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Abstract

Many neurons display bistability–coexistence of two firing modes such as bursting and tonic spiking or tonic spiking and
silence. Bistability has been proposed to endow neurons with richer forms of information processing in general and to be
involved in short-term memory in particular by allowing a brief signal to elicit long-lasting changes in firing. In this paper,
we focus on bistability that allows for a choice between tonic spiking and depolarization block in a wide range of the
depolarization levels. We consider the spike-producing currents in two neurons, models of which differ by the parameter
values. Our dopaminergic neuron model displays bistability in a wide range of applied currents at the depolarization block.
The Hodgkin-Huxley model of the squid giant axon shows no bistability. We varied parameter values for the model to
analyze transitions between the two parameter sets. We show that bistability primarily characterizes the inactivation of the
Na+ current. Our study suggests a connection between the amount of the Na+ window current and the length of the
bistability range. For the dopaminergic neuron we hypothesize that bistability can be linked to a prolonged action of
antipsychotic drugs.
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Introduction

Bistability – coexistence of two firing modes in the same

experimental conditions – has been documented in different types

of neurons. Tonic spiking coexists with bursting [1] or with

a different spiking mode [2] in leech heart cells. Bistability of

bursting and spiking was also discovered in neuron R15 of the

marine mollusk Aplysia [3]. In this paper, we focus on the

bistability between a resting and tonic spiking states. This type of

bistability was observed in different motor neurons [4–6]. The

same type of bistability is hypothesized to be involved in short-

term memory (discussed in [7]). In a bistable cell, a short signal

triggers a long-lasting change in the firing, which encodes the last

input. Altogether, bistability is common among neurons and

endows them with richer forms of information processing.

In this study we focus on the bistability at the transition to the

state called depolarization block – a silent state that occurs in every

neuron when it receives excessive excitation. In vitro, a neuron

enters depolarization block whenever the applied current exceeds

a certain level. In a slightly different experiment, an iontophoresis

current that supplies an excitatory neurotransmitter can also lead

the neuron into depolarization block. Its minimal value that

silences the neuron characterizes the neuron and the specific

receptor (e.g. NMDA). Furthermore, depolarization block was

suggested to explain the therapeutic action of antipsychotic drugs

[8]. In schizophrenia and other diseases, the level of the

neurotransmitter dopamine (DA) is abnormally high. Antipsycho-

tics were shown to have a direct excitatory influence on the

neurons releasing dopamine – dopaminergic neurons. This should

further elevate the DA levels unless the DA neuron enters

depolarization block and stops releasing dopamine. The effective-

ness of the antipsychotics was linked to their ability to suppress DA

neuron activity by depolarization block. DA neuron is one of two

examples explored in this article.

Bistability at the transition to depolarization block has been

observed in multiple neurons [4–7,9]. However, it was not studied

in models (but see [10]) and, more importantly, most experimental

studies pay no attention to bistability at this transition. The

terminology itself is not ready to account for two separate

transitions – the stabilization of the silent state and the cessation of

spiking. Which of these transitions should be called depolarization

block? Which one is observed in experiments? This depends on the

experimental protocol. What does it say about the neuron when

the spiking and the silent states are both stable in a wide range of

the applied current? We address these questions and prepare

a theoretical basis for experimental studies of bistability. We

investigate what factors contribute to bistability at the transition to

depolarization block and propose to differentiate in experiments

the two transitions involved.

Our results show that the silent state of depolarization block

may be stable together with the tonic spiking state. In DA neurons,

progressive depolarization block was proposed as a mechanism for

the maximal therapeutic action of antipsychotic drugs [8]. Chronic

administration of drugs used in treatment of schizophrenia results

in silencing of the DA neurons due to depolarization block [11,12].

Taken together with our results, the DA neurons may stay in the

silent state after lowering the dose or complete cessation of the

drug administration because of the possible bistability between the

silent and active states (Figure 1).
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Definitions
We start by defining the notions of bistability and hysteresis in

a dynamical system.

Definition 1. The lack of reversibility as a parameter is varied is

called hysteresis [13].

Definition 2. A dynamical system having two coexisting

attractors (stable solutions) is called bistable [14]. The solutions

attract trajectories starting from different initial conditions and

determine distinct long-term behavior.

Bistability is realized in a range of a parameter and is generally

lost at bifurcations as a stable solution disappears or loses stability.

Bistability for some range of the parameter is a necessary condition

for hysteresis in any dynamical system.

The definition of depolarization block and the experimental

protocols do not take into account bistability at a strong applied

depolarization. The cessation of oscillations involves the loss of

stability or the disappearance of the oscillatory solution and

transition to the stable equilibrium state. This may occur by

different scenarios.

Scenario 1: The oscillatory solution that corresponds to spiking

decreases in amplitude to zero and merges with the equilibrium

that corresponds to the silent state. The silent state becomes stable.

This transition is a single supercritical Andronov-Hopf bifurcation,

and it does not involve any hysteresis.

Scenario 2: The equilibrium state becomes stable by giving birth

to an unstable oscillatory solution. This is a subcritical Andronov-

Hopf bifurcation. Further increase in the applied current causes

the unstable oscillatory solution to merge with the stable one,

which corresponds to spiking. Both solutions disappear, and this

transition is a saddle-node bifurcation of oscillatory solutions (limit

cycles). This transition involves bistability because between the

Andronov-Hopf and the saddle-node bifurcations, the stable

equilibrium and the stable oscillatory solution coexist.

