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Abstract

The toxicity of zinc (Zn), copper (Cu), and cadmium (Cd) to the nematode Caenorhabditis

elegans was characterised under single metal and mixture scenarios at different organisa-

tional levels. The effects on population size and body length were investigated at two con-

centrations corresponding to the 24 h LC5 and LC20 levels. Metal toxicity was dependent

on metal concentration, exposure time and mixture composition. Populations exposed to

LC20 levels of Cd, ZnCu, CuCd and ZnCuCd plummeted, while for all LC5 concentrations,

population size continued to increase, albeit that single metals were less harmful than mix-

tures. Combinations of the LC20 concentration of Cd with a range of Zn concentrations

showed concentration dependent mitigating effects on population size and antagonistic

effects on mortality. By combining effects at different organisational levels, more insight into

metal toxicity was obtained. Metal effects were more evident on population size than on

body length or mortality, suggesting that population size could be considered as a sensitive

endpoint. Furthermore, our observations of ZnCd mixture effects at the individual and popu-

lation levels are consistent with literature data on the dose-dependent expression of the cdf-

2 gene, which is involved in mediation of Zn and Cd toxicity.

Introduction

Metals of natural and anthropogenic origin can be mobilised in environmental compartments

and thereby pose a toxicological risk. Essential metals (e.g. Zn, Cu) are needed for biological

functions, while non-essential metals (e.g. Cd, Pb) may disrupt biological processes depending

on their concentration, dynamic chemical speciation, bioavailability and biological species

sensitivities. Exposure to nonessential metals and to a deficiency or an overload of essential

metals can be detrimental to many animals. For ethical reasons, toxicological studies are pref-

erably performed on non-vertebrate organisms, e.g. soil nematodes such as C. elegans.
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C. elegans is a bacterivorous nematode that is ubiquitous in soil and fulfils an important

ecological role. It is a well characterised model organism that has found wide application in

mechanistic studies on the toxicity of metals, organic compounds, and nanoparticles [1–5].

The life cycle involves rapid development over 3–4 days through four larval stages (L1-L4),

production of oocytes by the adult hermaphrodite during a 4-day fertile period, then the

mature adults live for a further 10–15 days. When the environmental quality is not optimal, a

developmentally arrested third larval stage, dauer larva, is formed [6]. Adult lifespan, lifetime

fecundity and body length vary according to environmental quality [6]. Body length increases

with life stage, from ca. 370 μm at first molt, to 1060 μm when egg laying starts (T = 20˚C) [7].

Adult C. elegans typically range from 1–1.5 mm in length [8]. The highly predictable develop-

mental features of C. elegans cause their growth responses to be good toxicological endpoints.

Due to the above mentioned life history traits and known genome, C. elegans has been used

to study the toxic effects of single metals on various endpoints ranging from the molecular to

the population level. For example, at the molecular level, exposure to metal ions induces

expression of genes and induction of proteins involved in maintaining ion homeostasis and

regulating toxicity [9–12]. Whilst at the individual and population level, a reduction of biolu-

minescence, movement, feeding, growth and reproduction, a delay in egg laying and an

increased generation time were reported after exposure to Zn, Cu and/or Cd concentrations in

the LC20-LC50 range [8,13–18]. However, there is a paucity of studies that consider the com-

bined toxic effects at different organisational levels. Furthermore, in contrast to single metals,

knowledge about metal mixture effects is still scarce. Metal mixture toxicity is typically evalu-

ated in terms of the “concentration addition” (CA) model or the “independent action” (IA)

model. In both cases, deviations from the expected toxicity are interpreted as being the result

of interactions between the metals. The extent of deviation deemed to be significant, can be

based on a statistical approach or simple judgement [19]. Interactive effects of metals can be

additive, antagonistic or synergistic. The potential interplay between the biotic handling pro-

cesses for different metal ions means that the nature and timescale of toxicity responses under

mixture conditions does not follow straightforwardly from observations on single metal expo-

sures. Testing mixtures and the corresponding individual metals simultaneously is thus neces-

sary to obtain insight into the combined actions. Most studies on metal toxicity to C. elegans
correspond to short exposure periods (24 h or 48 h) [15,20–22].

In our previous study the effects of single metals and mixtures on the mortality and behav-

iour (locomotion and chemosensation) of C. elegans after short exposure times, i.e. 24 h and

48 h, were described [23]. However, there is a paucity of information on the longer term effects

of metals, even for single metal exposures. It is known that the adverse effects of Cd become

more apparent after a few days of exposure [24], which may influence its contribution to the

toxicity of mixtures as a function of time. Furthermore, toxicity to individuals can result in e.g.

mortality and decreased development, which will be reflected at the population level in lower

abundance, altered distribution of the life stages present in the population etc. Population size,

i.e. the total number of live individuals at a given time point, can thus be considered as a holis-

tic endpoint that integrates individual life histories and trans-generational effects. C. elegans is

able to alter both its larval development and its reproductive strategy (e.g. lifetime fecundity

and time of reproduction) in response to environmental stress [6] and the influence of pollut-

ants on the population growth of C. elegans has been proposed as a means to assess long-term

environmental effects [1,25].

Herein we assess the utility of population size as a potential sensitive endpoint for metal

toxicity. The aim of the present study is to gain insights into the sensitivity of C. elegans to

selected metals (Cu, Cd, Zn) and to investigate whether and how these sensitivities are mutu-

ally affected in mixture exposure scenarios at the individual (body length) and population level
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(population size), and the time dependence thereof (10–12 days). To better understand the

mitigating effect of Zn on Cd toxicity, mortality and population size of nematodes were stud-

ied after 24 h and 48 h of exposure to different LC concentrations of Zn, whether or not in

combination with LC20 of Cd. The main objectives of our study were to identify toxic effects

at the individual and population level following exposures to Cu, Cd, and Zn separately and in

various mixture combinations, as a function of concentration and exposure time.

Materials and methods

Caenorhabditis elegans culture

Caenorhabditis elegans nematodes, wild type N2 strain, were obtained from the Caenorhabdi-

tis Genetic Centre, Minneapolis, USA. NGM agar plates, seeded with Escherichia coli (OP50

strain) as food source, were used for nematode maintenance at 20˚C [26]. To ensure that nem-

atodes of the same age were used at the start of all experiments, bleaching was performed by

adding a hypochlorite solution (5 N NaOH, 8% sodium hypochlorite) to mixed-stage C. ele-
gans, thereby killing the nematodes that were not protected by an egg shell. Eggs were then

raised on NGM plates without food to arrest their development for 24 h. In this way, highly

synchronous L1 larvae were obtained. The synchronous L1 nematodes were transferred to

OP50 seeded NGM plates; 60 h later, all nematodes were in the adult stage, which was the start

point for all experiments.

