the IRA region. The hypothetical models for IR expansion and contraction in
the common ancestor of Fedia, Valerianella, and Valeriana are illustrated (orange boxes).

2.2. Elevated Substitution Rates in the Plastomes of the Subfamily Valerianoideae

The 24 Caprifoliaceae s.l. genera and five Adoxaceae genera shared 72 plastid-encoded
genes. We excluded seven protein genes from the concatenated data set and substitution
rate analysis because they appeared to be pseudogenes or losses (clpP, rps3, rps15, ycf1, and
ycf2) and divergent (accD and ycf3) among some species within the family. To examine
rate variation in the selected plastid genes among the 24 genera, nonsynonymous (dN)
and synonymous (dS) substitution rates were estimated using the phylogenetic tree as a
constraint tree (Figure 2). The dN and dS values in pairwise comparisons between Viburnum
and Caprifoliaceae s.l. showed that Fedia, Valerianella, and Valeriana from the subfamily
Valerianoideae had significantly higher dS rates than the other analyzed species (Wilcoxon
rank-sum test, p < 0.001, after Bonferroni correction; Table S1), except for the comparison
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between Valeriana and Pterocephalus. Narodostachys and Patrinia had only significantly
higher dS rates than Weigela (Wilcoxon rank-sum test, p < 0.05, after Bonferroni correction;
Table S2). In the case of dN rates, only 11 comparisons between Fedia and six species
(Kolkwitzia, Symphoricarpos, Triosteum, Triplostegia, Weigela, and Zabelia), between Valerianella
and four species (Symphoricarpos, Triplostegia, Weigela, and Zabelia), and between Valeriana
and Weigela showed that Fedia, Valerianella, and Valeriana had significantly higher rates than
the other analyzed species (Wilcoxon rank-sum test, p < 0.05, after Bonferroni correction;
Table S2).
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Figure 2. Plastid sequence divergence among the selected Caprifoliaceae s.l. Plastid phylograms of nonsynonymous (dN)
and synonymous (dS) substitution rates based on 72 plastid genes. Boxplots of the values of dN and dS for individual genes.
The box represents values between quartiles, solid lines extend to the minimum and maximum values, outliers are shown
as circles and vertical lines in boxes show median values.

In addition, multiple genes exhibit dN/dS ratios that are greater than one, but likeli-
hood ratio tests (LRTs) with Bonferroni correction indicated that dN/dS for infA in Acantho-
calyx, ndhD in Morinoideae/Linnaeoideae/Valerianoideae/Dipscacoideae/Zabelioideae,
psbM in Vesalea, rbcL in Weigela, rpoC1 in Valeriana, rpl22 in Adoxa/Tetradoxa/Sinadoxa, rpl32
in Heptacodium, rps2 in Acanthocalyx, rps4 in Scabiosa, rps14 in Pterocephalus, rps16 in Dip-
sacus/Scabiosa/Pterocephalus, rps18 in Abelia, and rps19 in Acanthocalyx were significantly
different (Table S3).
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2.3. Structural Evolution of Plastid-Encoded accD Gene in Caprifoliaceae s.l. Plastomes

The length of the acetyl–CoA carboxylase beta subunit D (accD) open reading frame
(ORF) varied remarkably among the examined Caprifoliaceae s.l. plastomes, ranging
from 711 bp in Heptacodium to 2517 bp in Lonicera (Figure 3). The comparison revealed
two histories of insertion events within the N- and C-terminal regions, resulting in the
expansion or truncation of the accD ORF. The most parsimonious interpretation is that the
accD genes were interrupted by the insertion of amino acids in the common ancestor of
Caprifoliaceae s.l. (Figure 3). The second insertion of amino acids occurred in the common
ancestor of Zabelia, Morinoideae, Linnaeoideae, Valerianoideae, and Dipscacoideae (except
Pterocephalus and Triplostegia), which was split into two portions of the conserved domain
(Figures 3 and S4).
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In particular, the accD ORFs of Morina, Linnaea, and Zabelia contain a part of the
conserved domain, but the catalytic sites are included (Figure S2). Conserved domain (CD)
searches identified a portion of Apolipoprotein, MSCRAMM_ClfB, MSCRAMM_SdrC,
GAT1, PPK08581, PPK05901, SMC_N, pneumo_PspA, and rplD subfamilies surround-
ing the conserved domain of accD in the predicted ORF (Table S4). The presence of
MSCRAMM_ClfB in Symphoricarpos, Linnaeoideae, and Adoxaceae indicated that this
event occurred in the most recent common ancestor of each clade (Table S4). Protein
sequence alignment of all inserted regions from the accD was highly divergent with low
amino acid identities of 2.9–96.7% (Figure S4). However, two lineages—Dipsacus/Scabiosa
and Linnaeoideae—had high amino acid identities of 94.3% and 83.1–96.7%, respectively.

