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Abstract: Watermelon is an economically important vegetable fruit worldwide. The objective of this
study was to conduct a genetic diversity of 68 watermelon accessions using single nucleotide
polymorphisms (SNPs). Genotyping by sequencing (GBS) was used to discover SNPs and
assess genetic diversity and population structure using STRUCTURE and discriminant analysis of
principal components (DAPC) in watermelon accessions. Two groups of watermelons were used:
1) highly utilized 41 watermelon accessions at the National Agrobiodiversity Center (NAC) at the
Rural Development Administration in South Korea; and 2) 27 Korean commercial watermelons.
Results revealed the presence of four clusters within the populations differentiated principally
based on seed companies. In addition, there was higher genetic differentiation among commercial
watermelons of each company. It is hypothesized that the results obtained from this study would
contribute towards the expansion of this crop as well as providing data about genetic diversity,
which would be useful for the preservation of genetic resources or for future breeding programs.

Keywords: Watermelon; genetic diversity; population structure; genotyping by sequencing; GBS

1. Introduction

Watermelon is an important vegetable fruit crop for human consumption. Watermelon, ranking
among the top five most-frequently purchased fruits, is cultivated globally, with a per capita annual
consumption of ~7 kg [1]. According to the Food and Agricultural Organization of the United
Nations [2], global watermelon production was 595,422 tons in 2017 and has increased steadily, over
the years. South Korea is the 19th largest watermelon producing country in the world. Watermelon is
an economically important horticultural crop in South Korea, after pepper, oriental cabbage, radish,
and onion [3].

As watermelon contains various functional factors such as lycopene and citrulline, many seed
companies have been leading the development of various watermelon cultivars to cater to customers [4].
In general, the breeding system of seed companies is a method of continuous back-crossing after
crossing for excellent material [5]. It is reported that the watermelon breeding system of seed companies
led to gene loss in their breeding materials [4]. Guo et al. reported that there was only one SNP per
1,430 bp of watermelon cultivars between cv. Charleston Gray of the USA and cv. 97103 of China [6].
Frankel mentioned that the need for various plant genetic resources will increase in the future for the
further development of scientific and technical possibilities [7]. Therefore, the results of unabated gene
erosion should be reversed through all the possible means. Urgent action is needed to collect and
preserve irreplaceable genetic resources.
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Several molecular markers have been effectively used to assess the genetic diversity of watermelon.
Isozymes [8], RAPD [9], AFLP [10], and SSR [11,12] have been used to estimate the genetic relationship
among cultivated watermelons and Citrullus species. These studies revealed low levels of DNA
polymorphism among cultivated watermelons but high genetic diversity among the Citrullus
subspecies [12,13].

Plant genetic resources have been an intriguing research topic as one of the most essential natural
resources, resulting in major advance in the field [14]. Gene banks are concerned with the maintenance
of crop resources and genetic variations; recently, plant genetic resource conservation has started to
gather immense attention [14,15]. In order to establish effective and efficient conservation practices for
plant genetic resources, understanding the genetic diversity between and within the population is
important [16]. At present, about 1100 watermelon accessions have been collected worldwide at the
National Agrobiodiversity Center (NAC) at the Rural Development Administration in South Korea.
However, analysis of genetic diversity in the preserved watermelon accessions in NAC is lacking.
Therefore, it is necessary to learn the genetic relationship between the watermelon accessions for
the efficient management of watermelon germplasms. In this study, highly utilized 41 watermelon
accessions, which they have been ordered over five times from seed companies or institutes, conserved
at the NAC and 27 Korean commercial watermelons were analyzed using genotyping-by-sequencing
(GBS) to evaluate the genetic diversity and determine the appropriate panel of watermelon germplasm
for watermelon improvement and conservation.

2. Materials and Methods

2.1. Plant Materials

In this study, 68 watermelon accessions were used. Among them, highly utilized 41 watermelon
accessions were obtained from the National Agrobiodiversity Center (NAC) at the Rural Development
Administration in South Korea and 27 Korean commercial watermelons were obtained from each seed
company (Table S1).

