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Life-threatening cardiomyopathy is a severe, but common, complication associated with
severe trauma or sepsis. Several signaling pathways involved in apoptosis and necropto-
sis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling
causative factors are still debatable. Heparan sulfate (HS) fragments belong to the
class of danger/damage-associated molecular patterns liberated from endothelial-bound
proteoglycans by heparanase during tissue injury associated with trauma or sepsis.
We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes.
By using a novel Medical-In silico approach that combines conventional cell culture
experiments with machine learning algorithms, we aimed to reduce a significant part
of the expensive and time-consuming cell culture experiments and data generation by
using computational intelligence (refinement and replacement). Cardiomyocytes exposed
to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C
and the activation of caspase 3 (both p<0.001). Notably, the exposure of HS resulted
in the induction of necroptosis by tumor necrosis factor α and receptor interaction
protein 3 (p<0.05; p<0.01) and, hence, an increased level of necrotic cardiomyocytes.
In conclusion, using this novel Medical-In silico approach, our data suggest (i) that
HS induces necroptosis in cardiomyocytes by phosphorylation (activation) of receptor-
interacting protein 3, (ii) that HS is a therapeutic target in trauma- or sepsis-associated
cardiomyopathy, and (iii) indicate that this proof-of-concept is a first step toward simu-
lating the extent of activated components in the pro-apoptotic pathway induced by HS
with only a small data set gained from the in vitro experiments by using machine learning
algorithms.
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INTRODUCTION

Severe injuries and systemic infection are the leading causes of
death in intensive care units worldwide (1). Post-injury organ
failure is defined as a life-threatening condition caused by a dys-
regulated host response to trauma or infection resulting in dys-
function and ultimately failure of many organs. The heart is one
of themost frequently affected organs in themultiple organ failure
syndrome associated with sepsis and trauma (2, 3). Several studies
indicate that cardiac apoptosis, necrosis, or necroptosis play a
pivotal pathophysiological role in cardiomyopathy associatedwith
trauma or sepsis (4–7). Apoptosis describes a programmed, cys-
teinyl aspartate-specific protease (caspase)-dependent form of cell
death, whereas necroptosis is a programmed caspase-independent
form of necrosis. While the activation of caspase 3 leads to apop-
tosis induction, the activation of mixed lineage kinase domain-
like (MLKL) and receptor-interacting protein (RIP) 3 results in
necroptosis (8, 9). RIP3 and the pseudokinase MLKL form a
necrosome to induce necroptosis. The underlying mechanisms

and causative factors that induce cardiac apoptosis or necroptosis
in trauma or sepsis, however, are largely unknown.

Tissue injury after trauma or infection results in an increased
expression of pro-inflammatory cytokines, such as tumor necro-
sis factor alpha (TNF-α) and interleukin (IL)-6, both of which
play a central role in the process of trauma and sepsis-associated
cardiac dysfunction (10). Cytokines, such as IL-6, liberate and
activate the endo-b--glucuronidase heparanase, a sheddase that
specifically cleaves heparan sulfate (HS) fragments. HSs are highly
sulfated glycosaminoglycans covalently attached to a core pro-
tein that is localized on the plasma membrane of endothe-
lial cells (11). Once shed by heparanase, circulating HS frag-
ments belong to the heterogeneous group of “danger/damage-
associated molecular patterns (DAMPs)” (Figure 1). Indeed,
patients with septic shock show elevated serum levels of HS
fragments (12). Similar to molecules released by pathogens
(pathogen-associated molecular patterns), HS interacts with pat-
tern recognition receptors (e.g., toll-like receptors) on several
cell types [including cardiomyocytes (12)], which results in an

FIGURE 1 | Heparan sulfate induces an apoptosis/necroptosis signal pathway. (A) HS fragments are cleaved by heparanase from a HS proteoglycan, which is
localized on the plasma membrane of endothelial cells. (B) Structure of HS proteoglycan. (C) HS interacts with a pattern recognition receptor (i.e., toll-like receptor 4)
localized on the cell surface of cardiomyocytes and activates a pro-apoptotic intrinsic pathway. The signaling cascade involves phosphorylation of ERK 1/2 resulting
in the release of mitochondrial cytochrome C, which leads to cleavage and activation of caspase 3. In the next step of this pathway, PARP is cleaved and deactivated
by activated caspase 3. Induction of TNF-α caused by HS inhibits the pro-apoptotic pathway and induces phosphorylation of RIP3 and necroptosis. These
apoptosis and necroptosis signal pathways represent our Petri net model. White circles are places, and black rectangles are transitions. Unidirectional arcs indicate
directed flows. Bidirectional arcs indicate read arcs, which influence transitions, but do not consume tokens. Modified from Martin et al., Sarrazin et al., and Maeda
(13–15). HS, heparan sulfate; PARP, poly-(ADP-ribose) polymerase; ERK, extracellular signal-regulated kinase; RIP, receptor-interacting protein; TNF-α, tumor
necrosis factor alpha; Ser, serine; Xyl, xylose; Gal, galactose; GlcNAc, N-acetylgalactosamine; IdoA, iduronic acid.
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TABLE 1 | Ordinary differential equations (ODEs) of the proposed Petri net model.