Test media

Two concentrations of metals were studied in single and mixture scenarios. We chose concen-

trations corresponding to the 24 h LC5 and LC20 levels (Table 1), which were determined pre-

viously [23] for the adult life stage. For convenience, we subsequently use the terminology

“LC5” and “LC20” to denote these concentrations, even though herein we studied effects at

times beyond 24 h. Exposure media were prepared from CdCl2.2.5H2O (Alfa Aesar),

CuCl2.2H2O (Merck A.G.) and ZnCl2 (Alfa Aesar) in K-medium, supplemented with E. coli
bacteria (1.5–1.7 g wet weight / L). To prepare the E. coli, falcon tubes containing 10 mL of LB

agar inoculated with OP-50 were incubated for 24 h at 37˚C in a shaking incubator at 200

rpm. Subsequently, the solution was centrifuged at 2000 g for 20 min to obtain a bacteria pellet.

This pellet was subsequently rinsed with K-medium for three cycles and centrifuged for 5 min

at 2000 g to yield a clean pellet. The clean bacteria pellet was then suspended in the test solu-

tion at a concentration of 1.5–1.7g wet weight / L. The metal concentrations used are in line

with reported metal contents of polluted soils that have been used for toxicity studies with C.

elegans [27]. The various mixtures ZnCu, ZnCd, ZnCuCd, and CuCd were prepared by

combining the corresponding LC5 or LC20 concentrations of the individual metals. Metal

concentrations were verified by ICP-OES (ICAP 6300 Duo, Thermo scientific) (95%–115%

Table 1. LC values of Zn, Cu and Cd for adult C. elegans after 24 h of exposure.

LC2 LC5 LC20 LC40 LC60

(mg/L) (mM) (mg/L) (mM) (mg/L) (mM) (mg/L) (mM) (mg/L) (mM)

Zn 0.445 ± 0.314 0.007 ± 0.005 1.416 ± 0.771 0.022 ± 0.012 9.501 ± 2.841 0.145 ± 0.043 31.495 ± 6.186 0.482 ± 0.095 84.823 ± 17.601 1.297 ± 0.269

Cu NAa NA 0.226 ± 0.104 0.004 ± 0.002 1.299 ± 0.409 0.020 ± 0.006 NA NA NA NA

Cd NA NA 0.474 ± 0.289 0.004 ± 0.003 7.110 ± 2.315 0.063 ± 0.021 NA NA NA NA

a NA = not applicable

https://doi.org/10.1371/journal.pone.0218929.t001
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recovery). Since exposure media contained E. coli bacteria, samples were first freeze-dried

(Heto Powerdry LL 30000, Thermo Scientific), 250 μL concentrated nitric acid (TraceMetal

Grade, Fisher Chemical) was added and all samples were digested at 110˚C for 30 minutes

using a heating plate (HotBlock, Environmental Express). MilliQ water was added to make the

total volume up to 10 mL.

To allow metal partitioning between the aqueous phase and the bacteria, prior to toxicity

testing, metal solutions were first incubated with the bacterial suspensions for 12 h (at 4˚C to

suppress bacterial growth). For each sample of each experiment, the determined pH before

(5.1 ± 0.1), during and at the end of the experiment of 48 h (5.4 ± 0.3), 10 days (6.0 ± 0.3) and

12 days (7.2 ± 0.3) was within an acceptable pH range for C. elegans, thus excluding any poten-

tial effects of pH variation on the measured parameters. For each treatment three independent

replicates were made.

Determination of population size and body length

24 h after bleaching, the synchronous L1 nematodes were transferred to OP50 seeded NGM

plates. After 60 h, approximately 10 adult nematodes were transferred to a 24-well plate filled

with 1 mL K-medium (52 mM NaCl, 32 mM KCl, 5 μg/mL cholesterol, pH 5.1) [28] or test

medium (K-medium containing the test metal concentration(s)), supplemented with E. coli
OP50 (1.5–1.7 g/L). The well plates were continuously shaken (160 rpm, 20˚C). For all 8 treat-

ments (i.e. control, Zn, Cu, Cd, ZnCu, ZnCd, CuCd and ZnCuCd), the population size (i.e.

number of live larvae and adult nematodes) was determined over a period of 10 days when

exposed to LC20 levels of metal ions and over 12 days when exposed to LC5 levels. During a

long exposure period, multiple generations can be formed and thus the total population size

provides insight into trans-generational effects. Every 36 h, medium with nematodes was

transferred to a new well with fresh medium (metal stock with E. coli) (both in equal volumes)

and was split in two, thereby reducing the number of nematodes by a factor of 64 at day 10

[6,29]. However, the number of nematodes in groups exposed to LC5 metal concentrations

was exceptionally reduced by a factor of 4 at day 6 and the control, Zn and Cu group were

reduced by a factor of 8 at that time. To be able to count the number of nematodes, the number

in the control LC20 group was further reduced starting from day 6 onwards: 64x at day 6, 128x

at 8 day, 512x at day 9, 2048x at day 10. Details of the dilution protocols are given in S1 Table.

Our protocol ensured that nutritional factors were sufficient throughout the exposures, i.e.

changes in population size cannot be ascribed to a deficiency of bacteria. Every 24 h, the num-

ber of living nematodes was counted in each well by taking a picture and making a video of 10

seconds (15 fps) with a camera (Nikon DS-Ri1), attached to a stereomicroscope (Nikon

AZ100). Nematodes that were not moving or did not respond to gentle plate shaking, were

considered to be dead. These videos were also used for body length measurements. Body

length differences between generations were very clear, enabling larvae from one generation to

be easily distinguished from the larger subsequent life stages of the previous generation (S1

Fig). The body length of the post-larval stage nematodes (not necessarily from the same life

stage) was measured after 0, 5 (approximate time at which a second new generation can be

formed) and 10 days of exposure and also after 12 days of LC5 exposure, using Image-J soft-

ware. (https://imagej.nih.gov/ij). At each time point, 20 nematodes were counted in each of

the three replicates. In cases where a second generation developed, the measurements at 10

days of exposure will represent the average size of post-larval nematodes from mixed genera-

tions. Nevertheless, the average body length retains utility as a holistic measure of the overall

effects of metal ions on the population.