2.2. DNA Extraction

DNA was extracted from 30 mg of freeze-dried leaf tissue of each genotype. The QIAGEN plant
mini kit (Qiagen, Valencia, CA, USA) was used for the extraction. DNA quality and quantity of each
sample were determined with electrophoresis in 1% (w/v) agarose gels and spectrophotometry.

2.3. Preparation of Genotyping-by-Sequencing Libraries

The amount of DNA was quantified using the standard procedure of Quant-iT PicoGreen
dsDNA Assay Kit (Molecular Probes, Eugene, OR, USA) with Synergy HTX Multi-Mode Reader
(Biotek, Winooski, VT, USA) and normalized to 12.5 ng/µL. DNA was digested with ApeKI
(New England Biolabs) at 75 ◦C for 3 h.

The libraries from restriction enzyme digestions for genotyping-by-sequencing (GBS) were
constructed according to the protocols as described previously with minor modifications [17,18].
The restriction digestion of DNA was followed by ligation with adapters. The adapters included different
barcode-containing adapters for tagging individual samples and common adapters. The ligation was
performed using T4 DNA ligase (New England Biolabs) at 22 ◦C for 2 h and the ligase was inactivated
by holding at 65 ◦C for 20 min.

Adapter ligated samples were pooled as one sample, and purified using NucleoSpin®Gel
and PCR Clean-up Kit (MACHEREY-NAGEL GmbH & Co. KG). The pooled
ligations were amplified in 50 uL reaction by multiplexing PCR using AccuPower
Pfu PCR Premix (Bioneer) and 25 pmol of each primer as mentioned below: 5′-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′ and 5′-
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3′.
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The PCR products were evaluated for the distribution of fragment sizes with BioAnalyzer 2100
(Agilent Technologies). The GBS libraries were sequenced on the Illumina NextSeq500 (Illumina,
San Diego, CA, USA) with the length of 150 bp single-end reads.

2.4. Sequence Preprocessing and SNP Calling

The raw data file was generated in binary base call (BCL) format and directly forwarded
to bcl2fastq in BaseSpace (https://basespace.illumina.com). The demultiplexing was firstly done
by bcl2fastq software with one mismatch per index from provided index sequences in sample
sheet. Preprocessed sequence reads were subjected to Stacks v2.0, ‘process_radtags’ module to
confirm the demultiplexed reads and check restriction enzyme site. Then, a quality control for
per-base quality of reads and removal of potential adaptor sequences was performed using FastQC
and Cutadapt (Figure S1). Sequence preprocessing with Stacks, FastQC and Cutadapt software
parameters are in Table S2 [19–21]. Reads were then mapped to Citrullus lanatus subsp. vulgaris
cv. 97103 reference genome (watermelon_v1) using Bowtie2 [6,22]. Command-line Picard tools
(https://broadinstitute.github.io/picard/) were used to add read groups to the reads, making available
to utilize reads for Genome analysis toolkit 3.7 (GATK) pipeline. GATK was used to perform local
realignments of reads to correct misalignments due to the presence of indels (“RealignerTargetCreator”
and “IndelRealigner” arguments) [23]. The “HaplotypeCaller” and “SelectVariants” arguments were
used for calling candidate SNPs aligned to watermelon_v1 reference genome. After raw variants
were obtained, variants were filtered with “filterVariant” module in GATK to filter out according
to quality score (The Phred scaled probability that a reference allele/alternative allele observed in
a sample polymorphism exists, QUAL < 30), quality depth (The QUAL score normalized by allele
depth for a variant, QD < 5), Fisher score (Fisher’s Exact Test to determine if there is strand bias
between forward and reverse strands for the reference or alternate allele, FS >200) and with vcftools v.
0.1.15 to restrict the missing rate (–max-missing 0.95), minor allele frequency (–maf 0.05), a number of
alleles (–min-alleles 2, –max-alleles 2), and mean read depth for a SNP locus (–min-meanDP 5) [23].