To correctly describe the range of applied current where both

solutions are stable - bistability range, we introduce the following

definitions:

Definition 3. We call the range of the applied current where the

equilibrium state is unstable the instability range.

Definition 4. We call the range of the applied current where

a stable oscillatory solution exists the oscillatory range.

When there is no bistability in the model, these parameter

ranges coincide. On the other hand, when the oscillatory solution

disappears in a saddle-node bifurcation of limit cycles, the

oscillatory range extends to higher applied currents than the

instability range. The difference between these ranges is exactly

the bistability range.

The main objective of the current study is to reveal mechanisms

that cause bistability in the spiking subsystem of a neuron

comprised of the fast sodium and the rectifying potassium

currents. Virtually every neuron has these currents and their

interaction results in very different transitions between tonic

spiking and the silent state. One example we consider in this article

is the giant squid axon modeled by [15]. We call it the Hodgkin-

Huxley (HH) neuron in the rest of the article. In the HH neuron,

there is no bistability at the transition to depolarization block (see

Results section). The transition from spiking to silence occurs

through the supercritical Andronov-Hopf bifurcation. The other

example we consider is the spiking subsystem of the dopaminergic

(DA) neuron [16]. The DA neuron model displays strong

bistability over a large range of applied depolarization. The model

includes several currents that work in the voltage range below the

spike initiation threshold, but bistability remains strong even when

the model is reduced to spiking currents only. We call this reduced

model the DA neuron in the rest of the paper for simplicity. After

Figure 1. Simulated effect of antipsychotic drugs in the DA
neuron. The influence of the drugs is modeled as excitation by applied
current (lower trace) Tonic firing in the DA neuron (upper trace) is
interrupted with excessive excitation. DA neuron remains silent after
complete withdrawal of excitation due to hysteresis. Parameters for the
DA neuron are from Table 1.
doi:10.1371/journal.pone.0042811.g001

Table 1. Parameter values for the DA neuron and the HH
neuron.

Model

Parameter DA neuron HH neuron Dimension

C 1 1 mF/cm2

gK 4 36 mS/cm2

gNa 150 120 mS/cm2

gL 0.05 0.3 mS/cm2

EK 290 277 mV

ENa 55 55 mV

EL 234.4 254.4 mV

Na+ current activation constants

vmh 218 240 mV

Sm 8 9

Na+ current inactivation constants

vhh 248 262 mV

Sh 24 27

th
0 1 1.2

th
1 55 7.4

hh 253 267

Sh
t 12 20

DR current activation constants

vnh 235 253 mV

Sn 8 15

tn
0 5 1.1

tn
1 51 4.7

hn 279 253

Sn
t 23 50

doi:10.1371/journal.pone.0042811.t001
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the reduction, the model includes exactly the same set of spiking

currents and has the same structure and dimension as the model in

[15]. Thus, it’s not a different set of currents, but rather altered

parameters of the same spike-producing currents that determine if

the model displays bistability or not. In this paper, we identify

particular parameters of the spiking currents that produce

hysteresis and discuss physiological distinctions that characterize

these currents in different neuron types.

Methods

Conductance-Based Model
Our DA neuron and the HH neuron are simply two different

sets of parameters for the following conductance-based model.

The model contains delayed rectifier potassium, fast sodium and

leak currents and is given by the following system of differential

equations:

C
dv

dt
~Iapp{gKn

4(v{EK ){gNam
3
?(v)h(v{ENa){gL(v{EL)

dn

dt
~fn: n?(v){nð Þ=tn(v)

dh

dt
~fh: h?(v){hð Þ=th(v)

where v is the membrane potential in mV, n and h are the

activation gating variable for the K+ current and the inactivation

gating variable for the Na+ current, correspondingly. The constant

factors fn and fh in the equations above are originally set to unity

and are only varied to study the effect of gating variables’ kinetics

(see Gating variables’ kinetics effect on hysteresis subsection

below).

Thus the model is a 3-dimensional dynamical system with

variables v, n and h. Gating variables m, n and h have steady state

voltage-dependent functions in the form

X?(v)~1= 1z exp {(v{vXh)=SXð Þð Þ (where X can be m, n or

h) and voltage-dependent time constant functions given by

tX (v)~tX
0ztX

1 exp {(v{hX )
2
�
SX

t
� �

(where X is n or h).

The model parameter values for the HH neuron and the DA

neuron are given in Table 1. Computer simulations were

performed in XPPAUT [17] using the stiff method and a time

step of 0.1 ms.

The comparison of the steady state functions of the DA neuron

and the HH neuron shows that the half-activation/inactivation

values for the DA neuron are about 20 mV above the

corresponding values for the HH neuron (Figures 2A–B, 3A).

Also, the DA neuron steady state functions are steeper than those

of the HH neuron. The timescales of all three variables change by

an order of magnitude as the system evolves in the phase space.

Thus, there is no permanent timescale separation among the

variables, and we only compare the timescales of the correspond-

ing variables in the two neurons. The time constants of the K+ and

the Na+ currents display steeper voltage dependence in the DA

neuron and are an order of magnitude greater. This makes the K+

current activation and the Na+ current inactivation effectively

slower than in the HH neuron (Figures 2C, 3B). The time constant

tv of the membrane potential v depends on what currents are

open. Its minimum is determined by the conductance of the

sodium current tvmin~C=gNa, and has a similar value in both

neurons. Its maximum is approximated by the leak conductance

tvmax~C=gL, and has a much greater value in the DA neuron

(tv = 20 ms) than in the HH neuron (tv = 3.3 ms).