The dN and dS were calculated for the selected Caprifoliaceae s.l. and outgroup using
only the conserved domain sequences to test the effect of the insertion on nucleotide substi-
tution rates of the accD gene. The dN values for accD in the selected Caprifoliaceae s.l. were
significantly higher than in the outgroup (Wilcoxon rank-sum test, p < 0.05; Figure S3).
Seven branches with dN/dS ratios > 1 were detected, but LTRs showed that three branches,
Fedia/Valerianella, Triplostegia, and Zabelia, were significantly different (p < 0.00001 after
Bonferroni correction, Figure 3). The RELAX analysis indicated that the accD experienced
significantly intensified selection in the Zabelia, Morinoideae, Linnaeoideae, Valerianoideae,
and Dipsacoideae clade (k = 1.96, p = 0.020, likelihood ratio [LR] = 5.38), and the Caprifoli-
aceae s.l. clade (k = 2.25, p = 0.032, LR = 4.60).

2.4. Length Variation in the Valeriana accD Gene

Valeriana fauriei plastome contains an expanded accD gene, which is interrupted by
amino acid repeats (AARs) surrounding the conserved domains. Compared with the
other available Valeriana plastomes, V. officinalis contains a truncated accD gene in its
genome, whereas V. sambucifolia f. dageletiana contains an expanded accD like V. fauriei accD
(Figure 4A). To evaluate the variability of the AAR motifs in the accD gene of V. fauriei and
V. sambucifolia f. dageletiana, we designed a PCR primer that targets two hotspot regions of
accD (Figure 4A). The amplicon sizes of the region ranged from 966 bp to 1239 bp (Table S5).
Alignment of the two region sequences of the 50 individuals with two accD sequences
from two plastomes revealed intra-and infraspecific variation of the accD in Valeriana
(Figure 4). Two hotspot regions show length variation, consisting of (1) 3 to 10 repeats of
“ESTTTESFAQR” and (2) 5 to 14 repeats of “SDSEEDLIKPD”, although there are one or
three different amino acid sequences (Figure 4).