2.5. Population Structure and Genetic Diversity

The population structure was analyzed by a DAPC [24] using the adegenet package [25]
for R software. The find.clusters function was used to detect the number of clusters in the population.
It uses K-means clustering which decomposes the total variance of a variable into between-group and
within-group components. The best number of subpopulations has the lowest associated Bayesian
Information Criterion (BIC). A cross-validation function (Xval. dapc) was used to confirm the correct
number of PC to be retained. In this analysis, the data is divided into two sets: a training set (90% of
the data) and a validation set (10% of the data). The member of each group is selected by stratified
random sampling, which ensures that at least one member of each group or population in the original
data is represented in both training and validation sets. DAPC is carried out on the training set with
variable numbers of retained PCs. The degree to which the analysis is able to predict accurately the
group membership of excluded individuals (those in the validation set) is used to identify the optimal
number of PCs to be retained. At each level of PC retention, the sampling and DAPC procedures are
repeated many times [26]. The best number of PCs that should be retained is associated with the lowest
root mean square error. The resultant clusters were plotted in a scatterplot of the first and second linear
discriminants of DAPC.

Bayesian-based clustering was performed using STRUCTURE v.2.3.4 [27] by testing three
independent runs with K from 1 to 15, each run with a burn-in period of 50,000 iterations and
500,000 Markov Chain Monte Carlo (MCMC) iterations by assuming the admixture model. The output
was subsequently visualized by STRUCTURE HARVESTER v.0.9.94 [28] and the most likely number of
clusters was inferred according to Cattell [29]. A membership coefficient q > 0.8 was used to assign
samples to clusters. Samples within a cluster with membership coefficients ≤0.8 were considered
‘genetically admixed’.

https://basespace.illumina.com
https://broadinstitute.github.io/picard/
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The phylogenetic network was calculated using neighbor-net in SplitsTree4 [30]. The analysis of
molecular variance (AMOVA), the coefficient of genetic differentiation among populations (Fst) was
estimated with the Weir and Cockerman approach using four-way comparisons of the cultivar clusters
in the program vcftools v. 0.1.15 [23] and a subpopulation inbreeding coefficient (Fis) were calculated
using GenAlEx software (6.5 version) [31]. Expected and observed heterozygosity (He, Ho) and the
percentage of polymorphic loci were calculated using GenAlEx software.

3. Results

3.1. GBS Analysis

For the 68 watermelon accessions, sequencing of the GBS library yielded 171 million reads of
good quality (Figure S1). The range of read number was varied from 1,076,854 (WM35) to 3,775,195
(WM25) with an average of 2,520,034 (Tables S3 and S4). Each of 68 sample reads was mapped to
‘Citrullus lanatus subsp. vulgaris cv. 97103 v1′. In the 68 watermelon accessions, an average of 2,024,970
(80.4%) reads was aligned to the reference genome. Among them, WM48 had the highest mapping rate
(83.1%) and WM51 had the lowest (74.7%).

Considering only the successfully mapped reads from 68 watermelon accessions, SNPs were
discovered and genotypes were called by analyzing the single master alignment file with GATK [23].
A total of 14,052 GBS SNPs were identified and a total of 12,282 GBS SNPs were called after filtering out
duplicated reads. Among them, 1770 SNPs with <5% missing data were selected, finally. The numbers
of homozygote SNP loci and heterozygote SNP showed the range from 1148 (WM11) to 1715 (WM45)
with an average of 1542 and 50 (WM45) to 616 (WM11) with an average of 221, respectively (Table S5).
The average homozygote rate was approximately 87.4%, and the average heterozygote rate was 12.6%.

3.2. Genetic Diversity of 68 Watermelon Accessions

To understand the pattern of the genetic structure, a Bayesian clustering analysis in STRUCTURE
and complementary ordination analysis by Discriminant Analysis of Principal Components (DAPC)
were performed. The STRUCTURE results suggested the best grouping number (K = 4) based on
the delta K (Figure S2A). Population 1, 2, 3, and 4 consisted of 5, 2, 30, and 6 accessions, respectively,
and 25 accessions were identified in the admixed population (Figure 1A).