Below we change half-(in)activation parameter values vnh and

vhh simultaneously with hn and hh, respectively. These parameters

are linked for all channels, and such manipulation is the most

physiologically relevant.

Figure 2. The Na+ current dynamics in the DA and HH neurons.
A) Activation and B) inactivation functions of the Na+ current in the DA
neuron (solid curve) and the HH neuron (dashed curve). C) The time
constant function of the Na+ current. Note that the functions are shifted
by around 20 mV for a better comparison of the slopes. The ranges for
the HH neuron are at the top and to the right.
doi:10.1371/journal.pone.0042811.g002
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Results

The DA neuron demonstrates Class 3 excitability [14]: The

resting state remains stable for any value of the applied current.

The oscillatory solution emerges from a saddle-node bifurcation of

limit cycles, and stays completely isolated from the equilibrium

state (Figure 4A). When the half-activation of the K+ current, vnh,

is increased to 231 mV (Figure 4B), the class of excitability of the

DA neuron changes to Class 2: The oscillatory solution emerges

again from a saddle-node bifurcation of limit cycles, but in this

case the equilibrium state becomes unstable via subcritical

Andronov-Hopf bifurcations. We use the parameter set from

Figure 4B in all two-parameter bifurcation diagrams for the DA

neuron given below.

The HH neuron possesses no hysteresis and has class 2

excitability (Figure 4C). However, relatively weak bistability and

hysteresis compared to the DA neuron may be induced in the HH

neuron with a decrease in the half-activation of the K+ current vnh
(Figure 4D). Similarly, we use the parameter set from Figure 4D in

all two-parameter bifurcation diagrams for the HH neuron that

follow.

Half-(in)activation Parameters’ Effect on Hysteresis
To investigate the effect of the half-(in)activation parameters on

hysteresis in both neurons we consider the two-parameter

bifurcation diagrams where the K+ current half-activation vnh or

the Na+ current half-inactivation vhh are varied together with the

applied current.

The two-parameter bifurcation diagram in vnh and Iapp for the

DA neuron is shown in Figure 5A. This diagram shows the

location of the Andronov-Hopf and the saddle-node bifurcations

marked in Figure 4B for different values of the bifurcation

parameters. Every horizontal cross section of this diagram at

a particular value of vnh defines the instability range and the

oscillatory range which are bounded by these bifurcations. The

ranges extend in the parameter vnh and span 2-dimensional

regions. Likewise, the bistability range spans the shaded region in

the bifurcation diagram. We characterize the strength of hysteresis

by the relative size of this shaded region compared to the

instability region (bounded by solid curves in Figure 5).

At intermediate values of the applied current, the de-

polarization block boundary consists of two transitions: First,

the equilibrium state becomes stable in a subcritical Andronov-

Hopf bifurcation; second, the stable oscillatory solution dis-

appears in a saddle-node bifurcation of limit cycles (see e.g.

Figure 4B). In the range between the two bifurcations, the

system is bistable and may show oscillations or a steady voltage

depending on the initial conditions. At higher values of vnh, the

two bifurcation curves stay at a nearly constant distance

(Figure 5A) and hysteresis remains strong. Instability range

shortens and disappears at vnh =215 mV and oscillatory range

follows at vnh = 14 mV, at which point all oscillations cease in

the DA neuron.

Figure 5D shows the same bifurcation diagram for the HH

neuron. The area between the bifurcation curves is small. The

model can show a significant bistability in response to variations

in the applied current, but only with a very precise tuning of

vnh to values right above 260 mV (see e.g. Figure 4D). The

comparison of the areas of the bistability regions in the two

neurons allows us to say that bistability is much stronger in the

DA neuron.

An increase in the Na+ current half-inactivation reduces and

then completely abolishes hysteresis in both neurons (Figures 5B,

E). In Figure 5B we fix the half-activation of the K+ current at

the level indicated in Figure 5A. Thus, Figure 5A and Figure 5B

are perpendicular sections of the parameter space that intersect

along the indicated levels. The influence of the Na+ current

half-inactivation is remarkably similar in the two neurons. Along

with removing bistability, increasing half-inactivation expands

the oscillatory range very much, so that it becomes similar in

the two neurons (Figures 5B, 5E). This parameter change makes

the inactivation effectively weaker, and the Na+ window current

greater. Therefore, a weaker Na+ current inactivation promotes

oscillations at a higher applied depolarization. However,

a further elevation of the half-inactivation blocks oscillations

completely. Thus, inactivation is necessary for generating

oscillations in both neurons. Altogether, there is an optimal

value of the half-inactivation of the Na+ current that maximizes

the oscillatory range and abolishes hysteresis in the model.

The influence of the Na+ current half-activation vmh on the

transition to the depolarization block in the DA and HH neurons

is shown in Figures 5C and 5F, respectively. In the DA neuron

a decrease in the Na+ current half-activation initially expands both

oscillatory and instability regions and moderately increases

Figure 3. The K+ current dynamics in the DA and HH neurons. A) Activation and B) time constant functions of the K+ current from the DA
neuron (solid curve) and the HH neuron (dashed curve). The ranges for the HH neuron are at the top and to the right.
doi:10.1371/journal.pone.0042811.g003
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hysteresis, but below vmh=231 mV, the dependence is reversed.