2.5. Correlation between Structural Change and Substitution Rates in the Plastid-Encoded
clpP Gene

The phylogenetic distribution of clpP content in the selected Caprifoliaceae plastomes
showed that this gene had been pseudogenized multiple times in the family (Figure 5A).
BlastN searches using the plastid-encoded clpP from Viburnum identified partial exons or in-
trons of clpP in Pterocephalus, Triplostegia, Heptacodium, Weigela, Linnaeoideae, Morinoideae,
and Zabeliaoideae, which lacked a conserved domain (Figure 5). Only Dipsacus, Scabiosa,
Fedia, Leycesteria, Nardostachys, Symphoricarpos, Valerianella, Valeriana, Lonicera, and Triosteum
plastomes contain clpP genes that differ in intron content (Figure 5A,B). Similar to the
Valerianella clpP gene, the clpP gene of Leycesteria, Lonicera, Symphoricarpos, and Triosterum
are missing both introns. The phylogenetic distribution indicated that the loss of the second
intron occurred in the Fedia/Valerianella clade (Figure 5).
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To examine the correlation between structural changes and substitution rates, dN and
dS were calculated using the 16 clpP gene sequences available (Figure 5C). Seven branches
with dN/dS values >1 were detected. However, LRTs revealed that only four branches,
Fedia/Valerianella/Valeriana/Nardostachys, Valerianoideae, Lonicera, and Caprifolioideae, were
significantly under positive selection (p < 0.00001 after Bonferroni correction). The RELAX
analysis indicated that clpP experienced significantly intensified selection in the analyzed
Caprifoliaceae s.l. (k = 2.62, p = 0.001, LR = 10.96). Additional analyses indicated that
the intronless clpP gene experienced significantly intensified selection in the subfamily
Caprifolioideae (k = 3.18, p = 0.000, LR = 16.06). In Fedia and Valerianella, the clpP gene
showed intensified selection, but this was not significant (k = 1.33, p = 0.443, LR = 0.59).
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Figure 5. Structural evolution of the clpP gene: (A) phylogenetic distribution of pseudogene or intron loss among the
selected Caprifoliaceae s.l. and five outgroups. Arrowheads indicate the positions of the first (green) and second (blue)
intron; (B) schematic diagram of the structure of clpP. Pink boxes indicate the conserved domain of caseinolytic protease;
(C) phylograms showing nonsynonymous (dN) and synonymous (dS) substitution rates for the clpP genes among 16 species
that have intact gene sequences. Branch lengths are drawn to the same scale based on dN and dS substitutions per site.
Branches with significantly higher dN/dS ratios determined by likelihood ratio test are marked with asterisks (*, p < 0.05;
**, p < 0.01; ***, p < 0.001 after Bonferroni correction).

3. Discussion

Sequencing of the F. cornucopiae, V. fauriei, V. locusta, D. japonicus, and S. comosa
plastomes revealed that they are distinct from the published plastomes of Caprifoliaceae
s.l. These plastomes exhibit dynamic changes in structure, gene and intron content, and
lineage-specific rate acceleration. Our results also showed a correlation between mutation
rates and structural variation in the accD and clpP genes across Caprifoliaceae s.l. and
interruption of the accD gene in the genus Valeriana. The loss of plastid-encoded rps15 was
observed in D. japonicus and S. comosa plastomes. Comparative analysis of the gene content
among Caprifoliaceae s.l. plastomes suggests the rps15 is lost in the common ancestor of
Dipsacus, Scabiosa, and Pterocephalus. Functional replacement of the rps15 from plastid to
the nucleus occurs in these lineages, although we found evidence for a plastid-to-nucleus
gene transfer in the Dipsacus transcriptome. Additional nuclear transcriptome data for
Scabiosa and Pterocephalus are needed for further investigation.

With the five plastomes, we selected the published plastomes of 19 additional genera
from Caprifoliaceae s.l. and five genera from Adoxaceae to reconstruct the ancestral
plastome in Caprifoliaceae s.l. and rearrangement events in each genus. Our results
revealed three synapomorphic events (one inversion and two contractions of IR) in the
Caprifoliaceae s.l. (Figure 1). A previous study showed that the inversion associated
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with the ndhF gene occurred in Adoxaceae [34]. However, compared with angiosperm
plastomes, the ancestral Caprifoliaceae s.l. plastome has an inversion between ndhF. The
comparison of the LCBs and IR boundary shift models indicates that independent events
occurred in a lineage- or species-specific manner (Figure 1). The model suggests that
the IR expansion and contraction were the main mechanisms for changes in gene order
in F. cornucopiae, V. fauriei, and V. locusta plastomes. A double-strand break, followed
by strand invasion, expansion, and recombination in IR [37], is a potential mechanism
for IR expansion in the family. After ancestral inversion, one additional inversion event
associated with ccsA-trnL-rpl32-ndhF was identified, unique to Scabiosa. Dispersed repeats
can cause inversions and there is a correlation between the number of repeats and plastome
rearrangements [6,38]. However, Scabiosa has a small number of repeats in the family,
although it has a relatively large number of repeats compared to the outgroups (Table S1).
Moreover, dispersed repeat sequences were not found surrounding the inversion block
in the Scabiosa plastome, which suggests that a different mechanism of inversion may be
involved. Several ebb-and-flow expansions and contractions were also observed in the
analyzed Caprifoliaceae s.l. plastomes.