The number of detected clusters was four, which was in concordance with the lowest BIC value
obtained using find.clusters function. DAPC analysis was carried out using the detected number
of clusters (Figure 1B). Eight first PCs (53% of variance conserved) of PCA and three discriminant
eigenvalues were retained. These values were confirmed by cross-validation analysis. Cluster 1, 2,
3, and 4 consisted of 20, 19, 19, and 10 accessions, respectively. Based on the result of STRUCTURE,
population 2 and 4 were identified to be present in cluster 1 and population 1 and 3 in cluster 4 and 3,
respectively. Among the four clusters, cluster 1 had the highest admixed individuals (12 accessions).

The genetic diversity among 68 watermelon accessions was also assessed with the phylogenetic
network (PN) using the neighbor-net method (Figure 2 and Table S6). The clustering of accessions in
the PN was generally in agreement with STRUCTURE (Figure 2A) and DAPC (Figure 2B). The inferred
sub-populations were relatively high but not completely separated. For further genetic analysis,
the clusters of DAPC were used because it separated the 68 watermelon accessions than the populations
of STRUCTURE in more detail.
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Figure 1. (A) Population structure analysis of 68 watermelon populations inferred using STRUCTURE
software based on 1,770 SNPs for delta K = 4. (B) Discriminant analysis of principal components (DAPC)
for 68 watermelon accessions using 1770 SNPs set. Eight PCs and three discriminant eigenvalues were
retained during analyses, to describe the relationship between the clusters. The axes represent the first
two Linear Discriminants (LD). Each circle represents a cluster and each dot represents an individual.
Numbers represent the different subpopulations identified by DAPC analysis.
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Results in Table 1 show that the genetic variability within clusters (93%) was greater than
the variability among clusters (7%), which means that the population is genetically diverse.
Allelic frequencies of clusters detected by DAPC were low differentiated heterozygotes (Fst = 0.068).
Observed heterozygote of four clusters ranged from 0.099 (cluster 1) to 0.193 (cluster 4), with an average
of 0.134 (Table 2). The range of expected heterozygote among four clusters was from 0.183 (cluster 4)
to 0.342 (cluster 3), with an average of 0.293. Fixation index of four clusters was in the range of −0.039
(cluster 4) to 0.689 (cluster 1), with an average of 0.540. The percentage of polymorphic loci among the
four clusters ranged from 57.5 (cluster 4) to 98.3% (cluster 3), with an average of 87.7%.

Table 1. Results of analysis of molecular variance (AMOVA) and F-statistics for the 68 watermelon accessions.

SV 1 df SS MS Est. Var. % F-statistics Nm

Among clusters 3 2943.641 981.214 20.880 7% Fst = 0.068 3.43
Within clusters 132 37595.411 284.814 284.814 93%

Total 135 40539.051 305.693 100%
1 SV, Source of variation; df, degrees of freedom; SS, sum of squares; MS, Mean square; Est. Var., Estimated variance;
%, Percentage of variation, Nm, gene flow.

Table 2. Statistics of genetic variation for the 68 watermelon population.

Pop N 1 Ho He F %P

1 20 0.099 ± 0.004 0.323 ± 0.003 0.689 ± 0.009 96.5
2 19 0.107 ± 0.003 0.323 ± 0.003 0.658 ± 0.009 97.9
3 19 0.136 ± 0.004 0.342 ± 0.003 0.615 ± 0.009 98.9
4 10 0.193 ± 0.005 0.183 ± 0.004 -0.039 ± 0.008 57.5

Total 68 0.134 ± 0.002 0.293 ± 0.002 0.540 ± 0.005 87.7
1 N, Number of individuals; Ho, Observed heterozygosity; He, Expected heterozygosity; F, Fixation index; %P,
Percentage of polymorphic loci.

The coefficient of genetic differentiation (Fst) among the four clusters was higher (0.190) in clusters 1
and 4 compared to other clusters (Table 3). Clusters with paired cluster 4 exhibited higher Fst value than
other pairs, while lower genetic differentiation (Fst = 0.157) was observed between clusters 2 and 3.

Table 3. Pairwise genetic differentiation values (Fst) clusters of 68 watermelon accessions.