Further decrease in vmh results in simultaneous shortening of

oscillatory and instability regions, but their upper boundaries

remain almost parallel and hysteresis remains strong. In the HH

neuron (Figure 5F), the oscillatory range also peaks at an

intermediate level of vmh around 245 mV. Both low and high

values of the half-activation abolish oscillations. However,

hysteresis exists only in a very narrow range of the Na+ current

half-activation and is substantially smaller than in the DA neuron

(Figure 5C).

Half-(in)activation Slope Parameters’ Effect on Hysteresis
The slopes of the activation and inactivation functions differ

substantially in the DA and HH neurons (Figures 2A, B and 3A).

Therefore, we also estimate the effect of the slope parameters on

hysteresis in both neurons.

We change the slope of the Na+ current inactivation function

from steep (|Sh| = 4) as in the DA neuron to gradual (|Sh|= 7)

as in the HH neuron (see Figure 2B) in both neurons. The

decrease in the slope (larger |Sh|) increased the instability

range. However, it reduced and then completely abolished

bistability in both neurons (Figures 6A, D). This occurs because

the instability range expands strongly and merges with the

oscillatory range as Sh increases in both neurons. Interestingly,

in the HH neuron instability region was not present until the

value of the slope parameter was around |Sh|= 6.5, but then

instability region quickly expanded removing hysteresis similarly

to Figure 5D. As for the variations in the half-inactivation

above, the influence of Sh in the two neurons is remarkably

similar. First, it removes the difference in the length of the

instability region between the neurons. Second, its increase

abolishes hysteresis. Therefore, the slope of the Na+ current

inactivation controls hysteresis and the length of the oscillatory

and instability ranges in both neurons.

The Na+ current activation function is steeper in the DA than in

the HH neuron (Figure 2A). A decrease in the slope of the function

(increasing Sm from 8 to 9, Figure 6B) leads to an almost linear

expansion of the instability and oscillatory regions in the DA

neuron. Hysteresis remains almost unchanged because the

boundaries are parallel. In the HH neuron, both the instability

and oscillatory regions shorten and shift into higher values of the

applied current with a steeper activation of the Na+ current (Sm R
8). While hysteresis increases at the low applied currents

(hyperpolarization block), at the depolarization block, hysteresis

remains unchanged because upper boundaries of both the

oscillatory and instability ranges expand almost equally. Altogeth-

er, changes in Sm only slightly shift the upper boundaries, and both

the oscillatory and the instability ranges remain of different orders

of magnitude in the HH and DA neurons. Moreover, the

boundaries shift in the opposite directions in the two neurons,

Figure 4. One-parameter bifurcation diagrams for the DA neuron and the HH neuron. Hysteresis at the upper boundary of the oscillatory
range (where it exists) is indicated by arrows showing direct and reverse transitions. A) Oscillatory solution stays isolated from the equilibrium state in
the DA neuron. This is the Class 3 excitability. Parameters for the DA neuron are from Table 1. B) The oscillatory solution connects to the equilibrium
state in an Andronov-Hopf bifurcation. Parameters are from A), except that the K+ current half-activation is increased by 4 mV (vnh =231 mV). C)
Hysteresis is not present at the upper boundary of the oscillatory range in the HH neuron. Parameters for the HH neuron are from Table 1. D) The
oscillatory solution connects to the equilibrium state in an Andronov-Hopf bifurcation. Parameters are from C), except that the K+ current half-
activation is decreased by 5 mV (vnh =258 mV). Thin curves represent equilibrium states, thick curves - limit cycles. Solid (dashed) curves represent
stable (unstable) solutions. HB is the Andronov-Hopf bifurcation, SNLC is the saddle-node of limit cycles bifurcation.
doi:10.1371/journal.pone.0042811.g004
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which only emphasizes the difference between their parameter

sets.

To test how steepness of the activation function for the K+

current affects bistability we change the slope of the K+ current

activation in both neurons from steep (Sn = 8) as in the DA

neuron to a more gradual (Sn = 15) as in the HH neuron

(Figure 3A). In the DA neuron (Figure 6C), the upper

boundaries of oscillatory and instability regions remain almost

parallel until the instability region disappears at around Sn = 12.

Even above that point, the slope parameter only weakly affects

the boundary of the oscillatory region, and hysteresis remains

almost unchanged. In contrast, in the HH neuron (Figure 6F)