Metal mixture effects at individual and population levels
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Determination of population size and mortality in mixtures of Cd with

different Zn concentrations

After 24 h the synchronous L1 nematodes were transferred to OP50 seeded NGM plates. 60 h

later, approximately 10 adult nematodes were transferred to a 24-well plate filled with 1 mL K-

medium (52 mM NaCl, 32 mM KCl, 5 μg/mL cholesterol, pH 5.1) [28] or test medium (K-

medium containing the test metal concentration(s)), supplemented with E. coli OP50 (1.5 g/

L). The well plates were continuously shaken (160 revolutions per minute (rpm), 20˚C). Nem-

atodes were exposed to 24 h LC2, LC5, LC20, LC40 and LC60 concentrations of Zn [23] with

and without the presence of the LC20 concentration of Cd (Table 1). The population size

(number of larvae and adults) was determined for each exposure over a period of 2 days. Nem-

atodes were not transferred to a new well after 36 h, because of the short exposure period and

the ability to correctly count the number of nematodes. Furthermore, after 0, 24, and 48 h of

exposure, the number of live adult worms from the original population was counted in each

well by the same procedure as described above.

Statistical analysis

All statistical analyses were conducted with the program R, Version 3.1.2., with a 5% level of

significance. Normality was checked visually by histograms and by the Shapiro–Wilk test. The

Bartlett test was used to verify the homogeneity of variances.

Body length after LC5 and LC20 exposure. Linear mixed models were fitted to test the

possible effects of exposure time, treatment and their interaction on the body length. For LC5

treatments, a linear model with time as a continuous variable was fitted. For LC20 treatments

the change over time was not linear, thus time was entered as a categorical variable. Since body

length was repeatedly measured over time, a random intercept term was added to account for

the non-independence between observations within the same treatment.

For LC5, regression lines that model body length vs. time were fitted for each treatment sep-

arately. Multiple linear regression was used to compare the slopes of such lines for the single

metals, the mixtures, and between the mixture and corresponding single metals. Significant

differences in slopes were ascribed to differences in the time dependency of toxicity between

treatments. A Dunnett test was carried out to compare the slopes of the treatments with the

control.

In the nonlinear LC20 case, for each treatment separately, the difference in body length

between the 3 time points was calculated with a one-way ANOVA with a Tukey correction for

multiple comparison. Furthermore, for each day a one-way ANOVA followed by a Tukey post

hoc test was fitted to determine the differences in body length between the single metals, the

mixtures, and between the mixture and corresponding single metals. At both LC5 and LC20

levels, the results for the various metal treatments were compared with the control by a Dun-

nett post hoc test.

Population size after exposure to LC5, LC20 and ZnCd mixtures. Differences in popu-

lation size, i.e. total number of live nematodes N, were analysed for LC5, LC20 and the various

ZnCd mixtures separately. The presence of multiple generations and different trends in popu-

lation size between treatments (exponential, linear, polynomial), made it difficult to describe

the population growth rate by a single number and to compare the population growth rates

between treatments. Therefore, for all combinations of treatments, three values that summa-

rise effects on the C. elegans population size were compared, namely (i) the area under the pop-

ulation size vs. time curve, (ii) the maximum population size attained during the exposure,

and (iii) the population size at the end point. For LC5 and LC20 treatments, the values were

computed on the basis of the logarithm of the number of nematodes.

Metal mixture effects at individual and population levels
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Areas under the population size vs. time curve were calculated using the trapezoid rule, as

implemented in the trapz function using the pracma package in R [30]. This area is the cumu-

lative sum of all individuals of the population multiplied by the time they were alive and is thus

an indication of the population size during the whole experiment. Since treatments can have

the same area under the population size vs. time curve, while showing a very different shaped

curve, 2 more parameters (maximum and end population size) were measured to compare the

patterns of population size between treatments.

The control group of the LC20 experiment was visually very different from the other treat-

ments; since the focus was to compare differences between the various treatments, this control

group was omitted from our analysis. One of the replicates of the LC20 concentration of Zn

was also omitted, because it was an outlier according to diagnostic plots. Since the maximum

population size of each LC5 and ZnCd mixture treatment was reached at the end of the experi-

ment, only the end population size was analysed, except for the LC5 ZnCuCd mixture where

the maximum was reached at day 8.

For each parameter value, a one-way ANOVA was fitted to test the effect of each treatment.

To test if the magnitude of each value was different compared to the control, a posthoc analysis

with a Dunnett correction was carried out. Subsequently, a one-way ANOVA was fitted for

each parameter to test whether the outcome was the same across treatments. If there was a sig-

nificant difference between treatments, a posthoc analysis with Tukey correction for multiple

testing was performed. In this way, the differences between the single metals, between the mix-

tures and between the mixture and corresponding single metals were analysed.

Mortality of ZnCd mixtures. To determine whether the mixtures of LC20 concentrations

of Cd with different Zn concentrations led to significant higher mortalities than the individual

metals, a nonparametric ANOVA, Kruskal–Wallis test, followed by posthoc analysis with Bon-

ferroni correction for multiple testing was performed.

Mixture effects were assessed using the conceptual model of Concentration Addition (CA)

and Independent Action (IA) [31]. In contrast to population size, full dose-response profiles

are available to predict mixture effects on mortality according to the more advanced formulas

of CA and IA [23,32]. CA assumes similar modes of action, while IA assumes different modes

of action of the single metals. The expression for the CA model is given by:

Xn

i¼1

ci
EC50iðy=ð100 � yÞÞ1=b

 !

¼ 1 ð1Þ

and that for the IA model is:

y ¼ 100 1 �
Yn

i¼1

1

1þ ðci=EC50iÞ
b

 !" #

ð2Þ

where ci is the concentration of compound i, n is the number of compounds, y is the predicted

effect of the mixture and β is the slope of the dose-response curve.

The observed mortalities were compared with the values expected on the basis of the CA

model (Eq 1) and the IA model (Eq 2), using the non-parametric Wilcoxon test, to analyse

which interactive effects occur in the mixtures. Additive effects were observed if predicted

mixture effects did not deviate from measured effect. If observed mixture effects were signifi-

cantly higher than those predicted from both models the interaction was considered as syner-

gistic, whereas an antagonistic interaction was indicated by a significantly lower observed

effect compared to that predicted by both models.

Metal mixture effects at individual and population levels
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Results and discussion

For clarity, we firstly discuss the effects of single metal exposures, followed by those of the vari-

ous mixture exposures.