Cluster Cluster Fst Nm

1 2 0.262 0.705
1 3 0.229 0.844
2 3 0.157 1.344
1 4 0.247 0.761
2 4 0.384 0.401
3 4 0.322 0.527

3.3. Genetic Diversity of 27 Korean Commercial Watermelons

The STRUCTURE results of 27 Korean commercial watermelons were similar to all other
watermelon accessions, the best grouping number (K = 4) based on the delta K (Figure S2B).
Population (KOR_Pop) 1, 2, 3, and 4 consisted of 3, 11, 3, and 2 accessions, respectively, and eight
accessions were in the admixed population (Figure 3A).

Using the lowest BIC value, three clusters (KOR_C) were detected in 27 Korean commercial
watermelons and these clusters were used to analyze the DAPC (Figure 3B). Four first PCs (61% of
variance conserved) of PCA and two discriminant eigenvalues were preserved. In Figure 3B, Linear
Discriminant 1 (LD1) separated the two major seed companies, although Linear Discriminant 2 (LD2)
did not show clear criterions to separate the three clusters. KOR_C1, C2, and C3 consisted of seven,
thirteen, and seven watermelon accessions, respectively. Compared to the result of STRUCTURE,
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KOR_Pop 1 and four admixed accessions were in KOR_1, KOR_Pop2 and two admixed accessions
were in KOR_C2, and KOR_Pop3, 4 and two admixed accessions were in KOR_C3.Genes 2019, 10, x FOR PEER REVIEW 8 of 14 
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Figure 3. (A) Population structure analysis of 27 Korean commercial watermelon populations inferred
using STRUCTURE software based on 1770 SNPs for delta K = 4. (B) Discriminant analysis of principal
components (DAPC) for 27 Korean commercial watermelon accessions using 1770 SNPs set. Four PCs
and two discriminant eigenvalues were retained during analyses, to describe the relationship between
the clusters. The axes represent the first two Linear Discriminants (LD). Each circle represents a cluster
and each dot represents an individual. Numbers represent the different subpopulations identified by
DAPC analysis.

The genetic diversity among 27 Korean commercial watermelon accessions was also assessed with
the phylogenetic network (PN) using the neighbor-net method (Figure 4 and Table S7). Groups in the
PN were, in general, in agreement with STRUCTURE (Figure 4A) and DAPC (Figure 4B), although some
individuals were assigned to different clusters depending on the approach. For further genetic analysis,
the clusters of DAPC were used because it discriminated the 27 Korean commercial watermelon
accessions according to the seed companies.
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Figure 4. Phylogenetic network analysis calculated for 27 Korean commercial watermelon accessions
using the neighbor-net method in Splits tree4 and compared with STRUCTURE (A) and DAPC (B).

As per the results of AMOVA (Table 4), the genetic variability within clusters (55%) was
greater than the variability among the clusters (45%), signifying genetic diversity of the population.
Allelic frequencies of clusters detected by DAPC were highly differentiated heterozygotes (Fst = 0.445).
Observed heterozygote of three clusters ranged from 0.049 (KOR_C3) to 0.170 (KOR_C2) with an average
of 0.094 (Table 5). The range of expected heterozygote among the three clusters was from 0.127 (KOR_C1)
to 0.291 (KOR_C3) with an average of 0.199. Fixation index of four clusters was in the range of 0.144
(KOR_C2) to 0.824 (KOR_C3) with an average of 0.524. The percentage of polymorphic loci among the
four clusters ranged from 45.6 (KOR_C1) to 76.7% (KOR_C3) with an average of 59.2%.

Table 4. Results of analysis of molecular variance (AMOVA) and F-statistics for 27 Korean commercial
watermelon accessions.

SV 1 df SS MS Est. Var. % F-statistics Nm

Among clusters 2 5474.485 2737.243 149.115 45% Fst = 0.374 0.418
Within clusters 51 9471.330 185.712 185.712 55%

Total 53 14945.815 334.828 100%
1 SV, Source of variation; df, degrees of freedom; SS, sum of squares; MS, Mean square; Est. Var., Estimated variance;
%, Percentage of variation.