the oscillations are not present for smaller values of Sn, i.e. for

the steeper voltage dependence of the K+ current. The

oscillatory range emerges above Sn = 10 and quickly expands,

whereas the equilibrium remains stable giving rise to strong

Figure 5. Two-parameter bifurcation diagrams of the DA neuron and the HH neuron in vnh/vhh/vmh and Iapp planes. The hysteresis
regions are shaded gray. A) Hysteresis is strong in the DA neuron. Parameters are from Table 1. B) Hysteresis is removed and the oscillatory region
expands in the DA neuron with the increase in the half-inactivation of the Na+ current. Parameters are from Figure 4B. C) Hysteresis is not reduced
with the decrease in the half-activation of the Na+ current. Parameters are from Figure 4B. D) Hysteresis is weak in the HH neuron. Parameters are
from Table 1. E) Hysteresis is removed in the HH neuron with an increase of vhh. Parameters are from Figure 4D. F) Hysteresis is weak in the HH neuron
with an increase of vmh. Parameters are from Figure 4D. A solid curve represents an Andronov-Hopf bifurcation, a dashed curve – a saddle-node
bifurcation of limit cycles. Horizontal dotted lines in A) and D) represent the values of half-activation of the K+ current taken in B), C) and E), F),
correspondingly. Horizontal dotted lines in B), C) and E), F) represent the values of half-(in)activations from Table 1 for the DA and HH neurons,
correspondingly.
doi:10.1371/journal.pone.0042811.g005
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hysteresis. The instability region appears above Sn = 13, rapidly

expands and limits hysteresis to short ranges at both boundaries.

Therefore, the decrease in the slope of the K+ current activation

function (Sn R 15) has an opposite effect on the instability

range in the two neurons. Extending the distinction, in the HH,

but not in DA neuron, the parameter strongly affects the

oscillatory and hysteresis regions.

Gating Variables’ Kinetics Effect on Hysteresis
None of the variables in the model is uniformly slow or

uniformly fast. The timescale of the voltage is minimal when the

Na+ current is open, and elevates to the maximum when the leak

current works alone. Likewise, the timescales of the gating

variables depend on the voltage (Figures 2C and 3B). Therefore,

there is no permanent separation onto fast and slow variables in

the model. On the other hand, comparing timescales of the

Figure 6. Two-parameter bifurcation diagrams of the DA and HH neuron for the change in slope factors of (in)activation functions.
The hysteresis regions are shaded gray. A) A gradual voltage dependence of the Na+ current inactivation function removes hysteresis in the DA
neuron. B) Steeper voltage dependence of the activation of the Na+ current has almost no effect on hysteresis in the DA neuron. C) More gradual
voltage dependence of the K+ current has little effect on hysteresis in the DA neuron. Parameters are from Figure 4B. D) More gradual voltage
dependence of the Na+ current reduces and then completely abolishes hysteresis in the HH neuron. E) Gradual voltage dependence of the activation
of the Na+ current has little effect on hysteresis at the upper boundary of oscillatory region in the HH neuron. F) Hysteresis range peaks at
intermediate values of Sn in the HH neuron. A solid curve represents an Andronov-Hopf bifurcation, a dashed curve – a saddle-node bifurcation of
limit cycles. Horizontal dotted lines in A) and D) mark the value of slope parameter from Table 1 for the HH neuron.
doi:10.1371/journal.pone.0042811.g006
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corresponding variables in the two neurons is more straightfor-

ward and has a clear physiological meaning. By changing kinetics

of the gating variables below, we study how the difference in the

timescales affects the oscillatory and instability ranges.

The inactivation variable is much faster in the HH neuron

compared to the DA neuron (Figure 2C). Therefore, we now

study how hysteresis is affected by accelerating the Na+ current

inactivation uniformly at all voltages (fh.1). Figure 7A shows

that accelerating the inactivation moderately reduces the

distance between the Andronov-Hopf and the saddle-node of

limit cycles bifurcations. Instability range shortens slower than

the oscillatory range. After the instability range disappears, the

oscillatory range continues to shorten until all oscillations cease

in the DA neuron. In the HH neuron, the transition should be

made in the opposite direction because inactivation is initially

much faster compared to the DA neuron; therefore we reduce

its rate of change (fh,1). In contrast to the DA neuron, the

instability range does not depend on the inactivation timescale

(Figure 7D). The oscillatory range shortens with slower Na+

current inactivation because the hysteresis ranges at both

boundaries of the instability range disappear (Figure 7D).

Similar results hold when the K+ current activation variable n

is accelerated (fn.1) in both the DA neuron and the HH neuron

(Figures 7B, 7E). In the DA neuron, instability range shortens

and disappears at around four times faster activation (fn = 4) of

the K+ current. The oscillatory range, first, expands with a faster

K+ activation, but then starts to decrease in size. This decrease is

more gradual than in Figure 7A for the Na+ current inactivation,

and bistability remains in the neuron when the Na+ current

becomes as fast as in the HH neuron (fn = 10). In the HH

neuron, the instability range weakly depends on the timescale of

the K+ current activation variable n. When the variable becomes

slower (fn,1), the oscillatory range shortens, and hysteresis

disappears (fn = 0.1).

Finally, we change both the Na+ current inactivation and the

K+ current activation timescales simultaneously in both neurons.

The diagram for the DA neuron (Figure 7C) is very similar to

Figure 7A. This suggests that the changes in the dynamics are not

due to the introduced mismatch between the timescales of the two

gating variables, but mostly due to the mismatch between the

timescales of the voltage and the gating variables. Furthermore, as

follows from the similarity of Figures 7A and 7C, the accelerated

Na+ current inactivation contributes the most to the loss of

oscillations. When K+ current activation is also accelerated, the

gating variables remain at the same timescale, but this only

moderately expands the oscillatory region.

In the HH neuron, when we make the kinetics of both variables

slower (fn,h R 0.1), hysteresis at the upper boundary of the

oscillatory range increases (Figure 7F). This is opposite to the

results for the differential changes in these two parameters above

(Figures 7D, E). This also contrasts the results for the DA neuron.