Label Place ODE

Heparan sulfate p0 ẏ (p0, t) = ∂HS(t)
∂t

ph-ERK 1/2 P1 ẏ (p1) = x11x2 + x10(x1y (p0)
x9 )− x11(x2y (p1)

x11 )

Cytochrome C P2 ẏ (p2) =
(

x13x3x26
x25x26+x25+x26

− x12x2
)

+ x12(x2y (p1)
x11 )− x3y(p2)

x13
x13y(p2)

y(p2)+x25(1+y(p8)/x26)

Cleaved caspase 3 p3 ẏ (p3) = x15x4x28
x28x27+x28+x27

− x14x3x26
x26x25+x26+x25)

+ x3y(p2)
x13

x14y(p2)
y(p2)+x25(1+y(p8)/x26)

− x4y(p3)
x15

x15y(p3)
y(p3)+x27(1+y(p8)/x28)

Cleaved PARP p4 ẏ (p4) =
(
x17x5 −

x16x4x28
x28x27+x28+x27

)
+ x16x4y(p3)

x15
y(p3)

y(p3)+x27(1+y(p8)/x28)
− x17(x5y (p4)

x17 )

ERK1/2 p5 ẏ (p5) = 0
Caspase 3 p6 ẏ (p6) = 0
PARP p7 ẏ (p7) = 0
TNF-α p8 ẏ (p8) = x18x7 + x20(x6y (p0)

x9 )− x18(x7y (p8)
x18 )

pRIP3 p9 ẏ (p9) = x21x8 − x19x7 + x19(x7y (p8)
x18 )− x21(x8y (p9)

x21 )
RIP3 p10 ẏ (p10) = 0

They are constructed according to the given definition in Figure 8 for general mass action kinetics. Two special inhibiting transitions are inspired byMichaelis–Menten inhibition (37). These
are connected by red bidirectional arcs to TNF-α within the Petri net (Figure 1). xi’s are unknown, hence arbitrary selectable, parameters which will be used for optimization. Optimized
parameters and constant terms c1 to c8, which are added to establish an equilibrium initial state, are given in the online supplementary. HS, heparan sulfate; PARP, poly-(ADP-ribose)
polymerase; ERK, extracellular signal-regulated kinase; RIP, receptor-interacting protein; TNF-α, tumor necrosis factor alpha.

ALGORITHM 1 | Optimization Routine.

1: procedure Initialization()

2: y0 ← experimental start conditions

3: x0 ← initial guess

4: end procedure

5: procedure Simulation(ẏ, y0, x, t0, tend)
6: y= y0
7: t= t0
8: while t< tend do
9: yt = yt−1 + h · ẏ numerical integration with step

size h
10: t= t+ h
11: end while
12: return yt0:tend
13: end procedure
14: procedure Optimization(fobj(x))
15: Initialization()
16: while not terminated do terminate on satisfying

solution x∗

17: x←x+ Δx CMA-ES samples new
candidates for x

18: Simulation(ẏ, y0, x, t0, tend) Petri net simulation in time
interval 0-24 h

19: r= fobj(x) evaluate objective function
20: CMA-ES←(r,x ) CMA-ES adjusts sampling of

new x
21: if r is smallest r so far then
22: x*←x
23: end if
24: end while
25: return x* best parameters to minimize

the objective function
26: end procedure

inflammatory response and mitochondrial dysfunction (11, 12).
The role of HS in cardiac apoptosis and necroptosis, however, is
unknown.

The use of in vitro experiments to investigate pathophysio-
logical processes is complex, time-consuming, and expensive. A
new and very promising solution to overcome these shortcomings
of “classical” experimental techniques aimed at understanding
biology is the modeling of system biological processes using

computer-based methods (16–18). The access to data, however, is
very limited in in vitro studies, facing a small data problem. There-
fore, we established a methodology that involves expert knowl-
edge in themodeling processes combinedwith the optimization of
the unknown parameters using evolutionary algorithms (19–21).
This family of algorithms is inspired frombiological evolution and
is adequate for optimization problems that lack full mathematical
formalization between the tunable parameters and optimization
objectives (22). Introduced by Carl Adam Petri in 1962, a Petri net
is a simple graph that is built fromplaces and transitions, which are
interconnected by weighted arcs. In systems biology, places corre-
spond to the measured amount of a substrate, transitions model
changes in substrate [by ordinary differential equations (ODEs)],
while weighted arcs model the influence of the specific transition
on a place or vice versa. Petri nets are intuitive and offer both
visualization and a mathematical formalism. Nevertheless, they
are a very powerful tool for modeling complex (i.e., biological)
processes and are, hence, emerging as promising and powerful
tools in systems biology (23–26). As Petri nets have different
abstraction levels, it is possible to model different biological pro-
cesses (27). In this study, models were adapted and verified with
available in vitro data sets. The structure of Petri nets can be
extended to a system of ODE modeling the kinetic information.
This allows us to extract a system of ODEs by defining transition
functions between the substrates that are modeled by commonly
used mass action kinetics (24, 28). Their application to biological
processes, such as signal pathways, may have the potential to
facilitate the generation of valuable data, which otherwise (with
classical techniques) would be expensive and time-consuming to
generate.