Population effects of single metals: Metal treatment, concentration and

time effects

Body length. At the start of the experiments with LC20 concentrations of metal ions, all

nematodes were adults of the same age (i.e. 24 h since onset of L4 stage) and body length as the

control (Fig 1). As described in the Materials and methods, we did not follow the change in

Fig 1. Body length (mm) of nematodes as a function of time (days) during exposures to single metal ions at LC20

(A) and LC5 (B) concentrations (see Table 1). Data are shown as mean ± standard deviation (20 individuals were

measured for each of three independent replicates). Asterisks denote significant differences (P<0.05) compared to the

corresponding control.

https://doi.org/10.1371/journal.pone.0218929.g001
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body length of particular individuals, but rather the average body length of the post-larval

stage nematodes was determined and used as an indicator of effects at the population level.

The body length of nematodes exposed to LC20 concentrations of metal ions decreased

over time, whilst that of the control organisms increased (P<0.001) (Fig 1A; S2 Table). After 5

days of exposure, the Cu and Cd exposed nematodes were 80.9% smaller than the control,

while for Zn exposures they were 31.2% smaller (P<0.001) (S3 Table). The maximum mea-

sured body length of Cu and Cd exposed nematodes corresponded to the length of L1 larvae,

while Zn exposure resulted in a similar length as L4 larvae. At the end of the experiment (day

10), the difference in body length between the control and Cu exposed nematodes was similar

to that of day 5, while the difference compared to Zn (+17.3%) was larger (P<0.001) (S4

Table). Cu exposed nematodes had a similar maximum size as at day 5, while the maximum

measured length of Zn exposed C. elegans was reduced to the size of L3 larvae at day 10. Since

the nematodes exposed to Cd were dead at the end of the experiment, their body length was

not measured. It is possible that exposure to single metal ions at LC20 concentrations affected

the development of C. elegans, resulting in smaller body lengths. In contrast, the body length

of LC5 exposed nematodes was not affected by any of the single metal treatments (Fig 1B),

which suggests that they reached adulthood.

These observations are in agreement with trends reported in earlier studies. For example,

the EC50 for body length after an exposure of 24 h was 0.05 mM (3.2 mg/L) for Cu, 0.23 mM

(15.1 mg/L) for Zn, and 0.05 mM (5.7 mg/L) for Cd [33]. Others have observed a concentra-

tion dependent effect of Cd on developmental stages, e.g. exposure to 20 μM (2.3 mg/L) Cd

decreased the number of adults and increased the proportion of nematodes in the L4 stage

with a very small number of nematodes in the L3 stage [17]. Mixed populations of L4 and L3

larval stages were present after exposure to 30 μM (3.4 mg/L) Cd, while no nematodes devel-

oped further than L1-L2 larval stages when exposed to 100 μM (11.2 mg/L) Cd. In the case of

Cu (on NGM plates), at the optimal Cu concentration of 2 μM (0.13 mg/L), C. elegans devel-

oped at day 3 into gravid adults, whereas at higher Cu concentrations nematodes maximally

reached L3 larval or young adult stage [34]. Similarly, in our study nematodes exposed to Cu

at LC5 (ca. 4 μM; 0.23 mg/L) developed into adults, while at LC20 (ca. 20 μM; 1.3 mg/L) they

only reached the length of L1 larvae. In the case of Zn (in C. elegans maintenance medium

(CeMM)) nematodes were not able to mature or reproduce in the absence of Zn; exposure to

1–10 μM (0.07–0.65 mg/L) caused impaired growth, and optimal growth was in the range of

30 μM to 1 mM (1.96–65.39 mg/L) [9]. In the present study (in liquid medium) body length

was not affected by 22 μM (1.4 mg/L) of Zn, but was reduced upon exposure to 145 μM (9.5

mg/L) Zn. Differences between studies in terms of the absolute concentrations at which effects

were observed can be ascribed to the different test media and differences in protocols, amount

of bacteria, and type of bacteria etc. These effects of single metal treatments on development of

LC20 exposed nematodes are reflected in the observations of population size discussed below.

Population size. For control nematodes, the start of new generations was observed clearly

with a population increase every 3–4 days. Nematodes exposed to LC20 concentrations of sin-

gle metals did not show this pattern (Fig 2A). Instead, it seems that only one new generation

was formed, whereafter the population size started to decrease. Zn had a similar maximum

population size as Cu, although this was already reached at day 4 for Cu, while the population

size of Zn slightly increased until day 8. Thereafter, compared to the respective maximum pop-

ulation sizes, the end population size decreased by 25.9% for Zn and by 77.8% for Cu exposure.

At day 10, the population size of the Zn and Cu exposed nematodes was comparable. Follow-

ing attainment of the maximum population size (day 3), the population of Cd exposed nema-

todes decreased dramatically until all were dead at day 10 (Fig 2A). Thus, as the exposure time

increased, the toxicity of Cd was increasingly manifested. Furthermore, Cd had a smaller area

Metal mixture effects at individual and population levels
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under the population size vs. time curve, smaller maximum and smaller end population size

compared to Zn and Cu (S5, S6 and S7 Tables). Further information on the population size

and area under the population size vs. time curve for the LC20 treatments is given in the Sup-

plemental data, S5, S6 and S7 Tables. The crucial role of the exposure time on the relative mag-

nitudes of the observed effects points to differences in the dynamics of uptake and biotic

handling processes amongst the three metals [35].

When exposed to the lower LC5 concentration, Cd caused a lower area under the popula-

tion size vs. time curve (58.9%, P<0.05) (Fig 2B; S8 Table), while Zn caused a lower maximum

population size (78.3%, P<0.01) compared to the control group (S9 Table). Interestingly, the

population size in the Cu exposure did not differ from the control, suggesting that the chosen

Cu concentration might approximate the essential Cu concentration [34]. Nevertheless, upon

extending the exposure time beyond day 10, the population size in the Cu exposure levelled off

from day 11 onwards, whereas the control population further increased (Fig 2B). This finding

shows that studies with longer exposure times are necessary to reveal the potential toxicity of

Fig 2. Population size (number, N) of nematodes as a function of time (days) during exposures to single metal

ions at LC20 (A), and LC5 (B) concentrations. Data are shown as mean ± standard deviation (number of

independent replicates, n = 3). The starting population in all treatments is 10 adult nematodes.

https://doi.org/10.1371/journal.pone.0218929.g002
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low Cu concentrations in the longer term. Population sizes in single metal exposures to Zn

and Cd were similar until day 10, after which the population of Cd increased to a greater extent

and approached that of Cu at day 12. In contrast to the LC20 exposures, the maximum popula-

tion size of all single metal treatments was reached at day 12.