Hence, the reduction in hysteresis was due to a mismatch between

the timescales of the gating variables. By contrast, concurrent

slowing of the gating variables, which creates a mismatch between

the timescale of voltage and that of the two gating variables,

expands the hysteresis range.

We think that the changes in the hysteresis range are due to the

effective dimensionality of the model. Suppose that the model is

effectively 2-dimensional, that is, one of the three variables

passively follows the other two. By introducing a timescale

separation, we make the oscillator of relaxation type. A two-

dimensional relaxation oscillator (e.g. FitzHugh-Nagumo) does not

display significant hysteresis. There are geometric reasons for that:

the equilibrium state is very close to the limit cycle at the

bifurcation transition. However, if the relaxation oscillator is

(effectively) 3-dimensional and have one fast and two slow

variables, hysteresis can be made much more pronounced. The

same geometric reasoning can lead to this conclusion because the

limit cycle and the equilibrium state can now be separated more in

3 dimensions. Our results suggest that the two gating variables are

required to be equally slow compared to the voltage in order to

enhance hysteresis in the HH neuron. This is the combination that

produces a relaxation oscillator with one fast and two slow

variables.

Contribution of Other Parameters to Hysteresis
The susceptibility of the DA neuron to depolarization block

was attributed to the weakness of the delayed rectifier current

long ago. The common sense explanation is that the voltage stays

high near the state of depolarization block because the potassium

current cannot lower it enough. The increase in the maximal

conductance of the K+ current gK in the DA neuron leads to the

monotone increase of the oscillatory range and the decrease and

disappearance of the instability range (Figure 8A). The growth of

the oscillatory range is consistent with the logic outlined above,

but stabilization of the equilibrium state that entail strong

hysteresis is unexpected. In the HH neuron, the increase in gK
also leads, at first, to the expansion of the instability range

without hysteresis. Then the instability range shortens abruptly,

but the oscillatory range persists, and a significant hysteresis

region emerges (Figure 8D). Hence, the maximal conductance of

the K+ current gK efficiently controls the length of the oscillatory

range in both neurons. However, the strength of hysteresis is

controlled by other parameters because it is drastically different

in the two diagrams.

The reversal potential of the K+ current is defined by the

extracellular potassium concentration, can be controlled in

experiments, and has been found to affect hysteresis in the model

of pre-Botzinger complex respiratory neuron (Y. Molkov, private

communications). An increase in EK monotonically reduces

oscillatory and instability ranges in both the DA and the HH

neurons (Figures 8B, E). Furthermore, the upper boundaries of

both oscillatory and instability regions in the HH neuron are very

close to straight parallel lines (Figure 8E). This suggests a passive

contribution of the K+ current at the transition to depolarization

block and a linear compensation by Iapp. In the DA neuron, this

dependence is more nonlinear (Figure 8B), and the reduction in

hysteresis is much stronger.

The maximum conductance of the leak current is very different

in the two neurons (see Table 1), and determines the slowest

timescale of voltage changes (see discussion in the Model

subsection). The increase in gL in the DA neuron shortens both

instability and oscillatory ranges (Figure 8C). Instability range

disappears first and then the oscillatory range follows at gL= 0.4.

This influence of increasing gL is very similar to the influence of

accelerating both gating variables (compare Figures 8C and 7C).

This is counterintuitive because increasing gL is equivalent to

accelerating the membrane potential v and, therefore, should have

had a similar effect to slowing n and h. This differentiates the

oscillatory mechanism in the DA neuron from a relaxation

oscillator. In a relaxation oscillator, oscillations disappear if the

timescale separation is decreased or reversed. Therefore, acceler-

ating a slow variable would abolish oscillations, whereas acceler-

ating a fast variable would only promote them. The fact that

accelerating any variable abolished oscillations in the DA neuron

means that the oscillatory mechanism does not tolerate a significant

mismatch in the timescales (hence, similarity between Figures 8C

and 7C), distinguishing it from the relaxation oscillator.

Neuronal Bistability at the Depolarization Block
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In the HH neuron, increase in the maximum conductance of

the leak current shortens both the oscillatory and instability

ranges (Figure 8F). This also tells against the relaxation

oscillator mechanism and the role of the voltage as a fast

variable in the HH neuron. The elevation in gL significantly

increases the hysteresis range. Increasing gL makes the voltage,

or more precisely its slowest timescale, faster. This introduces

timescale separation similar to the one achieved by slowing the

two gating variables (Figure 7F). In both cases (Figures 7F and

8F) this leads to the increase in hysteresis at the depolarization

block. However, slowing the gating variables hardly affects the

instability region and only reduces hysteresis at the hyperpolar-

ization block. Therefore, the increase in the maximum of the

voltage timescale determined by the leak conductance promotes

oscillations and the instability of the equilibrium state in both

neurons.