Thus, the aim of the present study was (i) to investigate if HS
induces apoptosis or necroptosis in cardiomyocytes and (ii) to
evaluate the signaling pathways involved. Additionally, we aimed
to develop a proof-of-concept study for using Petri nets to simulate
the missing data (different concentrations and time-points) by
using evolutionary optimization to optimize the kinetic param-
eters and involving expert knowledge to model the structure of
the network. Using this novel Medical-In silico approach, our
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FIGURE 2 | Heparan sulfate induces a pro-apoptotic pathway. HL-1 cells exposed to 10μg/ml HS for 16 h showed a significant increase in protein expression of
(A) phospho-ERK 1/2, (B) cytochrome C, (C) cleaved PARP, and (D) cleaved caspase 3, compared to unstimulated cells. Protein expression was normalized to
unstimulated cells. (E) Relative mRNA expressions of HL-1 cells exposed to HS were analyzed by quantitative real-time PCR, compared to unstimulated cells.
Caspase 3 mRNA expression was normalized to reference gene S7 and unstimulated cells. (F) Relative caspase 3 activity of cardiomyocytes exposed to HS,
compared to unstimulated cells. The data represent the mean±SD of triplicate samples for three independent experiments. HS, heparan sulfate; PARP,
poly-(ADP-ribose) polymerase; p-ERK, phospho-extracellular signal-regulated kinase; statistical significance was performed by using unpaired t-test. *p<0.05;
**p<0.01, and ***p<0.001 vs. unstimulated cells.

data show (i) that HS induces necroptosis in cardiomyocytes by
phosphorylation (activation) of RIP3 and (ii) indicate that this
proof-of-concept is a first step toward simulating the extent of
activated components in the pro-apoptotic pathway induced by
HS with only a small data set gained from the in vitro experiments
by using machine learning algorithms.

MATERIALS AND METHODS

Cell Culture
As described previously (12, 29–31), HL-1 cells (murine car-
diomyocytes) were cultured in 10 cm plates coated with a
gelatin/fibronectin solution [5mg/L fibronectin (Sigma, Munich,
Germany), 0.02% (w/v) gelatin (Sigma)]. Cells were cultivated
in Claycomb medium (Sigma) and incubated under an atmo-
sphere of 5% CO2 and 95% air at 37°C. The medium was
supplemented with 50ml fetal calf serum (10%, Biochrom,
Berlin, Germany), 5ml norepinephrine (0.1mM, Sigma), 5ml
-glutamine (2mM, Sigma-Aldrich, Munich, Germany) and 5ml
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA).

Cell Stimulation
Cardiomyocytes were exposed to 10μg/ml HS (Amsbio, Abing-
don, UK) for 16 h. We used unstimulated cells as a negative

control, and the cells exposed to 2.5μMstaurosporine as a positive
control (AppliChem, Darmstadt, Germany).

RNA Extraction and qPCR
RNAwas isolated using the Trizol reagent, as described earlier (12,
30, 31). The following primers were used to analyze the relative
mRNA expression of caspase 3 and TNF-α in the quantitative
real-time PCR (StepOnePlus Real-Time PCR System; Thermo
Fisher Scientific, MA, USA): caspase 3, 5′ CCAACCTCAGAGA-
GACATTC 3′ (for) and 5′ TTTCGGCTTTCCAGTCAGAC 3′

(rev) and TNF-α, 5′ TCCCCAAAGGGATGAGAAG 3′ (for) and
5′ GCACCACTAGTTGGTTGTC 3′ (rev). S7 was used as the
reference gene: 5′ GGTGGTCGGAAAGCTATCA 3′ (for) and 5′

AAGTCCTCAAGGATGGCGT 3′ (rev). Relative quantification
was performed by using Microsoft Excel (Microsoft, Washington,
DC, USA).

Western Blot Analysis
Cardiomyocytes were washed with PBS and lysed using Triton
lysis buffer [300mM NaCl (Roth, Karlsruhe, Germany), 20mM
TRIS (pH 7.4) (Merck, MA, USA), 1% Triton-X100 (Sigma-
Aldrich), 200mM PMSF (Roth), 1mM DTT (Gerbu, Heidelberg,
Germany), 2mg/ml leupeptin (AppliChem), and 1mg/ml pep-
statin (AppliChem)] (12, 30). After 30min on ice, the cells were
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FIGURE 3 | Heparan sulfate induces cell death but no apoptosis in cardiomyocytes. (A) HL-1 cardiomyocytes exposed to 10μg/ml of HS for 16 h were stained with
Hoechst and PI and compared to unstimulated cells (control) and analyzed with confocal live-cell imaging. Hoechst represent the cell nuclei (blue) and PI the death
cells (red). (B) HL-1 cardiomyocytes exposed to HS for 16 h or 2.5μM staurosporine were stained with DAPI and TUNEL and compared to unstimulated cells. DAPI
represent the cell nuclei (blue) and TUNEL the apoptotic cells (red). HS, heparan sulfate; DAPI, 4′,6-diamidino-2-phenylindole; PI, propidium iodide; TUNEL,
TdT-mediated dUTP-biotin nick end labeling.