Several studies have reported the effects of single metal exposures on C. elegans at the popu-

lation level which are in broad agreement with our findings [36,37]. For nematodes exposed to

LC20 concentrations of metal ions, a decrease in population size was expected because the

nematodes did not reach adulthood, which disrupted egg laying, causing the number of new

larvae to decline. Furthermore, larval nematodes are more sensitive to metal toxicity than

adults [21], which also contributes to the observed population size decrease. Exposure time

was also found to be an important factor in determining the absolute and relative magnitude

of toxic effects. Short-term 24 h or 48 h exposures typically show Cu to be more toxic than Zn

or Cd to C. elegans [20–24]. However, in the present study, the relative toxicity order of Cu

and Cd was reversed as the exposure time increased. This effect has been reported by others on

e.g. mortality [24].

Although similar declining trends were observed for body length and population size of

nematodes exposed to LC20 concentrations of metal ions, no effects on body length were

observed after exposure to LC5 concentrations, while population size was slightly affected. It

seems that the reproductive characteristics (start of egg laying, number of eggs, time of hatch-

ing, hatching success, etc.) of the nematodes exposed to LC5 concentrations of metal ions were

affected, which is reflected in differences in population size. These observations indicate that

population size is a more holistic and sensitive endpoint than body length alone.

The hypothesis that an affected development and reproduction may play an important role

in the declining population sizes of nematodes exposed to LC5 and LC20 concentrations of

metal ions has been confirmed in earlier studies. According to numerous publications, the

fecundity and growth of C. elegans is reduced by Cd [13,18,38,39]. Decreased fecundity is

ascribed to a combination of slow growth and shorter lifespan, preventing development into

adulthood, combined with a decrease in number of eggs produced of which fewer were ferti-

lised [40]. These results are in agreement with findings for isopods, Daphnia magna and mites

[36,38,40–42].

Although Cu is essential, in excess or deficiency it has detrimental effects on brood size and

life span and causes an increase in generation time and impairment of development (mani-

fested as reduced body size and growth) [4,16,23,34,43,44]. Since Cu affects reproduction and

life-span, it consequently influences population growth. The reproduction EC50, i.e. the con-

centration of Cu required to reduce reproduction by 50% relative to control, was found to be

0.032 mM ± 0.003 mM (2.04 ± 0.19 mg/L) for C. elegans and 0.035 mM ± 0.015 mM (2.21 ±
0.93 mg/L) for P. pacificus [8]. Furthermore, the population growth at day 3 was maximal at

low Cu concentrations (� 10 μM;� 0.6 mg/L), but impaired at 150 μM (9.5 mg/L) Cu, causing

smaller brood size and delayed development [34]. These results are consistent with the present

study: the population exposed to the LC20 concentration of Cu (20 μM), reached its maximum

size at day 4 and thereafter decreased, which suggests that the reproductive traits were affected.

In the case of Zn, deficient or excess concentrations are known to have harmful effects on

(population) growth, survival, development and reproduction of many animals, including

C. elegans. [29,45–47]. Besides population size, lifespan decrease has also been reported to be

concentration dependent: a Zn concentration of 2.5 μM (0.16 mg/L) caused a lifespan shorten-

ing of 3 days, while exposure to 75 μM (4.90 mg/L) or 200 μM (13.08 mg/L) reduced lifespan

by 4 days [29].

Overall, single metal treatments of Zn, Cu and Cd are all able to influence life span and sev-

eral characteristics, which could explain the observed effects on body length and population
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size. In addition, hormesis (an adaptive response to low stress levels) might explain the rela-

tively large population size after LC5 exposures in the present study [48].

Population effects of mixtures: Metal treatment, concentration and time

effects

Body length. The body length of nematodes exposed to mixtures of LC20 concentrations

of metal ions decreased over time (Fig 3A, S2 Table). After 5 days of exposure, the ZnCu,

CuCd and ZnCuCd exposed nematodes were 77.5–84.2% smaller than the control, while for

ZnCd exposure they were 47.6% smaller (P<0.001) (S3 Table). After exposure to ZnCd, the

body length was much larger compared to the other mixtures and 175.6% larger than of those

exposed to Cd alone, while body length of nematodes exposed to Zn was 31.3% larger than of

those exposed to ZnCd (P<0.001). This suggests that Zn reduced the toxic effect of Cd on the

body length of C. elegans. In contrast, the body length of nematodes exposed to ZnCu was sim-

ilar to that for exposures to Cu alone and much smaller than for Zn alone (P<0.001) (S3

Table). Apparently Zn was not able to mitigate Cu toxicity, rather it seemed to increase the

toxicity. The body length of nematodes exposed to Cu and Cd alone was on average 19.6%

larger compared to CuCd (P<0.01). The tertiary mixture led to a smaller body length com-

pared to any of the single metals. At the end of the experiment (day 10), the difference in body

length between the control and ZnCd (+23.4%) was larger (P<0.001) than at day 5 (S4 Table).

Nematodes exposed to ZnCu, CuCd and ZnCuCd were dead, therefore their body length was

not measured. The body length of Zn was 78.3% larger than ZnCd at day 10 (P<0.01) (S4

Table). As discussed in the preceding sections for the single metals, exposure to mixtures of

metal ions at LC20 concentrations might also affect the development of C. elegans, causing

smaller body lengths. This was reflected at day 5 in the correspondence between the body

length of ZnCu, CuCd and ZnCuCd exposed nematodes and the length of L1 larvae, while the

body length of nematodes exposed to ZnCd was similar to that of L3 larvae. At day 10, the

body length of nematodes exposed to ZnCd was similar to the length at the first molt (L1 to L2

larvae) or of dauer larvae. These results indicate that nematodes exposed to mixtures of metal

ions at LC20 concentrations were not able to reach adulthood, leading to a decline in popula-

tion size.

In contrast, the body length of nematodes exposed to mixtures of metal ions at LC5 concen-

trations was similar to the control and the single metal exposures (Fig 3B).

Population size. The maximum population size of nematodes exposed to ZnCu, CuCd

and ZnCuCd mixtures at their respective LC20 concentrations was reached within 2–3 days

and no nematodes survived until the end of the experiment at day 8–9 (Fig 4A). These mix-

tures led to a lower area under the population size vs. time curve, a lower maximum popula-

tion size and a decreased population size at day 10 of exposure as compared to at least one of

the corresponding single metals (S5, S6 and S7 Tables). Interestingly, the nematodes exposed

to ZnCd had a larger area under the population size vs. time curve and larger population size

at day 10 compared to Cd alone, and a larger area under the curve, larger maximum and

greater end population size than the other mixtures (S5, S6 and S7 Tables). The maximum

population size of the ZnCd exposed nematodes was reached at day 10. Zn therefore seemed to

have a mitigating effect on the toxicity of Cd.