Normalized Contributions of Parameters to Hysteresis
To compare the effect of different parameters on hysteresis we

compute changes in the hysteresis range with changes in each

parameter. The parameters were increased by 10%. The changes

in the length of the hysteresis range were normalized by its initial

Figure 7. Changing kinetics of gating variables in the DA neuron and the HH neuron. The hysteresis regions are shaded gray. A), B)
Bistability range shortens with accelerating the gating variables kinetics in the DA neuron. fh = 1 and fn = 1 correspond to parameter set from
Figure 4B. C) Simultaneous acceleration of both n and h variables decreases the size of bistability range. fn,h = 1 corresponds to parameter set from
Figure 4B. D), E) Hysteresis is reduced or eliminated in the HH neuron with slowing the individual current kinetics. fh = 1 and fn = 1 correspond to
parameter set from Figure 4D. F) Hysteresis is increased with simultaneous slowing of gating variables n and h. fn,h = 1 corresponds to parameter set
from Figure 4D. A solid curve represents an Andronov-Hopf bifurcation, a dashed curve – a saddle-node bifurcation of limit cycles. Horizontal dotted
lines (where shown) give the values of fh and fn for which the maximum value of the corresponding time constant function for the DA (HH) neuron
matches the maximum value of the time constant for the HH (DA) neuron.
doi:10.1371/journal.pone.0042811.g007
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length to obtain the relative contributions. The results are shown

in Table 2. For example, the increase in the maximal conductance

of the K+ current in the HH neuron from 36 mS/cm2 to

39.6 mS/cm2 (10% increase) leads to the increase in the length of

hysteresis range from 30.5 to 67.8 (122% increase) (see Figure 8D).

The increase in the (in)activation parameters vhh and vnh in the

HH neuron leads to the complete removal of hysteresis

(Figures 5C, D) and is reflected by the 100% decrease in hysteresis

in Table 2. Overall, normalized change in hysteresis in the HH

neuron is an order of magnitude higher than in the DA neuron for

most of the parameters. This provides another indication that

hysteresis in the HH neuron exists in the narrow parameter ranges

and is not as robust as in the DA neuron since small changes in

parameter values lead to large changes in hysteresis.

Figure 8. Two-parameter diagrams for the change in maximal conductances and equilibrium potential. The hysteresis regions are
shaded gray. A) Increase in gK expands the oscillatory region, shortens the instability region and increases hysteresis in the DA neuron. B) Increase in
K+ current reversal potential shortens oscillatory region much faster than the instability region, reducing hysteresis in the DA neuron. C) Increase in
the maximum conductance of the leak current shortens both instability and oscillatory regions and finally eliminates oscillations in the DA neuron. D)
Hysteresis exists in a narrow range of parameter gK in the HH neuron. E) Hysteresis at the upper boundary of the oscillatory region is not affected by
the decrease in EK in the HH neuron. F) Hysteresis is slightly reduced with the decrease in the maximum leak conductance in the HH neuron. A–C)
Parameter values from Figure 4B. D–F) Parameter values from Figure 4D. A solid curve represents an Andronov-Hopf bifurcation, a dashed curve –
a saddle-node bifurcation of limit cycles. Horizontal dotted lines mark parameter values from Table 1 for the DA and the HH neurons,
correspondingly.
doi:10.1371/journal.pone.0042811.g008
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Summary of the Results
The parameters in the two model neurons can be separated into

three groups. The first group of parameters consists of the half-

inactivation of the Na+ current vhh and the slope of the inactivation

function Sh. The two-parameter diagrams in vhh and Sh are very

similar for the HH and the DA neurons in spite of the differences

in other parameters (Figures 5B, E and 6A, D). Not only these

parameters control hysteresis in a similar way, but the two-

parameter diagrams show the strongest expansion of the

oscillatory and instability ranges. By changing the two parameters,

we can remove the order of magnitude difference in the length of

these ranges in the HH vs. DA neuron. Therefore, these

parameters contribute most to the difference between the neurons

in both hysteresis and the length of the instability/oscillatory

ranges.

The second group of parameters includes the half-activation of

the K+ and Na+ currents vnh and vmh, reversal potential of the K
+

current EK, leak conductance gL and the slope of the activation

function of the Na+ current Sm. Variations in these parameters

produce the diagrams that are quite distinct in the HH and DA

neurons, i.e. cannot make the dynamics of the two neurons similar.

This suggests that these parameters do not contribute to the

difference between the DA and the HH neurons. Nevertheless,

they influence hysteresis and the length of the oscillatory and

instability ranges similarly in both neurons.

Finally, the third group of parameters consists of the slope of the

K+ current activation function Sn and parameters that influence

the kinetics of the gating variables, i.e. fn, fh and fn,h. Variations in

these parameters not only produce different diagrams, but also

influence the neurons in the opposite ways.

Discussion

In this paper, we have analyzed bistability that distinguishes two

types of neurons. We identified their spike-producing currents as

responsible for bistability. The models were reduced to the same

system and differed by the values of the parameters. We examined

transitions between the two parameter sets and found that

bistability is present in a wide region of the multidimensional

parameter space. The values of the parameters in the bistability

regions are physiologically plausible because transitions span the

intervals between values corresponding to two types of neurons.

This is consistent with bistability between tonic spiking and the

silent state commonly observed in neurons. Our modeling suggests

that this bistability arises from the interaction of the spiking

currents.

Bistability is useful in qualitative classification of neurons based

on the firing patterns. Electrophysiological and pharmacological

characterization of neurons separates them into numerous types.