centrifuged for 10min at 4°C and 20,800× g. The supernatant
was transferred to a new tube, and the protein concentrations
were determined by the Bradford method (Roti-Quant, Roth).
Proteins were separated by 12% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis. Gel electrophoresis was carried at
120V. Separated proteins were transferred onto a polyvinylidene
diflouride membrane. After blocking, membranes were incubated
with specific primary antibodies against caspase 3 (Cell Signal-
ing, Danvers, MA, USA), poly-(ADP-ribose) polymerase (PARP)
(Cell Signaling), extracellular signal-regulated kinase (ERK) 1/2
(Cell Signaling), phospho-ERK 1/2 (Cell Signaling), cytochrome
C (Cell Signaling), RIP3 (Bio-Rad), phospho-RIP3 (Ser232)
(Abcam), MLKL (Cell Signaling), phospho-MLKL (Ser345) (Cell
Signaling), and vinculin (Sigma). After incubation with a second
antibody for 1 h at room temperature, proteins were detected
with the ECL Prime Western Blotting Detection Reagent (GE
Healthcare, Uppsala, Sweden) and the LAS-4000-System (Fuji-
film, Tokyo, Japan).

TdT-Mediated dUTP-Biotin Nick End
Labeling (TUNEL)
This method was first described in 1992 by Gavrieli et al. to
detect apoptotic cells (32). HL-1 cells were grown on glass cov-
erslips coated with gelatin/fibronectin and exposed to HS or
staurosporine for 16 h, respectively. After 16 h, the cells were
washed three times with PBS and fixed with 500μl of 4% PFA
(Sigma-Aldrich) for 1 h at room temperature. Next, the cells were
permeabilized (0.1% Triton X-100, 0.1% sodium citrate) for 2min
on ice. Cells were labeled with 5μl of TUNEL-Enzyme and 45μl
of TUNEL-Label Solution (In situ Cell Detection Kit TMR red,
Roche, Mannheim, Germany) for 1 h at 37°C in the dark. Cells
only labeled with 45μl of TUNEL-Label Solution were used as a
negative control. After washing, the nuclei were stained with 15μl
of 4′,6-diamidino-2-phenylindole. LSM 710 confocal microscope

(Zeiss, Oberkochen, Germany) was used for detection and further
analysis.

Fluorescence Flow Cytometry
Stimulated cardiomyocytes were washed three times with PBS
on ice and harvested with a scraper. After centrifugation at 4°C
and 500× g for 5min, the supernatant was discarded, and the
cells were resuspended in binding buffer, stained with Annexin V
(#550474) and 7-AAD (#559925), and then analyzed by Fortessa
LSR (all BD Biosciences, NJ, USA). Unstained cells were used for
gating the cells (upper left panel, Figure 4). The Annexin V and
7-AAD plots from the gated cells show the populations corre-
sponding to viable cells (both Annexin V and 7-AAD negative,
Gate I), early apoptotic cells (Annexin V positive and 7-AAD
negative, Gate II), late apoptotic cells (both Annexin V and 7-
AAD positive, Gate III), and necrotic cells (Annexin V negative
and 7-AAD positive cells, Gate IV).

Cell Vitality
Cells were grown on μ-slide 8-wells (IBIDI, Martinsried, Ger-
many) to analyze cell viability. Cells stimulated for 16 h were
washed with PBS and stained with propidium iodide (PI, BD Bio-
sciences) and 5μg/ml Hoechst (H3570, Invitrogen). Cell viability
of cardiomyocytes was detected with live-cell imaging at 37°C and
5% CO2 in an incubator at an LSM 710 confocal microscope.
ImageJ software was used to count the amount of dead cells.

Statistical Analysis of the In vitro
Measurements
The statistical analysis and the graphs of the relative protein
expression were performed with GraphPad Prism 5 (GraphPad
Inc., San Diego, CA, USA). An unpaired t-test or one-way
ANOVA followed by the Bonferroni test was used for multiple
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comparisons with a significance level of p< 0.05. The data rep-
resent the mean± SD for three independent experiments per-
formed in triplicates.

Medical-In silico Model
The measured in vitro data formed the basis for utilizing spe-
cific machine learning methods. The model was designed as a
continuous Petri net (33). This allowed us to use the model
for a computational prediction of involved signaling pathways
describing the induced necroptosis in cardiomyocytes exposed to
a given amount and time of HS. The structure of the Petri net was
constructed analogous to the current understanding of the patho-
physiological process of necroptosis. The mass action kinetics
was implemented to model the pathophysiological process. This
kinetics was represented by ODEs in the transitions of the Petri
net (24). These ODEs were parameterized, where the parameters
are adapted based on evolutionary optimization. As typical for
results gained from in vitromeasurements, our approach targeted
the small data challenge. Thus, we optimized the parameters of
the ODEs in order to minimize the mean square error of the given
data samples to the simulated data.

The designed model is rather abstract and represents only a
part of entire and complex pathophysiological process of apoptosis
or necrosis. The model was constructed and optimized as follows
(Figure 7):

I. The pathophysiological process was comprehensively
defined (Figure 7).

II. Analog to the preceding description, the Petri net structure
was derived.

III. ODEs were extracted from the structure of the Petri net. The
transition functions between the substrates were based on
the mass action kinetics (Table 1).

• The parameters of the kinetics (Figure 8) were optimized
in a way that the simulated data fitted the measured data
according to a minimummean square error approach.