In contrast to the LC20 treatments, the maximum population size of all combinations of

metal ions at their respective LC5 concentrations was reached at day 12, except for ZnCuCd

where the maximum was reached at day 8. Nematodes exposed to the LC5 combinations

ZnCu, ZnCd, CuCd and ZnCuCd (86.9%, P<0.001) had a lower area under the population

size vs. time curve and lower end population size (94.8%, P<0.001) than the control group
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(Fig 4B; S8 and S9 Tables). Furthermore, all LC5 mixtures had a lower area under the popula-

tion size vs. time curve and smaller end population as compared to the corresponding single

metals (Fig 4B, S8 and S9 Tables). In contrast to the LC20 exposure, the population size in the

LC5 ZnCd mixture had a similar pattern to that of the other mixtures. It seems that the LC5

concentration of Zn was too low to mitigate toxicity effects at the population level. For all mix-

tures of metal ions at their respective LC5 concentrations, no deleterious declines in the num-

ber of living nematodes were noticed, rather the population size of mixtures even slightly

increased over the course of the exposures (Fig 4B).

The interactive effect of metal ions on population size in mixtures of ZnCu, CuCd and

ZnCuCd at both LC20 and LC5 concentrations seemed to be either additive or synergistic.

The differences in toxicity indicate the importance of simultaneous testing of mixtures and the

Fig 3. Body length (mm) of nematodes as a function of time (days) during exposures to mixtures of metal ions at

their respective LC20 (A) and LC5 (B) concentrations (see Table 1). Data are shown as mean ± standard deviation

(20 individuals were measured for each of the three independent replicates). Asterisks denote significant differences

(P<0.05) compared to the corresponding control. The single metal data are included for comparison and are the same

as those shown in Fig 1.

https://doi.org/10.1371/journal.pone.0218929.g003
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corresponding single metals. Furthermore, it is important to take exposure time into account,

since the nature of the interactive effects may evolve with time [49]. In our study, mixtures of

metal ions at their respective LC20 concentrations did not differ from single metals in terms of

when the maximum population size was reached (Fig 4A). However, thereafter, the population

size of mixtures decreased much faster compared to the corresponding single metals. Even for

LC5 levels, differences in population size between mixtures and single metals were more obvi-

ous from day 6 onwards (Fig 4B). Furthermore, it is possible that additivity is only noticed

under certain conditions. In our study the combination of Cu and Cd had a larger additive

effect when both metal ions were present at LC5 concentrations than at LC20 ones, while the

combined additive effect of Cu and Zn each at LC5 concentrations was similarly additive or

slightly less additive than at LC20 (Fig 4). However, in the study of Jonker et al. [31] synergistic

interaction effects of Zn and Cu on the population growth, after 1 week of exposure, were only

Fig 4. Population size (number, N) of nematodes as a function of time (days) during exposures to mixtures of

metal ions at their respective LC20 (A), and LC5 (B) concentrations. Data are shown as mean ± standard deviation

(number of independent replicates, n = 3). The starting population in all treatments is 10 adult nematodes. The single

metal data are included for comparison and are the same as those shown in Fig 2.

https://doi.org/10.1371/journal.pone.0218929.g004
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observed at high dose levels (i.e. higher than LC50). In contrast, the interaction between Zn

and Cd in the present study appeared to be antagonistic at LC20 concentrations of each metal

ion; and additive at LC5 concentrations.

The toxic effects were again more evident for population size than for body length. For exam-

ple, after exposure to the ZnCd mixture of LC20 values, body length was on average 196.6%

larger as compared to the other mixtures (Fig 3A), while population size was on average 768.0%

higher (Fig 4A). The differences between mixtures and the corresponding single metal expo-

sures were also more apparent for population size than for body length. At day 5, the population

sizes of Cu and Cd exposed nematodes were on average 707.9% larger than of those exposed to

the CuCd mixture, while their body length was on average only 19.6% larger (P<0.01).

Although metal mixture toxicity is typically evaluated in terms of the “concentration addi-

tion” (CA) model or the “independent action” (IA) model, these simplistic additive approaches

have limitations [32,50,51]. For example, mixture toxicity effects on the temporal evolution of

the body length and population size of C. elegans are difficult to interpret with this simple

framework. As noted above, the body length does not refer to a particular individual but rather

represents the average body length of the post-larval stage nematodes of the population, which

are not necessarily the same age or from the same life stage. These conditions, as well as the

absence of full dose-response profiles, preclude use of the available expressions for the CA and

IA models for analysing mixture effects. As a next step, additional experiments with different

exposure concentrations are needed to fit dose-response curves as a function of exposure time,

and to use this information to model and predict mixture effects at these organisational levels.

Such studies would allow an evaluation of the ability of the CA and IA models to predict the

temporal evolution of mixture effects. However, these models should be applied with some cau-

tion. Our results showed a different population size pattern for LC2024h and LC524h exposures,

which changed over time. Given these limitations, the relative toxicity effects exerted by mix-

tures on body length and population size were described and compared with those arising from

the corresponding single metals. In most cases the interactive effects are evident from the data

shown in the figures, e.g. antagonistic effect of Zn and Cd in LC20 mixtures (Figs 3 and 4).

Mixtures of metals at LC5 concentrations had no effect on body length, while ZnCu, CuCd

and ZnCuCd mixtures at their respective LC20 concentrations seemed to cause either additive

or synergistic effects. These mixtures of both LC5 and LC20 concentrations also caused either

additive or synergistic effects on population size. Others have reported that Zn and Cu have

additive or antagonistic effects at the individual level (mortality, behaviour) and at the commu-

nity level (number of nematodes in soil) [23,52], and that there are highly synergistic interac-

tions between Cu and Cd, and between Cu and Zn at the individual level (mortality) [21].

Such interactive effects were also observed at the molecular level in a transgenic strain of C. ele-
gans, carrying a stress-inducible β-galactosidase reporter, where the combination of Cu and

Cd in soil led to a larger response than Cd alone, whereas the ZnCd mixture caused a lower β-

galactosidase activity than Cd alone [16]. This antagonistic effect was also observed in the pres-

ent study for the LC20 combination on both body length and population size. Zn seemed thus

to have a mitigating effect on Cd due to e.g. competition for Ca channels. Furthermore, this

effect was also observed in our previous work at the individual level (mortality and locomo-

tion) [23] and in other studies at the molecular (β-galactosidase activity) and individual level

(mortality, body burden, body length) [13,21].