The neurons differ by their neurotransmitters, the composition of

currents, typical firing patterns, responses to pharmacological

manipulations, etc. Managing the diversity of neurons is an

enormously complex task. Thus, of critical importance are criteria

that can identify broad classes of neurons sharing some functional

similarities. A great example is the neuron characterization by

a phase response curve [18] or classification of neurons into

resonators and integrators; bistable and monostable dynamical

systems [14]. These characteristics separate broad groups of

neurons, and are very useful for predicting how neurons behave

when they interact in a network. Another example is the

separation of neurons into three classes of excitability [19]. The

class of neuron excitability is determined in one of the simplest

experiments – a negative current is applied into the soma through

an electrode and then gradually removed. In response, the neuron

first enters the silent state of hyperpolarization and then resumes

firing as the hyperpolarizing applied current is removed. The

transition from quiescence to firing determines the excitability

class.

Bistability between tonic spiking and silence has been used in

explaining the mechanisms of bursting [14]. In this case, an

additional variable plays the role of a parameter that provides

hysteresis and switches the system from spiking to silence and back.

Only artificially treating this variable as a parameter in the model

allows for observing bistability in simulations. We consider a true

parameter, applied current, and bistability that occurs in

experiments as the parameter is manipulated. Our model did

not take into account the subthreshold currents. Their inclusion

may suppress bistability in some cases. Our modeling of the DA

neuron [16] shows that a model that includes subthreshold

currents together with the spike-producing ones retains the same

bistability. How bistability is affected by subthreshold currents in

other neurons is a subject of future studies focused on particular

neurons.

We have found that bistability is much stronger in the DA

neuron than in the HH neuron. The major factors contributing to

this difference are a low half-inactivation and a steep voltage

dependence of the inactivation of the Na+ current. Only the

manipulations of these two parameters were able to abolish the

order of magnitude difference in the length of the oscillatory

region in the two neurons. They also control hysteresis in a very

similar way in spite of the difference in other parameters. The rest

of the parameters produce very different diagrams in the two

neurons. Some of them have the opposite influence on the

dynamics of the two neurons.

In order to interpret the result for the future experiments, we

connect it to physiological characteristics. The window Na+

current is its small steady state component that remains after

a strong transient component as the current inactivates. Lowering

half-inactivation parameter of the current decreases its window

component. Increasing the slope of the inactivation voltage

dependence reduces the window current as well. Our way of

changing the slope excludes any shift in the half-inactivation.

Thus, two manipulations that decrease the window current

promote bistability. Altogether, our results suggest a connection

Table 2. Normalized parameter contribution to hysteresis in the DA and HH neurons.

Parameters

Model gK gNa gL vhh vnh Sh Sm Sn

HH neuron, % 122 256 3 2100 2100 426 255 221

DA neuron, % 4 6 0 5 0 1.5 20.5 0

Initial parameter values for the DA and HH neurons were taken from Figures 4B and 4D, correspondingly.
doi:10.1371/journal.pone.0042811.t002
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between the characterization of the Na+ window current in

a neuron and strong bistability in response to changes in the

applied current.

Bistability endows neurons with richer forms of information

processing. A bistable cell encodes a brief signal by a long-lasting

change in its firing. Hence, the bistability between resting and

tonic spiking states studied in this article has been hypothesized to

be involved in short-term memory (discussed in [7]). This type of

bistability was also observed in different motor neurons [4–6].

Bistable motor neurons have been hypothesized to support

prolonged low force tasks, like posture.

Hysteresis at the upper boundary of oscillatory range may be

essential for pacemaker-type neurons as it may improve robustness

of oscillations and lead to a more efficient control of the dynamics

[9]. Efficiency and robustness follow from the inability of small

perturbations (e.g. noise) in the control parameter to switch the

neuronal activity from one mode to the other as soon as the

bifurcation parameter (applied current) is perturbed. For this

reason, many physical systems like heating thermostats utilize

hysteresis to improve efficiency by reducing the frequency of on-off

switching.

Bistability studied in this article is generally independent of the

excitability class. In particular, Class 3 excitability is always

accompanied by bistability simply because the equilibrium state

remains stable for the whole parameter range where the oscillatory

solutions exist. However, in other cases where the equilibrium

loses stability, the excitability class is unrelated to the presence of

bistability. In most cases we examined, strong bistability occurs at

the upper boundary of the instability (oscillatory) range, i.e., at the

depolarization block. The excitability class refers to the transition

at the hyperpolarization block. These two transitions are in-

dependent. The saddle-node on invariant circle bifurcation, which

is responsible for Class 1 excitability, never occurs at the upper

boundary of the oscillatory range. The half-activation of the K+

current was the most effective in spanning all three excitability

classes, but did not abolish bistability completely. By contrast,

changing the half-inactivation of the Na+ current or kinetics of the

gating variables switches the excitability only between Class 2 and

Class 3. Therefore, bistability can be used in conjunction with the

excitability class in characterizing the neurons.

All together, our paper prepares a theoretical basis for

experimental studies of bistability: bistability at the depolarization

block should be very common among neurons, and we have

determined what it characterizes, as discussed above. The

implications of this hysteresis may be as significant as the

enhanced therapeutic effect of antipsychotic drugs (Figure 1).

Should the terminology be corrected in order to prepare for the

future experiments? Historically, suppression of oscillations with

a growing applied current is called depolarization block. This

corresponds to the upper boundary of the oscillatory range and

only partially characterizes the transition. This is the boundary

observed in experiments when the applied current increases, but

not when it decreases over the same range. The other part is the

upper boundary of the instability range. We can introduce a name

for this transition; however, bistability is much more important

than the transition itself, and we suggest to directly measure the

bistability range in experiments.
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