• The output of the model was simulated based on the
Matlab ODE solver (34) (Algorithm 1).

IV. Based on the system of ODEs, an optimization problem was
formulated that incorporates the in vitromeasurements.

V. The ODEs were parameterized by Covariance Matrix Adap-
tion—Evolutionary Strategy, an algorithm that minimizes
the objective function (35, 36).

VI. A visualization of the time course was simulated by numer-
ical integration from the parameterized ODEs.

VII. Finally, the model was analyzed and either accepted or
previous design steps were refined.

Optimization Process
The optimization is mainly based on data acquired from in vitro
experiments (39). Each protein andmRNAexpression of the path-
way is measured for a specific initial amount of induced HS after
a specific time. For a mathematical formulation of the conducted
optimization problem, i.e., fitting the model parameters to the
experimental data, we defined a real valued observation function
g(θ) that provides the experimental data to the algorithm. Since

each place in the Petri net corresponds to a component of the
signaling pathway, g(θ) is equivalent to a noisy measurement of
place p within the model at time t and initial state s (40, 41). Each
in vitro measurement is defined by the triple θ = (p,t,s), so that
Θ is the set of all in vitro measurements. For instance, cleaved
PARP is measured after 16 h within an in vitro experiment that
was carried out for 10μg/ml induced HS. Since cleaved PARP
corresponds to place p4 in ourmodel, the exemplarymeasurement
is defined by θ = (p= p4, t= 16h,s= 10μg/ml HS). To fit the
model’s parameters, only a subset of all measurements Θ was used.
This training set is denoted by ΘT. The remaining measurements
are used for later validation of the acquiredmodel. Following these
definitions, the square errors between in vitromeasurements and
model simulation y(θ;x) (where x denote the parameter vector of
the petri net model) are formulated by

f0(x) =
∑

θ∈ΘT

|g(θ) − y(θ; x)|
2
.

In order to satisfy the biological constraints, i.e., magnitudes
of relative protein expressions, by the model, we added penalties
to the objective function. Thereby, the model’s protein expres-
sions are bound into reasonable magnitudes. To achieve this, the
model should fulfill the upper bounds up and lower bounds lp for
simulated values of places p. The penalties are weighted by non-
negative λl, λu and evaluated for all simulated times, places, and
initial HS amounts, called ΘS, by

fu(x) = λu
∑

θ∈ΘS

|(y(θ; x) − up)+|
2

fl(x) = λl
∑

θ∈ΘS

|(lp − y(θ; x))+|
2
.

The penalties, which are added to the objective function, allow
us to enforce the realisticmodeling of the biological behavior. This
leads to more realistic parameters. Furthermore, all parameters
are restricted to positive real values (xlb > 0) with a limited mag-
nitude (xub < ∞). All these assumptions result in the following
optimization problem:

x*=arg min
x

fo(x) + fu(x) + f1(x)

subject to xlb < x < xub.
The above mentioned problem is solved with the CMA-

ES optimizer (22, 35, 36). By this, the optimal set of
parameters, x* that minimizes the objective function
is utilized for numerical simulation of the model and
time course prediction. The optimization routine is
given in the listing of Algorithm 1. The source code
for the presented procedure is made available on GitHub
(https://github.com/Medical-In-silico/In-silico-Heparan-sulfate-
induced-necroptosis-in-murine-cardiomyocytes, accessed Feb-
ruary 4, 2018).

RESULTS

HS Activates a Pro-Apoptotic Signal
Cascade in Cardiomyocytes
The exposure of cardiomyocytes to HS for 16 h resulted in
a significant increase in the phosphorylation of ERK 1/2 on
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FIGURE 4 | Cell death analysis by using FACS. HL-1 cells exposed to 10μg/ml of HS and unstimulated cells (control) were stained with Annexin V and 7-AAD and
then analyzed by fluorescence-based flow cytometry. Unstained cells were used for gating the cells. The Annexin V and 7-AAD plots from the gated cells show the
populations corresponding to viable cells (both Annexin V and 7-AAD negative, Gate I), early apoptotic cells (Annexin V positive and 7-AAD negative, Gate II), late
apoptotic cells (both Annexin V and 7-AAD positive, Gate III), and necrotic cells (Annexin V negative and 7-AAD positive cells, Gate IV). The bar chart represents the
percentage (mean±SD) of necrotic cells (Annexin V-negative and 7-AAD-positive cells) in unstimulated (control) and HS-treated HL-1 cells, respectively. Triplicate
samples for three independent experiments are shown. HS, heparan sulfate; *p<0.05 control vs. HS-treated HL-1 cells.

Thr202/Tyr204 (p< 0.05; Figure 2A) and cytochrome C levels
(p< 0.001; Figure 2B). HS stimulation also resulted in a sig-
nificant activation (cleavage) of caspase 3 and inactivation
of PARP compared to unstimulated cells (p< 0.01; p< 0.05;
Figures 2C,D). Furthermore, expression of caspase 3 mRNA
(p< 0.001; Figure 2E) and relative caspase 3 activity were signifi-
cantly increased (p< 0.001; Figure 2F).