Mitigating effect of Zn on Cd toxicity at the individual and population level

To better understand the mitigating effect of Zn, the population size and mortality of a range

of LC concentrations of Zn in combination with a LC20 concentration of Cd was measured.
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All combinations at 24 h and 48 h, had a lower mortality than that predicted on the basis of the

CA and IA models (P<0.05), i.e. antagonistic effects are operative (Fig 5, S10 and S11 Tables).

Furthermore, compared to the exposure to Cd-only at the LC20 concentration, the mixture of

LC60 Zn + LC20 Cd at both time points, caused a significantly higher mortality, while the mix-

ture LC2 Zn + LC20 Cd at 48 h induced a lower mortality (S10 and S11 Tables).

Fig 5. Mortality (%) of nematodes exposed to 24 h lethal concentrations LC2, LC5, LC20, LC40, LC60 of Zn, LC20

of Cd, and respective mixtures thereof. Nematodes were exposed for 24 h (left) and 48 h (right). Data are shown as

mean ± standard deviation (number of independent replicates, n = 6). Asterisks (�) denote significant differences

(P<0.05) compared to the mixture. See Table 1 for LC24 h values.

https://doi.org/10.1371/journal.pone.0218929.g005
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Although all ZnCd combinations had an antagonistic effect on the mortality, this effect

seemed to be concentration dependent and the strongest antagonistic effect was observed for

the mixture of LC40 Zn + LC20 Cd. This concentration dependency of the mitigating effect of

Zn was more pronounced for the population size. Population size for all treatments reached its

maximum at the end of the experiment, day 2, even for the mixture LC60 Zn + LC20 Cd for

which a high mortality was noted, but a concentration dependent relation was observed (Fig

6). When an LC20 concentration of Cd was combined with an LC2 concentration of Zn

(P<0.001) or an LC5 concentration of Zn (P<0.01), the population size decreased, resulting in

smaller areas under the population size vs. time curve and smaller end population sizes com-

pared to the corresponding Zn-only exposures (S12 and S13 Tables). Furthermore, the combi-

nation of an LC60 concentration of Zn with an LC20 concentration of Cd resulted in a

significantly smaller area under the population size vs. time graphs (P<0.05) and end popula-

tion size (P<0.01) compared to Cd-only at its LC20 concentration. In contrast, the mixtures

LC20 Zn + LC20 Cd and LC40 Zn+ LC20 Cd had a population size that was similar to the cor-

responding single metal exposures, suggesting that Zn concentrations in this range were best

able to mitigate the toxicity of LC20 concentrations of Cd. Apparently, LC5 and LC2 concen-

trations of Zn were too low to protect the nematodes against the harmful effect of Cd, while

LC60 of Zn alone already caused a population decline of 46.7%. The concentration depen-

dence of Zn toxicity is apparent from data reported by Dietrich et al. [12]: in CeMM liquid

medium, the population growth rate was maximal at Zn concentrations ranging from 30–

500 μM, dose-dependent decreases were noticed for concentrations higher than 500 μM and

the population growth rate was severely impaired at 2.5 mM Zn. In our study, the population

size also decreased dose-dependently, especially LC60 Zn (1.3 mM) caused a significant reduc-

tion (Fig 6). Population size was maximal at concentrations below 30 μM. This suggests that

high Zn concentrations disturb Zn homeostasis and that excessive Zn can replace other physi-

ologically important metal ions such as Cu and Mn, or bind to ectopic protein sites [12]. The

concentration-dependent protective role of Zn on Cd toxicity has been reported in studies on

Fig 6. Population size (number, N) of nematodes as a function of time (days) during exposure to Zn at a range of LC levels,

both singly and in combination with an LC20 concentration of Cd. Data are shown as mean ± standard deviation (number of

independent replicates, n = 3). The starting population in all treatments is 10 adult nematodes.

https://doi.org/10.1371/journal.pone.0218929.g006
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a wide range of organisms including Daphnia magna [53–55], freshwater bivalves [56], clado-

cera [57] and rainbow trout [58].

Zn and Cd are both Group 12 metals that can bind to identical macromolecular structures

via coordination with oxygen, nitrogen and sulphur functionalities, albeit with different affin-

ity [59,60]. In general, Cd can replace Zn in various proteins causing dysfunction and can

compete with Zn as a cofactor. Cellular detoxification systems (including glutathione, metal-

lothioneins, heat shock proteins, pumps and transporters) regulate intracellular metal levels by

detoxifying and excreting metals [10]. In C. elegans transmembrane Zn transporters belong to

the CDF or ZIP family. ZIP proteins increase the concentration of cytoplasmic Zn by import-

ing, while CDF proteins function to lower cytoplasmic Zn concentration by exporting across

the plasma membrane [11,12]. Amongst members of the CDF family, cdf-1 seems to promote

resistance to high Zn levels by promotion of Zn excretion and/or limiting Zn uptake, while

cdf-2 functions to promote Zn accumulation. High levels of Zn induce transcript levels of cdf-
2, ttm-1b, mtl-1 and mtl-2, the promoters of which contain a similar sequence, called HZA

[11,12]. It is suggested that in C. elegans HZA serves as an enhancer to mediate transcriptional

activation in response to high Zn or Cd levels [11,12]. In contrast, Cu does not affect gene

expression, indicating that HZA does not mediate a response to all metals [11,12]. In the study

of Davis et al. [9] a dose-response increase in cdf-2 expression was noticed as a function of

increasing Zn concentration, while cdf-1 was most abundant at low Zn concentrations. We

compared the fold-change in cdf-2 expression reported by Davis et al. [9] with our observed

changes in mortality and population size. Remarkably, Fig 7 shows a consistency between the

literature gene transcription data [9] and our mortality results. Specifically, beyond a certain

concentration of around 1 mM of Zn (i.e. around the LC60 concentration of Zn in our study),

no further increase in cdf-2 expression was reported [9] and this corresponds to the condition

under which we observed a decrease in the extent of antagonistic effects in the ZnCd mixtures.

It is possible that the mixture of LC60 Zn + LC20 Cd reached or even exceeded the capacity

of the system to cope. That is, above a certain Zn concentration there is no further increase in

the ability to excrete, chelate or store Zn or Cd, and thus toxicity of both metals is manifested.

At the other extreme, i.e. limiting Zn conditions, it has been reported that Cd can displace Zn

and trigger a transcriptional response that results in reduced Zn availability [11,12]. This pro-

cess may explain aspects of the mode-of-action of Cd toxicity and its time dependence.

The overall toxicity observed at the individual and population levels is a consequence of the

dynamic features of all the involved components (uptake, internal handling and elimination).

The translation of exposure to accumulation and toxicity requires knowledge of the kinetics of

all the contributing events. The HZA element appears to provide important insights into

mechanistic links between the effects of Zn and Cd at the gene transcription level and those at

the individual and population level.