Lineage-specific variation occurred in the Caprifoliaceae s.l. plastomes, showing that
Fedia, Valeriana, and Valerianella had significantly accelerated dS in comparison (Figure 2).
Structural rearrangements have contributed to higher substitution rates [5,14]. Compared
with the analyzed Caprifoliaceae s.l. plastomes, the three plastomes showed increased
levels of structural divergence (Figure 1). However, IR boundary shifts are the main mech-
anisms responsible for the genomic changes in this lineage. This variation appears to result
from genome-wide acceleration, arguing against localized hypermutation, mutagenic retro-
processing, and pseudogenization [16]. Mutated and changed DNA-RRR machinery could
be a potential mechanism to explain these phenomena. In the subfamily Valerianoideae,
expanded plastome sequencing and examination of organellar-targeted DNA-RRR genes
would be needed to explain the causes and consequences of fast-evolving plastomes in
this lineage.

Our analysis showed that interrupted accD evolution has occurred repeatedly across
Caprifoliaceae s.l. (Figure 3). Many plastomes show that the accD is unrecognized and
unannotated because of its extreme divergence [34,36]. In these cases, the accD appears to
have been lost and possibly transferred to the nucleus, as intracellular gene transfer (IGT) is
an ongoing process in angiosperms [3]. Evidence supports the functional replacement of the
accD gene by gene transfer to the nucleus or gene substitution of nuclear homologs, includ-
ing coexistence of the nuclear-encoded, plastid-targeted eukaryotic ACCase, prokaryotic
ACCase, and the plastid-encoded accD [15,16,20,22–26]. However, previous studies have
provided some evidence that highly divergent or truncated accD genes may be functional
in plastids. For example, the divergent copy of the plastid-encoded accD in Lamprocapnos
spectabilis (L.) Fukuhara (Papaveraceae) is transcribed [9]. A functional replacement of
truncated accD to the nucleus was found in Trachelium caeruleum L. (Campanulaceae) [20],
Hypseocharis bilobata Killip, and Monsonia emarginata (L.f.) L’Hér. (Geraniaceae) [15]. In
the selected Caprifoliaceae s.l. plastomes, many accD reading frames remain intact, and
several have truncated with the catalytic sites, which suggests that it probably encodes
a functional protein. The intensity of both purifying (most branches are dN/dS < 1) and
positive selection (three branches, Fedia/Valerianella, Triplostegia, and Zabelia with dN/dS > 1)
also indicated that the accD is under selective constraint or adaptive changes. To fully
understand the evolution of ACCase among Caprifoliaceae s.l. genomes, searching the
assembled nuclear transcriptomes are required. In addition, we examined the variability of
the AAR motifs in the accD gene and found evidence of intraspecific length variation in
the Valeriana. One possible mechanism for length polymorphism is replication slippage
and recombination [39]. Similar patterns of the accD gene have been previously shown
to have repetitive amino acid sequence motifs in L. spectabilis [9] and Medicago truncatula
Gaertn. [40]. Gurdon and Maliga [40] suggested that repetitive amino acid motifs within
the accD could be recombinationally driven.
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Previous studies have shown that multiple lineages experience independent
loss [7,14,41–43]. Some cases of losses are because the clpP gene is unrecognized and
unannotated owing to high divergence including structural changes. For example, the
clpP gene was annotated as a loss in the five Actinidiaceae plastomes [42,43], but the
plastomes contain clpP-like ORFs that are missing the two introns with a completely con-
served domain. The lack of internal stop codons or frameshifts suggests the functionality
of the plastid-encoded clpP. The Geranium and Monsonia clpP genes were annotated as
pseudogenes or losses [7,14]; however, extremely divergent and intronless clpP ORFs are
found in the lineages [15]. ClpP is involved in important chloroplast processes [32]. If the
divergent ORFs are pseudogenes, functional replacement by gene transfer or gene sub-
stitution must occur. However, the evolutionary fate of the plastid-encoded clpP loss has
not been reported in angiosperms. We identified at least six potential pseudogenizations
of clpP and independent losses of one or both introns in the analyzed Caprifoliaceae s.l.
(Figure 5). Using the conserved domain sequence of clpP as a query, we did not find any
evidence of divergent clpP-like ORFs that were intact. Only two lineages contained the
clpP gene, showing dynamics in intron content. The phylogenetic distribution showed the
evolutionary history of intron loss events in the subfamily Valerianoideae, in which the
loss of the second intron in the common ancestor of Fedia and Valerianella, followed by loss
of the first intron independently in Valerianella (Figure 5). The subfamily Caprifolioideae
plastome contains intronless clpP, but the history of loss events is unclear from the present
data. Direct genomic deletion, exonization of introns, retroprocessing, and gene conversion
with foreign copies are possible mechanisms of intron loss [44]. Intensified positive or
negative selection in the clpP gene among Caprifoliaceae s.l. suggests that positive selection
may act on the nuclear-encoded plastid-targeted genes. Cytonuclear coevolution between
plastid- and nuclear-encoded subunits in Caprifoliaceae s.l. should be explored to test
this hypothesis.