HS Induces Necrosis, but Not Apoptosis in
Cardiomyocytes
A total of 4,262 unstimulated cells and 4,243 HS-stimulated car-
diomyocytes were examined with confocal live-cell imaging. The
amount of dead cells was quantified by PI staining. Unstimulated
cells showed a cell viability of 96.15%; however, cardiomyocytes
exposed to HS showed a cell viability of 69.86% (Figure 3A).
We next investigated the number of apoptotic cells. Notably, no
apoptotic cells could be detected after exposure to HS, indicated
by the lack of TUNEL-positive cells. In contrast, the stimulation

with staurosporine for 16 h (as positive control) resulted in a sig-
nificant amount of TUNEL-positive (apoptotic) cells (Figure 3B).
Having shown that the exposure of HS resulted in a significant
amount of cell death but no induction of apoptosis, we next
investigated the amount of necrotic as well as apoptotic cells
by using FACS. Unstained cells were used for gating the cells
(upper left panel, Figure 4). The Annexin V and 7-AAD plots
from the gated cells show the populations corresponding to viable
cells (both Annexin V and 7-AAD negative, Gate I), early apop-
totic cells (Annexin V positive and 7-AAD negative, Gate II),
late apoptotic cells (both Annexin V and 7-AAD positive, Gate
III), and necrotic cells (Annexin V negative and 7-AAD positive
cells, Gate IV). Untreated cells (control) showed that the majority
of cells were viable and non-apoptotic/necrotic (Gate I, upper
right panel). In contrast to untreated cells (9.02± 1.34% Annexin
V-negative and 7-AAD positive cells), the exposure of HL-1
cells to HS resulted in 20.40± 3.91% Annexin V-negative and
7-AAD-positive cells (Gate IV, upper right and lower left panel,
p< 0.05).
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FIGURE 5 | Heparan sulfate induces necroptosis in cardiomyocytes. (A) Relative caspase 3 mRNA expressions of HL-1 cells exposed to HS for 16 h were analyzed
by quantitative real-time PCR, compared to unstimulated cells. Expression was normalized to reference gene S7 and normalized to unstimulated cells. (B) HL-1 cells
exposed to 10μg/ml HSs for 16 h showed a significant increase in phosphorylation of RIP3 and (C) MLKL compared to unstimulated cells. Protein expression was
normalized to unstimulated cells. The data represent the mean±SD of triplicate samples for three independent experiments. HS, heparan sulfate; RIP,
receptor-interacting protein; MLKL, mixed lineage kinase domain-like; TNF-α, tumor necrosis factor alpha; *p<0.05, **p<0.01 vs. unstimulated cells.

HS Induces Necroptosis, a Programmed
form of Necrosis, in Cardiomyocytes
Cardiomyocytes exposed to HS for 16 h showed a significant
increase in the relative expression of TNF-α mRNA, compared
to unstimulated cells (p< 0.05; Figure 5A). The exposure of
cardiomyocytes to HS also resulted in a significant increase in
the phosphorylation of RIP3 on Ser232 (p< 0.01; Figure 5B).
Furthermore, cardiomyocytes exposed to HS showed a significant
increase in the phosphorylation of MLKL on Ser345 (p< 0.05;
Figure 5C) compared to unstimulated cells, indicating that acti-
vated MLKL and RIP3 form a necrosome.

Time Course of PAPR Inactivation
In order to use the new Medical-In silico approach, data from
in vitro experiments of one component of the signal pathway
induced by HS at different time points and concentrations were
necessary. Thus, we generated in vitro a time course of the relative
protein expression of cleaved PARP in cardiomyocytes exposed
to 5, 10, and 20μg/ml HS for 4, 8, 16, and 24 h, respectively, using
Western blot analysis. The exposure of cardiomyocytes to either 5,
10, or 20μg/ml HS resulted in an increase in PARP inactivation,
with a peak of relative PARP inactivation after the exposure of
cardiomyocytes to 20μg/ml HS for 16 h (Figure 6).

Simulated Time Course of Involved
Components in Apoptosis and Necroptosis
Pathway
Next, we developed a proof-of-concept study for using Petri nets
to simulate the missing data (different concentrations and time-
points) by using evolutionary optimization to optimize the kinetic
parameters and involving expert knowledge to model the struc-
ture of the network. Using the measured time course of cleaved
PARP together with the results of the othermeasured components
in cardiomyocytes exposed to 10μg/ml HS for 16 h, we simu-
lated the results for the missing time points and concentrations
(Figure 9). Three dose–response curves over time were simulated
[5 (green), 10 (blue), and 20 (purple) μg/ml of HS].

FIGURE 6 | Time course of PARP inactivation. The relative PARP inactivation
was analyzed by using Western blot and detected after 4, 8, 16, and 24 h
after treatment of cardiomyocytes with 5, 10, or 20μg/ml HS, respectively.
HS, heparan sulfate; PARP, poly-(ADP-ribose) polymerase.