Conclusions

Our study confirmed that metal toxicity to C. elegans is concentration and time dependent,

resulting in different trends for population size and body length. In turn, different trends were

observed under single vs. mixed-metal exposure conditions. The nature and extent of the

effects observed under mixture scenarios were also dependent on the metal combinations

employed. Nevertheless, with the exception of ZnCd combinations, the toxicity of mixtures

was always greater than that of the corresponding LC concentrations of single metals, and thus

either additive or synergistic. The mitigating effect of Zn on Cd toxicity was found to be con-

centration dependent: e.g. an LC20 concentration of Zn reduced the toxicity of an LC20 con-

centration of Cd, whilst an LC5 concentration of Zn had no effect.
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A significant outcome of our study is the importance of studying effects on different end-

points and on different organisational levels, and the time dependence thereof. Toxic effects at

one level, e.g. the molecular or individual, can help to better understand the observations at

another organisational level, e.g. the population. Furthermore, it is possible that at a certain

time point no effects are seen at one level, but are evident at another. These findings under-

score the need to monitor effects at multiple organisational levels. This study also highlighted

the importance of long-term studies. For example, differences between LC20 treatments can

already be observed for mortality and behaviour after 24–48 h [23], while for population size

differences became more evident after 3–4 days of exposure. This can be explained by the fact

that population size integrates individual life histories and transgenerational effects, which

take time to be reflected in the whole population. For example, if the development of

Fig 7. (A) Effect of Zn on the mortality induced by a LC24 h20 concentration of Cd after 24 h and 48 h (right-hand

axis) as compared to the fold-change in level of cdf-2 expression in Zn-only exposures (left hand axis; data from

Davis et al., 2009 [9]). The mortality data are shown as the ratio of mortality in the ZnCd mixture to that in the

corresponding Cd only exposure, i.e. a value greater than unity reflects greater toxicity in the mixture exposure. The

fold-change in cdf-2 expression is relative to that observed in Zn at 2 μM. (B) Effect of Zn on the population size of

nematodes exposed to an LC2024 h concentration of Cd after 24 h and 48 h (right-hand axis) as compared to the

fold-change in level of cdf-2 expression in Zn-only exposures (left hand axis). The population data are shown as the

ratio of the population size (number, N) in the ZnCd mixture to that in the corresponding Cd only exposure, i.e. a

value less than unity reflects greater toxicity in the mixture exposure.

https://doi.org/10.1371/journal.pone.0218929.g007
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nematodes of the new generation is affected, the effects will only be clearly visible 3–4 days

later via the absence of a large increase in population size due to e.g. inability to lay eggs. Over-

all, metal effects were more evident on population size rather than body length or mortality,

suggesting that population size is a sensitive endpoint for effects on long timescales.

Overall, it is evident that data on metal (mixture) effects at different levels (molecular, sur-

vival, reproduction, population, etc.) and exposure timescales is needed to elucidate the mech-

anistic basis of toxic effects. Unfortunately, environmental quality standards are still based on

single metal toxicity at short exposure durations and do not take into account the chronic,

multi-stressor exposure scenarios that are typical for environmental systems. The consistency

we observe herein between gene transcription responses and mixed metal toxicity at the indi-

vidual and population level may lead the way to development of a more comprehensive basis

for environmental risk assessment.
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S5 Table. Between treatment comparison of the area under the population size vs. time

curve of LC20 exposure. Asterisks denote significant differences (� P<0.05; �� P<0.01;
��� P<0.001) (ns = not significant; NA = not applicable).

(XLSX)

S6 Table. Between treatment comparison of the maximum population size of LC20 expo-

sure. Asterisks denote significant differences (� P<0.05; ��P<0.01; ��� P<0.001) (ns = not sig-

nificant; NA = not applicable).

(XLSX)

S7 Table. Between treatment comparison of the end population size of LC20 exposure.

Asterisks denote significant differences (� P<0.05; �� P<0.01; ��� P<0.001) (ns = not signifi-

cant; NA = not applicable).

(XLSX)

S8 Table. Between treatment comparison of the area under the population size vs. time

curve of LC5 exposure. Asterisks denote significant differences (� P<0.05; �� P<0.01;
��� P<0.001) (ns = not significant; NA = not applicable).

(XLSX)
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S9 Table. Between treatment comparison of the end population size of LC5 exposure.

Asterisks denote significant differences (� P<0.05; �� P<0.01; ��� P<0.001). (ns = not signifi-

cant; NA = not applicable).

(XLSX)

S10 Table. Observed mortality after 24 h of exposure to ZnCd mixtures compared between

treatments and with predictions from the CA and IA model. Asterisks denote significant

differences (� P<0.05; �� P<0.01; ���P<0.001) (ns = not significant; NA = not applicable).

(XLSX)

S11 Table. Observed mortality after 48 h of exposure to ZnCd mixtures compared between

treatments and with predictions from the CA and IA model. Asterisks denote significant

differences (� P<0.05; �� P<0.01; ��� P<0.001) (ns = not significant; NA = not applicable).

(XLSX)

S12 Table. Between treatment comparison of the area under the population size vs. time

curve of ZnCd mixture exposures. Asterisks denote significant differences (� P<0.05;
�� P<0.01; ��� P<0.001) (ns = not significant; NA = not applicable).

(XLSX)

S13 Table. Between treatment comparison of the end population size of ZnCd mixture

exposures. Asterisks denote significant differences (� P<0.05; �� P<0.01; ��� P<0.001)

(ns = not significant; NA = not applicable).

(XLSX)

S1 Fig. Pictures taken at day 5 of 1/8 of the population of nematodes exposed to control

(left) and LC20 of Cu (right) (magnification 6x).

(TIF)
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36. Álvarez OA, Jager T, Kooijman SALM, Kammenga JE. Responses to stress of Caenorhbaditis elegans

populations with different reproductive strategies. Funct Ecol. 2005; 19(4):656–64. https://doi.org/10.

1111/j.1365-2435.2005.01012.x

37. Lira VF, Santos GAP, Derycke S, Larrazabal MEL, Fonsêca-Genevois VG, Moens T. Effects of barium

and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina.

Mar Environ Res. 2011; 72(4):151–9. https://doi.org/10.1016/j.marenvres.2011.07.003 PMID:

21855994

38. Popham JD, Webster JM. Cadmium toxicity in the free living nematode, Caenorhabditis elegans. Envi-

ron Res. 1979; 20(1):183–91. https://doi.org/10.1016/0013-9351(79)90096-3 PMID: 499167
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