4. Materials and Methods
4.1. Genome Sequencing, Assembly, and Annotation

Total genomic DNA (gDNA) from V. fauriei and V. locusta from the subfamily Vaeri-
anoideae, as well as D. japonicus, and S. comosa from the subfamily Dipsacoideae (Table S5),
were isolated from fresh leaf tissues of a single individual using the Exgene Plant SV Mini
Kit (GeneAll, Seoul, South Korea) following the manufacturer’s protocol. The gDNA of
F. cornucopiae was provided by the Royal Botanic Gardens Kew DNA and Tissue Collection
(Table S5). The gDNAs were sequenced using an Illumina Hiseq2500 sequencing platform
(Illumina, San Diego, CA, USA), generating 6 Gb of 150 bp paired-end (PE) reads from a
550 bp insert library.

The PE reads were assembled de novo using Velvet v1.2.10 [45] using multiple k-mers
(99 to 141). For each plastome, the longest contigs that reflected a complete plastome
with only one copy of the IR were aligned manually, and the consensus was taken as the
final genome sequence. Finished plastomes were annotated using a BLAST-like algorithm
in Geneious Prime 2021.1.1 (www.geneious.com, accessed on 18 August 2021) with the
genes of Nicotiana tabacum L. plastome (NC_001879) as the reference, and the open
reading frames (ORFs) were confirmed using the “Find ORFs” option. Circular plastome
maps were drawn using OrganellarGenomeDRAW (OGDRAW) v1.3.1 (https://chlorobox.
mpimp-golm.mpg.de/OGDraw.html, accessed on 18 August 2021) [46]. The plastomes
were deposited in GenBank (accession numbers MZ934745-MZ934749).

4.2. Comparative Analyses

Repetitive DNA sequences in each plastome were identified by performing “blastn”
searches using BLAST + v2.6.0 [47] against itself, with a word size of 11, an e-value of
1× 10−6. The newly sequenced plastomes and the 19 published Caprifoliaceae s.l. plas-
tomes were aligned with the outgroup Viburnum betulifolium Batalin from Adoxaceae using
the “progressiveMauve” algorithm in Mauve v2.3.1 [48] in Geneious Prime. The National

www.geneious.com
https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
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Center for Biotechnology Information (NCBI) Conserved Domain Database (CDD) v3.19
was used for functional domain annotation (https://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi, accessed on 18 August 2021) [49]. Transcriptome from Dipsacus asperoides
C.Y.Cheng & T.M.Ai was assembled de novo with Trinity [50] using the Sequence Read
Archive (SRA) (SRR2043985). The potential nuclear-encoded transcript was identified in
the transcriptome by using “blastn” (e-value cutoff of 1 × 10−10) with the plastid-encoded
rps15 gene sequence from Triplostegia glandulifera Wall. ex DC. as a query. Chloroplast
transit peptide (cTP) was predicted by TargetP v1.1 [51].