The simulation showed an increase in phosphorylation of ERK
1/2 in the first 2 h for all three HS concentrations. After 3 h,
the phosphorylation of pERK 1/2 reached its maximum. The
highest phosphorylation of pERK 1/2 could be detected after the
exposure of 20μg/ml of HS. After 3 h, a decrease in phospho-
rylation of pERK 1/2 was observed that reached baseline after
24 h (Figure 9A). The simulation also showed an increase in rel-
ative protein expression for cytochrome C with peak values being
observed after 4 h (Figure 9B). Figure 9C shows the simulation
of the activation of caspase 3 over time. The protein expression
of the cleaved (activated) caspase 3 continuously increased until
its peak at 8 h (independent of the investigated concentration)
(Figure 9C). The simulated time course for cleaved PARP was
(as expected) very similar to the measured cleaved PARP values
(Figure 6), as more measured data were used for this parameter
to train and validate the model. The simulated relative protein
expression of cleaved PARP increased and peaked after 12 h. The
simulation showed a slow decrease in the relative cleaved PARP
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FIGURE 7 | The flowchart presents our Medical-In silico approach. It shows
all the undertaken processes from the pathophysiological process to the final
model. (I) The pathophysiological process is comprehensively defined.
(II) Analog to the preceding description, the Petri net structure is derived.
(III) Ordinary differential equations (ODEs) are extracted from the structure of
the Petri net. (IV) Based on the system of ODEs, an optimization problem is
formulated incorporating in vitro measurements. We might enhance the
objective function with some penalty functions that drive the model into
biological boundaries. (V) The ODEs are parameterized by an evolutionary
strategy algorithm that minimizes the objective function. (VI) A visualization of
the time course is simulated by numerical integration from the parameterized
ODEs. (VII) Finally, the model is analyzed and either accepted or previous
design steps are refined.

protein expression after the peak values and did not reach the
baseline within the simulated time (Figure 9D). The phosphory-
lation of RIP3 showed its maximum after 14 h with only a slight
decrease for all three concentrations after reaching the peak values
(Figure 9E). The simulation indicated an increase in the relative
TNF-α mRNAexpression during the first 8 h, which did not reach
baseline values within the simulated time (Figure 9F).

DISCUSSION

Trauma and sepsis cause tissue injury, resulting in the release
of DAMPs that are able to induce a pro-inflammatory signal
cascade and the release of pro-inflammatory cytokines such as
TNF-α (42). Several signaling pathways involved in apoptosis
and necroptosis are linked to trauma- or sepsis-associated car-
diomyopathy. However, the underling causative factors are still

FIGURE 8 | Formal definition of a continuous Petri net (CPN). Our model is a
CPN. CPNs can be represented equivalently by ordinary differential equations
and, thus, inherit dynamical behavior. The exemplary CPN shows our
notation: °T (p) is the set of all incoming transitions of place p. T°(p) is the set
of all outgoing transitions of place p. °P(τ) is the set of all places with an edge
directed to transition τ. With this notation, we define the transition functions
by ∂y(p)

∂t =
∑

τ∈•T (p)
d(τ, p)v(T )−

∑
τ∈T •(p)

d(p, T )v(T ). In the case of

general mass action kinetics (38), the transitions are given by
v(T ) = x(T ) ·

∏
p∈•P(T )

y(p)d(τ,p), where x(τ) are the kinetic rates.

unknown. Using a novel Medical-In silico approach, this study
shows (i) that HS induces necroptosis in cardiomyocytes by phos-
phorylation (activation) of RIP3, (ii) suggest that HSmay have the
potential as a therapeutic target in trauma- or sepsis-associated
cardiomyopathy, and (iii) indicate that this proof-of-concept is a
first step toward simulating the extent of activated components
in the pro-apoptotic pathway induced by HS with only a small
data set gained from the in vitro experiments by using machine
learning algorithms.

Activation of the Pro-Apoptotic Signaling
Cascade by HS
Cell death caused by inflammation can be mediated by two pro-
cesses: necrosis and apoptosis. It is well known that both, necrosis
and apoptosis, lead to a loss of intact cardiomyocytes in cardiovas-
cular diseases (10). Apoptosis represents a type of programmed
cell death that is regulated by caspases cascade (8) and activated
by two different pathways: the extrinsic and the intrinsic pathway
(43). In the intrinsic pathway, the pro-apoptotic signaling cascade
is proceeded by the release of mitochondrial cytochrome C. ERK
1/2 belong to the family of mitogen-activated protein kinases
(MAPKs) which are involved in different cell processes and cell
death (44). Phosphorylation and, thus, activation of ERK 1/2 by
extracellular stimuli (such as DAMPs) results in the release of
cytochrome C (45). Indeed, our data indicate that the exposure of
HS to cardiomyocytes results in an increased expression of phos-
phorylation of ERK 1/2 and cytochromeC release (Figures 2A,B).
Moreover, the exposure of HS to cardiomyocytes also resulted in
the cleavage (activation) of caspase 3 (Figures 2C,E,F). The effec-
tor caspase 3 is a pro-apoptotic caspase that is activated by mito-
chondrial cytochrome C and induces apoptosis in its activated
form. Furthermore, we found increased levels of the cleaved prod-
uct of PARP, indicating the activation of the pro-apoptotic signal
cascade (Figure 2D). Cleaved PARP is a by-product of the pro-
apoptotic signal cascade. PARP, normally involved in DNA repair,
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FIGURE 9 | Simulated time course of all involved components of the apoptosis/necroptosis signal pathway induced by HS. Simulated time course of the
components involved in intrinsic apoptosis and necroptosis signaling pathways for cardiomyocytes exposed to three different HS concentrations [5 (green), 10 (blue),
and 20 (purple) μg/ml of HS]. The blue background represents the standard error of the measured data. The model was simulated based on relative cleaved PARP
values. The filled points in graphs represent data used for training and the unfilled for validation. Simulated time course for relative protein expression of
(A) phosphorylation of ERK 1/2, (B) cytochrome C, (C) cleaved caspase 3, (D) cleaved PARP, and (E) phosphorylation of RIP3 is shown. (F) Simulated data of
relative TNF-α mRNA expression. HS, heparan sulfate; ph-ERK, phospho-extracellular signal-regulated kinase; PARP, poly-(ADP-ribose) polymerase; RIP,
receptor-interacting protein; TNF-α, tumor necrosis factor alpha.