Table 5. Statistics of genetic variation for three watermelon population of 27 Korean commercial
watermelon accessions.

N 1 Ho He F %P

KOR_C1 7 0.061 ± 0.004 0.127 ± 0.004 0.479 ± 0.014 45.6
KOR_C2 13 0.170 ± 0.006 0.181 ± 0.005 0.144 ± 0.012 55.2
KOR_C3 7 0.049 ± 0.004 0.291 ± 0.004 0.824 ± 0.010 76.7
Total 27 0.094 ± 0.003 0.199 ± 0.003 0.524 ± 0.008 59.2

1 N, Number of individuals; Ho, Observed heterozygosity; He, Expected heterozygosity; F, Fixation index; %P,
Percentage of polymorphic loci.

The coefficient of genetic differentiation (Fst) among the four clusters was higher (0.424) in
KOR_C1 and C2 compared to others (KOR_C1 and C3, 0.341; KOR_C2 and C3, 0.356) (Table 6).
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Table 6. Pairwise genetic differentiation values (Fst) clusters of 27 Korean commercial watermelons.

Cluster Cluster Fst Nm

1 2 0.424 0.334
1 3 0.341 0.483
2 3 0.356 0.452

4. Discussion

4.1. Genotyping by Sequencing

Genotyping by sequencing (GBS) is a high-throughput and cost-effective technology to detect
and genotype a large number of polymorphisms at the genome-scale [32]. Various challenges
posed by complex crop genomes can be overcome by GBS [1]. Previous researches developed
1073 SNPs from 130 watermelon accessions, 5254 SNPs from 183 watermelon accessions, and 2670 SNPs
from 20 watermelon accessions, respectively, for genetic mapping, SNP marker set for marker-assisted
breeding, and genetic diversity studies in watermelon [1,5,33]. Guo et al. performed re-sequencing
in 20 watermelon accessions including sweet, semi-wild, and wild watermelons to identify
6,784,860 candidate SNPs and 965,006 small insertions/deletions [6]. Although there is a lack of
analysis on the limits of the number of watermelon accessions and the association between results
of GBS and phenotypic characteristics, genetic diversity and population structure of 68 watermelon
accessions have been explained using a robust set of 1770 SNPs obtained from GBS in this study.
In particular, the genetic diversity of commercial watermelon accessions in Korea has been analyzed
for the first time using GBS.

4.2. DAPC Analysis

In this study, 68 watermelon accessions were divided into four clusters and two populations by
STRUCTURE, respectively (Figure 1). In addition, 27 Korean commercial watermelon accessions were
clustered based on the breeding program of seed companies in the result of DAPC, while STRUCTURE
results showed two populations (Figure 3). DAPC analysis divided the population into well-defined
clusters, which were related to their genetic structure, associated with provenance, ploidy, taxonomy
and breeding program of the genotypes [34]. The DAPC method provides an interesting alternative to
STRUCTURE software as it does not require the populations to be in HW equilibrium and can handle
large sets of data without using parallel processing software [35]. However, as for other multivariate
analysis, the reduction in genetic information to inter-individual or inter-population distances may
represent a substantial loss of information [36]. In this study, DAPC analysis provided a more detailed
clustering within watermelon accessions according to the breeding program of seed companies as
compared to STRUCTURE analysis. Previous studies reported that DAPC analysis showed a more
detailed clustering within landraces and bred cultivars of Prunus avium L. compared to STRUCTURE
using SNP chips and SSR markers [36,37].