4.3. Estimation of Substitution Rates

In total, 72 plastid protein-coding genes shared by all selected 29 taxa from newly se-
quenced plastomes and from the published plastomes were sampled (Table S1). Individual
genes were aligned using the back-translation method with MAFFT [52] in Geneious Prime.
The constraint tree was generated using the maximum likelihood method in IQ-TREE
v2.1.2 [53] with concatenated sequence alignment. To estimate the rates of nucleotide
substitution, all genes and the concatenated sequences were analyzed individually. The
nonsynonymous (dN) and synonymous (dS) substitution rates for datasets were calcu-
lated in PAML v4.8 [54] with the constraint tree. Codon frequencies were estimated
using the F3 × 4 model. LRTs were performed in Hyphy v2.5.23(MP) [55] to test dN/dS
changes using the MG94xREV codon model. To test for potential relaxed selection, the
RELAX [56] implemented in HyPhy was used on the Datamonkey Adaptive Evolution
Server (https://www.datamonkey.org/, accessed on 18 August 2021) [57].

4.4. Survey of Variability in the Plastid-Encoded accD Gene

To examine length variation in the accD gene at the inter- and intraspecific lev-
els, 38 V. fauriei individuals and 12 V. sambucifolia f. dageletiana individuals were sam-
pled (Table S5). The gDNAs were extracted from the fresh leaves or herbarium spec-
imens using the GeneAll Kit, or the methods described by Allen et al. [58]. Variable
regions in the accD gene were amplified by PCR using specific primers designed with
Primer3 in Geneious Prime (64F: 5′-AACTCTTATGATTCGGTTTCTCGT-3′ and 1328R:
5′-ATACCGGTTTGAATAGCCTCAGTT-3′). Each reaction was 50µL in volume, including
38.75µL of distilled water, 5µL of 10×Taq Reaction Buffer, 1µL of dNTPs (10 mM), 0.25µL
of DiaStarTM Taq polymerase (5 units/µL, Solgent Co., Daejeon, Korea), 1µL of each primer
(10 pmole/µL), and 1µL of total gDNA (20 ng). All reactions consisted of included an initial
denaturation step (95 ◦C for 2 min), 35 cycles of denaturation (95 ◦C for 20 s), annealing
(60 ◦C for 40 s), and extension (72 ◦C for 1 min 30 s), followed by a final extension (72 ◦C
for 5 min). The PCR products were purified using a PCR purification kit (MGmed, Korea)
according to the manufacturer’s protocol. Sequencing of PCR products was carried out
using an ABI 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA) at Solgent
Co. The nucleotide sequences of the plastid accD copies were aligned using MUSCLE [59]
in Geneious Prime.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221910485/s1, Figure S1: Maps for the newly sequenced plastomes, Figure S2: Nucleotide
and amino acid sequences of the nuclear-encoded RPS15 gene from Dipsacus, Figure S3: Duplication of
the trnE-UUC gene in Dipsacus japonicus plastome, Figure S4: Structural alignments of Caprifoliaceae
s.l. plastomes using Mauve. Figure S5: Amino acid sequence alignments of the plastid-encoded
accD of Caprifoliaceae s.l., Figure S6. Boxplots of the values of nonsynonymous and synonymous
substitution rates of the plastid-encoded accD for Caprifoliaceae s.l. and outgroups, Table S1: GenBank
accession numbers for taxa used in this study, Table S2: Pairwise Wilcoxon rank-sum tests of dN and
dS values among plastid genes within Caprifoliaceae s.l., Table S3: Positive selection on Caprifoliaceae
s.l. plastid genes, Table S4: CD-search results of the plastid-encoded accD gene from Caprifoliaceae
s.l., Table S5: Material information and GenBank accession numbers for length variation in the
plastid-encoded accD gene.
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