is cleaved and subsequently deactivated by the pro-apoptotic-
cleaved caspase 3 (46). Our results indicate that the induction
of the pro-apoptotic cascade by HS may proceed through the
intrinsic pathway (Figure 2) (47).

HS Induces Necroptosis in Cardiomyocytes
Using TUNEL, we could not detect any apoptotic cardiomyocytes
after the exposure to HS. Flow cytometry using Annexin V/7-
AAD staining and determination of cell vitality using PI/Hoechst
staining showed that HS (within 16 h) causes cell death secondary
to necrosis, rather than apoptosis (Figures 3 and 4). Moreover,
the simulation showed a peak of caspase 3 activation (Figure 9C)
already after 8 h, suggesting that 16 h of HS exposure might be
too long to detect apoptosis in cardiomyocytes, which indeed
was not detectable in our in vitro experiments (Figures 3 and
4). Necrosis is known and described as an unprogrammed cell
death; however, Degterev et al. described a programmed form of
necrosis, named necroptosis (48). TNF-α is a pro-inflammatory
cytokine that induces necroptosis by activation of RIP3 andMLKL
(49, 50). More specifically, TNF-α induces the activation (phos-
phorylation) of RIP3, which forms a necrosome with MLKL and,
hence, induces necroptosis (9). Indeed, the exposure of cardiomy-
ocytes to HSs resulted in an increased, relative TNF-α mRNA
expression (Figure 5A), confirming previous data of our group
that showed higher TNF-α levels in the supernatant of cardiomy-
ocytes exposed to HS (30). In line with this finding, we also found
that RIP3 and MLKL activation was increased in cardiomyocytes
exposed to HS for 16 h (Figures 5B,C). In addition, the simu-
lation results showed the highest relative expression of TNF-α

(Figure 9F) and the highest phosphorylation of RIP3 (Figure 9E)
between 10 and 16 h, underlying the in vitro detected necrop-
tosis after 16 h exposure to HS. The phosphorylation of RIP3
is essential and represents a pivotal pathway in the necroptosis
induced by TNF-α, as phosphorylated RIP3 forms together with
phosphorylated MLKL the necrosome, which ultimately induces
necroptosis (51). Intracellular ATP levels also play a role in the
crosstalk between apoptosis and necrosis, as lower ATP concen-
trations result in necrosis, while higher ATP concentrations drive
apoptosis (52). Notably, we recently showed that the exposure
of cardiomyocytes to HS results in lower ATP concentrations in
cardiomyocytes (12), possibly secondary to excessive activation of
PARP (53).

Simulated Time Course
As the use of in vitro experiments to investigate pathophysiological
processes is complex, time-consuming, and expensive, we aimed
to investigate a new and very promising solution to overcome
these shortcomings of “classical” experimental techniques using
computer-based methods. Our Medical-In silico approach pro-
poses an alternative to running a wide range of experiments
with the objective of finding interesting points such as maximum
and minimum, which is costly. The optimizer offers a function
describing the relationship between the variables under investiga-
tion and time from a single training data set. Further experimental
data points suggested by the in silico experiments can be used to
further develop the model. This facilitates the accumulation of
knowledge from experimental data and minimizes the number of
needed experiments to be used by the optimizer. The simulated
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results (Figure 9) indicated that the optimization process offered
solutions that fitted all the experimental data for all experiments.
In addition, some of the experimental data sets were not used in
the training process to be used for verification (Figure 9D). The
mean deviation of these verification data was 20.49%. Given the
low number of training and verification data relative to the system
complexity, the verification process is non-conclusive; however,
this verification process constitutes an indication to the system
learning convergence, as a fully non-trained system has a higher
mean SD (~50%).

Limitation/Conclusion
As our investigation is limited to in vitro analyses, further in vivo
studies have to confirm the role of HS-induced necroptosis in the
pathophysiology of sepsis- and trauma-associated cardiomyopa-
thy. Moreover, the simulated data were limited to a small set of
data gained from in vitro experiments. In conclusion, our data
showed for the first time thatHS induces necroptosis in cardiomy-
ocytes by phosphorylation (activation) of RIP3 and indicate that
the used Medical-In silico approach (as a proof-of-concept) is a
first step toward simulating the extent of activated components in
the pro-apoptotic pathway with only a small data set gained from
the in vitro experiments by using machine learning algorithms.
Additionally, the simulation indicates that a Medical-In silico

approach, as performed in this study, can help to identify the right
time point for further measurements and indeed replaces further
time-consuming and cost-intense in vitro experiments.
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