4.3. Genetic Diversity of 68 Watermelon Accessions

In this study, genetic differentiation (Fst) of four clusters in 68 watermelon accessions was
low (Fst = 0.068) (Table 2). According to Wright, Fst values ranging from 0 to 0.05 indicate low,
0.05–0.15 moderate, 0.15–0.25 high, and above 0.25 very high genetic differentiations [38]. The low
genetic differentiation could be attributed to the high level of gene flow among germplasm. In this study,
gene flow (Nm) among 68 watermelon accessions was 4.43, suggesting a high genetic introgression.
Previous studies reported similar results with a low genetic differentiation value and high gene flow
among watermelon [39,40]. Gene flow <1 is considered to be low whereas Nm = 1 is considered to
be moderate [41]. Moderate or relatively low levels of gene flow can significantly reduce the loss of
genetic diversity [42,43]. In general, the high level of gene flow may be attributed to an exchange
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of genetic materials between leading to low levels of genetic differentiation [4]. In addition, high
gene flow could be attributed to a high degree of movement of germplasm probably through
frequent seed exchange. This practice results in low genetic variability among individuals within
populations [44]. Similarly, 41 watermelon accessions among 68 accessions in this study have been
distributed more than five times. Although the user’s information cannot be conclusive, it is likely
that the companies have used the 41 watermelon accessions in duplicate, signifying that the same
watermelon accessions were used in the development of company-specific cultivars and this may be the
reason for the higher gene flow of 68 watermelon accessions. Contrary to the results of 68 watermelon
accessions, the Fst (0.374) was relatively high, and the gene flow was low (0.418) among 27 Korean
commercial watermelons. It appears that Korean commercial watermelons had little or no genetic
exchange among seed companies.

4.4. Genetic Diversity of Korea Commercial Watermelon Accessions

According to the result of the DAPC analysis, 27 Korean commercial watermelons were separated
by each company. Among them, 14 watermelon accessions of KOR_C1 and KOR_C3 developed
in Farm-hannong and 13 watermelon accessions belonging to KOR_C2 were mixed with the three
main companies, Nongwoo, Sinnong and PPS. PPS is the subsidiary company of Nongwoo and the
owner of Sinnong is a former watermelon breeder of Nongwoo. It can be attributed to the same gene
pool for watermelons developed or sold by the three companies. Unlike the Nongwoo (KOR_C2),
the watermelon accessions by Farm-hannong were divided into two groups (KOR_C1 and C3) probably
due to mergers and acquisitions between companies. The watermelons belonging to KOR_C1 were
developed at Heungnongjongmyo. Heungnongjongmyo was acquired and annexed by Seminnis in
1998 and the Seminnis were annexed by Monsanto in 2005. With the acquisition of the Monsanto Korean
back in 2012, the Heungnongjongmyo and the Farm-hannong became one company. Therefore, it is
possible to assume that the watermelon accessions present currently in the same company are
genetically different.

5. Conclusions

In this study, highly utilized 41 watermelon accessions collected and conserved at the National
Agrobiodiversity Center (NAC) at the Rural Development Administration in Korea and 27 commercial
watermelons in Korea were analyzed using GBS to analyze the genetic diversity and population structure.
The results of genetic diversity and population structure in 68 watermelon accessions showed the
high level of heterozygosity in each watermelon accession and the low level of genetic differentiation
between the clusters. In addition, 27 Korean commercial watermelons were divided into three clusters
based on their seed companies and showed lower level of heterozygosity than 68 watermelon accessions.
In general, commercial watermelons have been produced and sold by seed companies in the form
of F1 [3,4]. To develop new products in seed companies, the producers focus on consumer-friendly
merchantability rather than product diversity, which results in lower genetic diversity due to the
limitation of their genetic resource [4,44]. If genetic diversity is low during the breeding of crops,
the crop can become vulnerable to environmental changes and diseases [14]. In NAC, 1162 watermelon
accessions were collected and conserved, which are mostly open-pollinated lines. In addition,
the number of watermelon accessions utilized for breeding was very low compared to the number of
accessions available because of their seed conditions such as low germination rate or seed volume.
Levi et al. mentioned that the assembly and conservation of genetically and morphologically diverse
watermelon germplasm are essential activities to ensure the current and future success of watermelon
breeding programs [45]. Watermelon germplasm collections rich in genetic and phenotypic diversity
are maintained in USDA/ARS, Turkey, China, and Southern Africa [45]. However, Solmaz et al.
reported that most of the watermelon accessions collected in Turkey, including open-pollinated and F1
hybrid cultivars, share a similar genetic background [46]. To increase the utilization of watermelon
accessions in NAC, accurate evaluation of genetic diversity and phenotypic traits is necessitated.
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